Please wait a minute...

Frontiers of Earth Science

Front. Earth Sci.    2019, Vol. 13 Issue (2) : 351-360
Comparison of C- and L-band simulated compact polarized SAR in oil spill detection
Xiaochen WANG1,2,3, Yun SHAO1,2,3, Fengli ZHANG1,2,3(), Wei TIAN1,2,3
1. Laboratory of Target Microwave Properties, Deqing Academy of Satellite Applications, Huzhou 313200, China
2. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
Download: PDF(1874 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

This paper presents the compact polarized (CP) pseudo quad-pol parameters for the detection of marine oil spills and segregation of lookalikes using simulated CP SAR data from full-polarized (FP) SAR imagery. According to the CP theory, 11 polarized parameters generally used for the detection of oil spills were derived from reconstructed pseudo quad-pol data for both C and L bands. In addition, the reconstruction performance between C and L bands was also compared by evaluating the reconstruction accuracy of retrieved polarized parameters. The results show that apart from σHV and RH, other polarized parameters of σHH, σVV, H, α, ϕH−V, r, ρH−V, and γ can be reconstructed with satisfactory accuracy for both C and L bands. Furthermore, C band has a higher reconstruction accuracy than L band, especially for ϕH−V. Moreover, the effect of reconstruction of polarized parameters on oil spill classification was also evaluated using the maximum likelihood classification (MLC) method. According to the evaluation of kappa coefficients and mapping accuracy, it is recommended to use σHH, σVV, H, ρH−V, and γ of the C band CP SAR for marine oil spill classification.

Keywords compact polarized      reconstruction      oil spill      classification     
Corresponding Authors: Fengli ZHANG   
Just Accepted Date: 29 November 2018   Online First Date: 03 January 2019    Issue Date: 16 May 2019
 Cite this article:   
Xiaochen WANG,Yun SHAO,Fengli ZHANG, et al. Comparison of C- and L-band simulated compact polarized SAR in oil spill detection[J]. Front. Earth Sci., 2019, 13(2): 351-360.
E-mail this article
E-mail Alert
Articles by authors
Xiaochen WANG
Fengli ZHANG
Fig.1  Flowchart of pseudo quad-pol data reconstruction.
Scene ID Satellite Band Image name Observation time Scene position
Latitude Longitude
1 RADADSAT-2 C RD2016715543-1 07-JUL-2016 06:48 36°00¢N 120°45¢E
2 ALOS L ALPSRP100140730 11-DEC-2007 13:33 36°30¢N 126°05¢E
Tab.1  Radar parameters of quad-polarized data used for this study
Fig.2  Location of oil spills and segregation of lookalikes in SAR imagery. (a) C-band RADADSAT-2 quad-polarized SAR imagery, acquisition in 2016-7-7, Yellow Sea, China. (b) L-band ALOS PALSAR quad-polarized SAR imagery, acquisition in 2007-12-11, Cheonsu Bay, South Korea.
Polarized parameters Definition
Backscattering coefficient σHH0=SHHSHH*, σVV0=SVVSVV* , σHV0=SHVSHV*
Entropy H=i =13 pilog?3pi (pi=λ i/ j=13λj), λ i is the ith eigenvalue of coherency matrix [ T]
Scattering angle α=p1α1+ p2 α2 +p3α3, αi is derived from the ith eigenvalue of coherency matrix [T]
Reference height R H= λ3λ1
Co-polarized phase difference φH-V= S HHSVV*
Co-polarized power ratio r =|SHH|2 |SVV|2
Co-polarized correlation ρH-V= |SHHSVV*|/|S HH|| SVV|
Conformity coefficient γ =2(Re(SHHSVV* )-|SHV|2)(|SHH| 2+2 |SHV|2+ |SVV|2)
Tab.2  Polarized parameters used in this paper
Fig.3  Reconstruction performance for HH, HV, and VV channels. (a) HH channel of C band; (b) HH channel of L band; (c) HV channel of C band; (d) HV channel of L band; (e) VV channel of C band; (f) VV channel of L band.
Band Parameter Ocean surface features Average accuracy
Ocean Oil spills Lookalikes
C σHH 0.004 0.056 0.023 0.027
L 0.071 0.106 0.038 0.071
C σHV 0.905 1.494 0.765 1.054
L 0.442 6.870 0.555 2.622
C σVV 0.006 0.048 0.002 0.056
L 0.075 0.158 0.046 0.093
C H 0.081 0.227 0.025 0.111
L 0.007 0.437 0.080 0.174
C α 0.004 0.067 0.013 0.028
L 0.045 0.112 0.021 0.059
C RH 0.894 2.532 0.636 1.354
L 0.175 10.639 1.092 3.968
C φH-V 0.110 0.182 0.324 0.205
L 0.421 0.576 0.834 0.610
C r 0.034 0.211 0.003 0.086
L 0.149 0.104 0.068 0.107
C ρH-V 0.012 0.160 0.034 0.068
L 0.007 0.220 0.004 0.077
C γ 0.002 0.428 0.012 0.147
L 0.011 0.628 0.008 0.215
Tab.3  Comparison of polarized parameters between C- and L-bands
Band Parameter Ocean surface features Kappa coefficient Mapping accuracy/%
Ocean Oil spills Lookalikes
C σHH 0.0327 0.0027 0.0107 0.6799 80.6
L 2.155 0.1449 0.6838 0.5509 68.4
C σVV 0.0445 0.0037 0.0146 0.7028 82.1
L 2.056 0.1344 0.7161 0.5721 70.1
C H 0.1060 0.6956 0.2192 0.7251 84.4
L 0.1885 0.8340 0.2910 0.4428 63.5
C α 49.43 54.23 49.26 0.2315 52.1
L 44.44 50.73 45.96 0.2467 48.3
C φH-V 0.0243 0.0197 0.1533 0.0917 49.2
L 0.0726 0.0466 0.0056 0.2591 48.9
C r 0.7374 0.7551 0.7614 0.2364 50.6
L 1.0516 1.0997 0.9635 0.1217 46.1
C ρH-V 0.9510 0.4873 0.8803 0.7171 84.1
L 0.9044 0.3761 0.8377 0.4450 63.6
C γ 0.9360 0.2864 0.8576 0.7313 84.9
L 0.8946 0.1655 0.8205 0.4428 63.6
Tab.4  Classification performance of CP parameters between C- and L-bands
1 CBrekke, A H Solberg (2005). Oil spill detection by satellite remote sensing. Remote Sens Environ, 95(1): 1–13
2 A FBuono, M Nunziata, XMigliaccio, XLi (2016). Polarimetric analysis of compact-polarimetry SAR architectures for sea oil slick observation. IEEE Trans Geosci Remote Sens, 54(10): 5862–5874
3 ABuono, F Nuziata, MMigliaccio (2015). On the capability of compact-polarimetry SAR architectures to observe oil slicks at sea. In: Proceedings of PolINSAR 2015 Workshop
4 M JCollins, M Denbina, BMinchew, C EJones, BHolt (2015). On the use of simulated airborne compact polarimetric SAR for characterizing oil–water mixing of the Deepwater horizon oil spill. IEEE J Sel Top Appl Earth Obs Remote Sens, 8(3): 1062–1077
5 MDabboor, S Singha, KTopouzelis, DFlett (2017). Oil spill detection using simulated radarsat constellation mission compact polarimetric SAR data. In: Geoscience and Remote Sensing Symposium
6 MFingas, C Brown (2014). Review of oil spill remote sensing. Mar Pollut Bull, 83(1): 9–23
7 V SFrost, L S Yurovsky (1985). Maximum likelihood classification of synthetic aperture radar imagery. Comput Vis Graph Image Process, 32(3): 291–313
8 L J VKumar, J KKishore, P KRao (2014). Decomposition methods for detection of oil spills based on RISAT-1 SAR. International Journal of Remote Sensing & Geoscience, 3(4): 1–10
9 M SMajd, E Simonetto, LPolidori (2012). Maximum likelihood classification of high-resolution SAR images in urban area. Photogramm Fernerkund Geoinf, (4): 395
10 MMigliaccio, A Gambardella, MTranfaglia (2007). SAR polarimetry to observe oil spills. IEEE Trans Geosci Remote Sens, 45(2): 506–511
11 MNord, T Ainsworth, JLee, N J SStacy (2009). Comparison of compact polarimetric synthetic aperture radar modes. IEEE Transactions on Geoscience & Remote Sensing, 47(1): 174–188
12 FNunziata, M Migliaccio, XLi (2015). Sea oil slick observation using hybrid-polarity SAR architecture. IEEE J Oceanic Eng, 40(2): 426–440
13 A BSalberg, O Rudjord, A H SSolberg (2014). Oil spill detection in hybrid-polarimetric SAR images. IEEE Trans Geosci Remote Sens, 52(10): 6521–6533
14 RShirvany, M Chabert, J YTourneret (2012). Ship and oil-spill detection using the degree of polarization in linear and hybrid/compact dual-pol SAR. IEEE J Sel Top Appl Earth Obs Remote Sens, 5(3): 885–892
15 A H SSolberg (2012). Remote sensing of ocean oil-spill pollution. Proc IEEE, 100(10): 2931–2945
16 A H SSolberg, CBrekke, P OHusoy (2007). Oil spill detection in Radarsat and Envisat SAR images. IEEE Trans Geosci Remote Sens, 45(3): 746–755
17 J CSouyris, P Imbo, RFjortoft, SMingot (2005). Compact polarimetry based on symmetry properties of geophysical media: the p/4 mode. IEEE Trans Geosci Remote Sens, 43(3): 634–646
18 RTouzi, F Charbonneau (2014). Requirements on the calibration of hybrid-compact SAR. In: Geoscience and Remote Sensing Symposium, 1109–1112
19 DVelotto, M Migliaccio, FNunziata, SLehner (2011). Dual-polarized TerraSAR-X data for oil-spill observation. IEEE Trans Geosci Remote Sens, 49(12): 4751–4762
20 WWang, F Lu, PWu, JWang (2010). Oil spill detection from polarimetric SAR image. International Conference on Signal Processing IEEE, 832–835
21 JYin, J Yang, Z SZhou, JSong (2015). The extended Bragg Scattering model-based method for ship and oil-spill observation using compact polarimetric SAR. IEEE J Sel Top Appl Earth Obs Remote Sens, 8(8): 3760–3772
22 BZhang, X Li, WPerrie, OGarcia-Pineda (2017). Compact polarimetric synthetic aperture radar for marine oil platform and slick detection. IEEE Transactions on Geoscience & Remote Sensing, 55(3): 1407–1423
23 XZhang, J Zhang, MLiu, JMeng (2016). Assessment of C-band compact polarimetry SAR for sea ice classification. Acta Oceanol Sin, 35(5): 79–88
24 YZhang, J Zhang, YWang , JMeng, X Zhang (2015). The damping model for sea waves covered by oil films of a finite thickness. Acta Oceanol Sin, 34(9): 71–77
25 HZheng, Y Zhang, YWang (2015). Oil spill detection based on polarimetric feature SERD. Transactions of Oceanology and Limnology, (4): 173‒180
Related articles from Frontiers Journals
[1] Kun JIA, Jingcan LIU, Yixuan TU, Qiangzi LI, Zhiwei SUN, Xiangqin WEI, Yunjun YAO, Xiaotong ZHANG. Land use and land cover classification using Chinese GF-2 multispectral data in a region of the North China Plain[J]. Front. Earth Sci., 2019, 13(2): 327-335.
[2] Yongfeng WANG, Zhaohui XUE, Jun CHEN, Guangzhou CHEN. Spatio-temporal analysis of phenology in Yangtze River Delta based on MODIS NDVI time series from 2001 to 2015[J]. Front. Earth Sci., 2019, 13(1): 92-110.
[3] Xiaochen WANG, Yun SHAO, Wei TIAN, Kun LI. On the classification of mixed floating pollutants on the Yellow Sea of China by using a quad-polarized SAR image[J]. Front. Earth Sci., 2018, 12(2): 373-380.
[4] Parham PAHLAVANI, Behnaz BIGDELI. A mutual information-Dempster-Shafer based decision ensemble system for land cover classification of hyperspectral data[J]. Front. Earth Sci., 2017, 11(4): 774-783.
[5] Hongjun SU, Shufang TIAN, Yue CAI, Yehua SHENG, Chen CHEN, Maryam NAJAFIAN. Optimized extreme learning machine for urban land cover classification using hyperspectral imagery[J]. Front. Earth Sci., 2017, 11(4): 765-773.
[6] Qing XU,Yongcun CHENG,Bingqing LIU,Yongliang WEI. Modeling of oil spill beaching along the coast of the Bohai Sea, China[J]. Front. Earth Sci., 2015, 9(4): 637-641.
[7] Hongjun SU,Yehua SHENG,Peijun DU,Chen CHEN,Kui LIU. Hyperspectral image classification based on volumetric texture and dimensionality reduction[J]. Front. Earth Sci., 2015, 9(2): 225-236.
[8] Jinpeng LI, Shikui DONG, Mingchun PENG, Xiaoyan LI, Shiliang LIU. Vegetation distribution pattern in the dam areas along middle-low reach of Lancang-Mekong River in Yunnan Province, China[J]. Front Earth Sci, 2012, 6(3): 283-290.
[9] William B. Samuels, David E. Amstutz, Heather A. Crowley. Arctic climate change and oil spill risk analysis[J]. Front Earth Sci, 2011, 5(4): 350-362.
[10] Keyan FANG, Xiaohua GOU, Fahu CHEN, Fen ZHANG, Yingjun LI, Jianfeng PENG, . Comparisons of drought variability between central High Asia and monsoonal Asia: Inferred from tree rings[J]. Front. Earth Sci., 2010, 4(3): 277-288.
[11] Hongmei LI, Yanfang BAI, Yushou MA, . Using comprehensive and sequential vegetation classification system to predict the influence of climate change on vegetation succession of alpine grassland of Qinghai Plateau[J]. Front. Earth Sci., 2010, 4(1): 99-104.
Full text