Please wait a minute...

Frontiers of Environmental Science & Engineering

Front Envir Sci Eng    2013, Vol. 7 Issue (6) : 827-832
Dechlorination of 2,2′,4,4′,5,5′-hexachlorobiphenyl by thermal reaction with activated carbon-supported copper or zinc
Yifei SUN1, Xin FU1, Wei QIAO2, Wei WANG3, Tianle ZHU1, Xinghua LI1()
1. School of Chemistry and Environment, Beihang University, Beijing 100191, China; 2. College of Chemical Science and Engineering, China University of Petroleum, Beijing 102249, China; 3. School of Environment, Tsinghua University, Beijing 100084, China
Download: PDF(222 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Activated carbon (AC)-supported copper or zinc made from ion exchange resin (IRCu-C and IRZn-C) have an increased metal load of 557.3 mg?g-1 and 502.8 mg?g-1 compared to those prepared by the traditional method involving impregnation with AC and copper (II) citrate or zinc citrate solution (LaCu-C and LaZn-C) of 12.9 mg?g-1 and 46.0 mg?g-1 respectively. When applied to decompose 2,2′,4,4′,5,5′-hexachlorobiphenyl at 250 °C, IRCu-C achieved higher activity of 99.0% decomposition efficiency than LaCu-C of 84.7%, IRZn-C of 90.5% and LaZn-C of 62.7%. When the reaction temperature rose to 350 °C, all the four kinds of reactants can decompose PCB-153 with efficiency above 90%. Further, X-ray photoelectron spectroscopy characterization of IRCu-C before and after the reaction indicated transformation of 19.1% of Cu atoms into Cu2+, illustrating that Cu is the active ingredient or electron donor promoting the decomposition of PCB-153. The mechanism underlying this process differs from a traditional H donor. However, there is no significant change on the surface of IRZn-C before and after the reaction, suggesting that Zn acts as catalyst during the process of PCB-153 decomposition.

Keywords polychlorinated biphenyls      activated carbon-supported copper or zinc      dechlorination      electron donor     
Corresponding Author(s): LI Xinghua,   
Issue Date: 01 December 2013
 Cite this article:   
Yifei SUN,Xin FU,Wei QIAO, et al. Dechlorination of 2,2′,4,4′,5,5′-hexachlorobiphenyl by thermal reaction with activated carbon-supported copper or zinc[J]. Front Envir Sci Eng, 2013, 7(6): 827-832.
E-mail this article
E-mail Alert
Articles by authors
Yifei SUN
Xin FU
Tianle ZHU
Xinghua LI
Fig.1  The efficiency of PCB-153 decomposition and biphenyl yield ratio at different temperatures. PDE: PCB-153 decomposition efficiency, BYR: biphenyl yield ratio
250°C300 °C350 °C250 °C300 °C350 °C
residual PCB-1533.7262.1880.5281.1480.5330.159
250 °C300 °C350 °C250 °C300 °C350 °C
Tab.1  Mass of PCB homological groups and biphenyl after reaction. (Unit: μg)
Fig.2  Proposed dechlorination pathway of PCB-153 by thermal reaction with AC-supported copper (a) and zinc (b)
Fig.3  (a) XPS Cu 2p spectra from IRCu-C before and after the reaction at 300 °C. (b) XPS Zn 2p spectra from IRZn-C before and after reaction at 300 °C
1 Hosomi M. Chemical decomposition technologies for the treatment of polychlorinated biphenyls (PCBs). Journal of the Japan Society of Waste Management Experts , 2000, 11(3): 197-209 (in Japanese)
2 Ukisu Y, Miyadera T. Dechlorination of dioxins with supported palladium catalysts in 2-propanol solution. Applied Catalysis A: General , 2004, 271(1-2): 165-170
doi: 10.1016/j.apcata.2004.02.056
3 Zhang F, Chen J, Zhang H, Ni Y, Zhang Q, Liang X. Dechlorination of dioxins with Pd/C in ethanol-water solution under mild conditions. Separation and Purification Technology , 2008, 59(2): 164-168
doi: 10.1016/j.seppur.2007.06.016
4 Cobo M, Conesa J A, Montes De Correa C. Effect of the reducing agent on the hydrodechlorination of dioxins over 2wt.% Pd/γ-Al2O3. Applied Catalysis B: Environmental , 2009, 92(3-4): 367-376
doi: 10.1016/j.apcatb.2009.08.016
5 Wang Z, Huang W, Peng P, Fennell D E. Rapid transformation of 1,2,3,4-TCDD by Pd/Fe catalysts. Chemosphere , 2010, 78(2): 147-151
doi: 10.1016/j.chemosphere.2009.09.066 pmid:19889441
6 Kume A, Monguchi Y, Hattori K, Nagase H, Sajiki H. Pd/C-catalyzed practical degradation of PCBs at room temperature. Applied Catalysis B: Environmental , 2008, 81(3-4): 274-282
doi: 10.1016/j.apcatb.2007.12.019
7 Kainuma M, Takaoka M, Takeda N, Fujiwara T. Destruction of polychlorinated biphenyls by iron compounds. Proceedings of Environmental Engineering Research , 2000, 37: 477-485 (in Japanese)
8 Chuang F W, Larson R A, Wessman M S. Zero-valent iron-promoted dechlorination of polychlorinated biphenyls. Environmental Science & Technology , 1995, 29(9): 2460-2463
doi: 10.1021/es00009a044 pmid:22280292
9 Cheng R, Wang J L, Zhang W X. Degradation of chlorinated phenols by nanoscale zero-valent iron. Frontiers of Environmental Science & Engineering in China , 2008, 2(1): 103-108
doi: 10.1007/s11783-008-0009-9
10 Brinkman D W, Dickson J R, Wilkinson D. Full-scale hydrotreatment of polychlorinated biphenyls in the presence of used lubricating oils. Environmental Science & Technology , 1995, 29(1): 87-91
doi: 10.1021/es00001a010 pmid:22200204
11 Murena F, Schioppa E. Kinetic analysis of catalytic hydrodechlorination process of polychlorinated biphenyls (PCBs). Applied Catalysis B: Environmental , 2000, 27(4): 257-267
doi: 10.1016/S0926-3373(00)00157-0
12 Murena F, Schioppa E, Gioia F. Catalytic hydrodechlorination of a PCB dielectric oil. Environmental Science & Technology , 2000, 34(20): 4382-4385
doi: 10.1021/es000015x
13 Hagenmaier H, Brunner H, Haag R, Kraft M. Copper-catalyzed dechlorination/hydrogenation of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and other chlorinated aromatic compounds. Environmental Science & Technology , 1987, 21(11): 1085-1088
doi: 10.1021/es00164a007
14 Bo L L, Liao J B, Zhang Y C, Wang X H, Yang Q. CuO/zeolite catalyzed oxidation of gaseous toluene under microwave heating. Frontiers of Environmental Science & Engineering , 2013, 7(3): 395-402
doi: 10.1007/s11783-012-0417-8
15 Derbyshire F, Jagtoyen M, Andrews R, Rao A, Martin-Gullon I, Grulke E A. Carbon materials in environmental applications. In: Chemistry and physics carbon. 2nd ed . New York: Marcel Dekker , 2001, 1-66
16 Nakagawa H, Watanabe K, Harada Y, Miura K. Control of micropore formation in the carbonized ion exchange resin by utilizing pillar effect. Carbon , 1999, 37(9): 1455-1461
doi: 10.1016/S0008-6223(99)00008-1
17 Sun Y, Takaoka M, Takeda N, Matsumoto T, Oshita K. Kinetics on the decomposition of polychlorinated biphenyls with activated carbon-supported iron. Chemosphere , 2006, 65(2): 183-189
doi: 10.1016/j.chemosphere.2006.03.009 pmid:16630644
18 Zhu N, Li Y, Zhang F. Catalytic dechlorination of polychlorinated biphenyls in subcritical water by Ni/Fe nanoparticles. Chemical Engineering Journal , 2011, 171(3): 919-925
doi: 10.1016/j.cej.2011.04.041
Related articles from Frontiers Journals
[1] Xiaotu Liu, Heidelore Fiedler, Wenwen Gong, Bin Wang, Gang Yu. Potential sources of unintentionally produced PCB, HCB, and PeCBz in China: A preliminary overview[J]. Front. Environ. Sci. Eng., 2018, 12(6): 1-.
[2] Lifeng Cao, Weihua Sun, Yuting Zhang, Shimin Feng, Jinyun Dong, Yongming Zhang, Bruce E. Rittmann. Competition for electrons between reductive dechlorination and denitrification[J]. Front. Environ. Sci. Eng., 2017, 11(6): 14-.
[3] Dawei Liang, Shanquan Wang. Development and characterization of an anaerobic microcosm for reductive dechlorination of PCBs[J]. Front. Environ. Sci. Eng., 2017, 11(6): 2-.
[4] Shunan Shan, Yuting Zhang, Yining Zhang, Lanjun Hui, Wen Shi, Yongming Zhang, Bruce E. Rittmann. Comparison of sequential with intimate coupling of photolysis and biodegradation for benzotriazole[J]. Front. Environ. Sci. Eng., 2017, 11(6): 8-.
[5] Jiangkun DU,Jianguo BAO,Wei HU. Efficient dechlorination of 2,4-dichlorophenol in an aqueous media with a mild pH using a Pd/TiO2NTs/Ti cathode[J]. Front. Environ. Sci. Eng., 2015, 9(5): 919-928.
[6] Bhanukiran SUNKARA,Yang SU,Jingjing ZHAN,Jibao HE,Gary L. MCPHERSON,Vijay T. JOHN. Iron-carbon composite microspheres prepared through a facile aerosol-based process for the simultaneous adsorption and reduction of chlorinated hydrocarbons[J]. Front. Environ. Sci. Eng., 2015, 9(5): 939-947.
[7] Man ZHANG,Feng HE,Dongye ZHAO. Catalytic activity of noble metal nanoparticles toward hydrodechlorination: influence of catalyst electronic structure and nature of adsorption[J]. Front. Environ. Sci. Eng., 2015, 9(5): 888-896.
[8] Xiuhua LI, Haibo ZHANG, Yongming LUO, Ying TENG. Remediation of soil heavily polluted with polychlorinated biphenyls using a low-temperature plasma technique[J]. Front Envir Sci Eng, 2014, 8(2): 277-283.
[9] Jun HUANG, Yamei HUI, Toru MATSUMURA, Gang YU, Shubo DENG, Makoto YAMAUCHI, Changmin WU, Norimasa YAMAZAKI. Detailed analysis of PCBs and PCDD/Fs impurities in a dielectric oil sample (ASKAREL Nr 1740) from an imported transformer in China[J]. Front Envir Sci Eng, 2014, 8(2): 195-204.
[10] Osamu SHITAMICHI, Taiki MATSUI, Yamei HUI, Weiwei CHEN, Totaro IMASAKA. Determination of persistent organic pollutants by gas chromatography/laser multiphoton ionization/time-of-flight mass spectrometry[J]. Front Envir Sci Eng, 2012, 6(1): 26-31.
[11] Yueping BAO, Qiuying HUANG, Wenlong WANG, Jiangjie XU, Fan JIANG, Chenghong FENG. Application of quantum chemical descriptors into quantitative structure-property relationship models for prediction of the photolysis half-life of PCBs in water[J]. Front Envir Sci Eng Chin, 2011, 5(4): 505-511.
[12] QIANG Zhimin, BEN Weiwei, HUANG Chin-Pao. Fenton process for degradation of selected chlorinated aliphatic hydrocarbons exemplified by trichloroethylene, 1,1-dichloroethylene and chloroform[J]. Front.Environ.Sci.Eng., 2008, 2(4): 397-409.
[13] CHENG Rong, WANG Jianlong, ZHANG Weixian. Degradation of chlorinated phenols by nanoscale zero-valent iron[J]. Front.Environ.Sci.Eng., 2008, 2(1): 103-108.
Full text