Please wait a minute...

Frontiers of Earth Science

Front. Earth Sci.    2015, Vol. 9 Issue (2) : 276-285     DOI: 10.1007/s11707-014-0459-2
RESEARCH ARTICLE |
Understanding the effects of the impervious surfaces pattern on land surface temperature in an urban area
Qin NIE1,*(),Jianhua XU2
1. Department of Spatial Information Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
2. The Research Center for East-West Cooperation in China, The Key Laboratory of GIScience of the Ministry of Education of China, East China Normal University, Shanghai 200241, China
Download: PDF(958 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

It is well known that urban impervious surface (IS) has a warming effect on urban land surface temperature (LST). However, the influence of an IS’s structure, components, and spatial distribution on LST has rarely been quantitatively studied within strictly urban areas. Using ETM+ remote sensing images from the downtown area of Shanghai, China in 2010, this study characterized and quantified the influence of the IS spatial pattern on LST by selecting the percent cover of each IS cover feature and ten configuration metrics. The IS fraction was estimated by linear spectral mixture analysis (LSMA), and LST was retrieved using a mono-window algorithm. The results indicate that high fraction IS cover features account for the majority of the study area. The high fraction IS cover features are widely distributed and concentrated in groups, which is similar with that of high temperature zones. Both the percent composition and the configuration of IS cover features greatly affect the magnitude of LST, but the percent composition is a more important factor in determining LST than the configuration of those features. The significances and effects of the given configuration variables on LST vary greatly among IS cover features.

Keywords urban impervious surfaces      land surface temperature      spatial pattern      Shanghai city     
Corresponding Authors: Qin NIE   
Online First Date: 09 September 2014    Issue Date: 30 April 2015
 Cite this article:   
Qin NIE,Jianhua XU. Understanding the effects of the impervious surfaces pattern on land surface temperature in an urban area[J]. Front. Earth Sci., 2015, 9(2): 276-285.
 URL:  
http://journal.hep.com.cn/fesci/EN/10.1007/s11707-014-0459-2
http://journal.hep.com.cn/fesci/EN/Y2015/V9/I2/276
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qin NIE
Jianhua XU
Fig.1  The map of study area
Fig.2  The RMS frequency distribution and spatial image
Fig.3  The accuracy assessment of the impervious surface estimation
Fig.4  The spatial pattern of IS cover features
Fig.5  The spatial pattern of LST
IS cover features
IS8 IS7 IS6 IS5 IS4 IS3 IS2 IS1
Composition Percent cover 0.58** 0.6** -0.77** -0.76** -0.72** -0.74** -0.24* 0.001
Configuration PD 0.504** 0.26** -0.61** -0.76** -0.7** -0.78** -0.31**
LPI 0.02 0.37** -0.51** -0.62** -0.6** -0.43** -0.09
ED 0.73** 0.7** -0.74** -0.76** -0.71** -0.76** -0.27*
MNArea 0.14 -0.03 -0.78** -0.45** -0.36** -0.29* 0.22
SDArea 0.01 0.29* -0.72** -0.52** -0.33** -0.26* -0.02
MNShape 0.37** -0.4** -0.75** -0.43** -0.32** -0.13 0.01
SDShape 0.47** 0.175 -0.72** -0.49** -0.09 -0.27* 0.01
MNEnn -0.67** -0.48** 0.69** 0.65** 0.22 0.41** 0.05
SDEnn -0.64** -0.52** 0.51** 0.74** 0.45** 0.1 0.18
CI 0.39** 0.29* -0.69** -0.36** -0.26** -0.31** 0.18
Tab.1  Pearson correlation coefficients between LST and variables of composition and configuration of IS cover features
Model 1 Model 2 Model 3 Model 4
Cover feature Coefficient Cover feature Coefficient Cover feature Coefficient Cover feature Coefficient
IS2 0.51(0.11) IS2 0.015(0.003) IS2 1.02*(0.22) IS2 0.92*(0.2)
IS3 -0.86**(-0.45) IS3 -1.03**(-0.53) IS3 7.46(3.84) IS3 -1.2**(-0.62)
IS4 1.76**(2.66) IS4 1.64**(2.47) IS4 1.19**(1.79) IS4 1.1(1.66)
IS5 -0.22*(-1.1) IS5 -0.39**(-1.89) IS5 -0.01(-0.05) IS5 -0.17(-0.84)
IS7 0.16**(1.08) IS7 -0.16**(-1.9) IS7 0.18**(1.23) IS7 0.12**(0.84)
IS8 0.096**(1.73) IS8 -0.06**(-1.11) IS8 0.12**(2.14) IS8 0.06*(0.99)
R2 0.872(0.861) PD_IS2 -0.04(-0.06) PD_IS3 -1.17**(-4.1) PD_IS4 0.13(1.06)
ED_IS2 0.03(0.07) LPI_IS3 7.93*(0.46) LPI_IS4 -28.86**(?1.8)
R2 0.871(0.86) MNArea_IS3 -32.02**(-2.53) MNArea_IS4 -8.37(-0.39)
SDArea_IS3 -14.52**(-2.21) SDArea_IS4 19.65**(1.53)
SDShape_IS3 1.66(0.16) MNShape_IS4 -7.35(-0.19)
MNEnn_IS3 -0.0001(-0.15) SDEnn_IS4 0(.01)
CI_IS3 0.1**(3.61) CI_IS4 0.01(0.2)
R2 0.92(0.903) R2 0.91(0.89)
Model 5 Model 6 Model 7 Model 8
Cover feature Coefficient Cover feature Coefficient Cover feature Coefficient Cover feature Coefficient
IS2 -0.33(-0.07) IS2 -0.39(-0.09) IS2 0.28(0.06) IS2 0.52(0.11)
IS3 -0.26(-0.13) IS3 -0.09(-0.05) IS3 -1.08*(-5.6) IS3 -1.49**(-0.77)
IS4 1.38**(2.08) IS4 1.24**(1.87) IS4 1.97**(2.97) IS4 1.33**(2)
IS5 -1.36**(-6.7) IS5 -0.08(-0.42) IS5 -0.42**(-0.83) IS5 -0.24**(-1.2)
IS6 -0.08**(-0.96) IS7 0.05**(0.37) IS6 -0.07*(-0.83) IS6 -0.16**(-1.9)
IS7 0.06**(0.38) PD_IS6 -0.03(?0.29) IS7 0.1(0.67) IS7 -0.05(?0.33)
PD_IS5 0.3**(4.72) LPI_IS6 1.22**(1.49) PD_IS7 0.01(0.23) PD_IS8 0.26**(1.66)
LPI_IS5 0.07(0.02) MNArea_IS6 -5.61(-1.16) LPI_IS7 -0.004(-0.04) ED_IS8 -0.04**(-2.87)
MNArea_IS5 4.89(0.48) SDArea_IS6 -3.76*(-2.69) ED_IS7 -0.004(-0.099) MNShape_IS8 5.58**(0.47)
SDArea_IS5 -3.03(-0.79) MNShape_IS6 7.17(0.53) SDArea_P7 0.05(0.16) SDShape_IS8 5.47**(2.06)
MNShape_IS5 5.06(0.21) SDShape_IS6 -3(-0.49) MNShape_P7 0.02(0.001) MNEnn_IS8 -0.03(-0.39)
SDShape_IS5 -4.61(-0.47) MNEnn_IS6 0.003(0.05) MNEnn_P7 0.005(0.009) SDEnn_IS8 0.02*(0.28)
MNEnn_IS5 0.018*(0.36) SDEnn_IS6 0(-0.17) SDEnn_P7 -0.05(-0.17) CI_IS8 -0.15**(-0.71)
SDEnn_IS5 0(-0.15) CI_IS6 0.03*(0.71) CI_IS7 -0.03(-0.29) R2 0.957(0.947)
CI_IS5 0.07**(1.56) R2 0.936(0.92) R2 0.899(0.874)
R2 0.938(0.922)
Tab.2  Linear regression models between LST and composition variables or the combination of composition and some configuration variables
1 Artis D A, Carnahan W H (1982). Survey of emissivity variability in thermography of urban areas. Remote Sens Environ, 12(4): 313–329
doi: 10.1016/0034-4257(82)90043-8
2 Ding J C, Zhang Z K, Xi H, Zhou H M (2002). A study of the high temperature distribution and the heat island effect in the summer of the Shanghai area. Chin J Atmos Sci, 26(3): 412–420 (in Chinese)
3 Gong A D, Jiang Z X, Li J, Chen Y H, Hu H L (2005). Urban land surface temperature retrieval based on landsat TM remote sensing images in Beijing. Remote Sensing Information, (3): 18–20
4 Hope A, Engstrom R, Stow D (2005). Relationship between AVHRR surface temperature and NDVI in Arctic tundra ecosystems. Int J Remote Sens, 26(8): 1771–1776
doi: 10.1080/01431160500043780
5 Lu D, Weng Q (2006). Use of impervious surface in urban land-use classification. Remote Sens Environ, 102(1–2): 146–160
doi: 10.1016/j.rse.2006.02.010
6 McGarigal K, Cushman S A, Neel M C, Ene E (2002). FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. Available at the following web site: http://www.umass.edu/landeco/research/fragstats/fragstats.html
7 Meiyappan P, Jain A K (2012). Three distinct global estimates of historical land-cover change and land-use conversions for over 200 years. Front Earth Sci, 6(2): 122–139
doi: 10.1007/s11707-012-0314-2
8 Meng X L (2010). Multi-scale Relationships Between Impervious Surface, Vegetation, Water and Urban HeatIsland. East China Normal University
9 Ridd M K (1995). Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: Comparative anatomy for cities. Int J Remote Sens, 16(12): 2165–2185
doi: 10.1080/01431169508954549
10 Slonecker E T, Jennings D B, Garofalo D (2001). Remote sensing of impervious surfaces: a review. Remote Sens Rev, 20(3): 227–255
doi: 10.1080/02757250109532436
11 Small C (2001). Estimation of urban vegetation abundance by spectral mixture analysis. Int J Remote Sens, 22(7): 1305–1334
doi: 10.1080/01431160151144369
12 Weng Q (2012). Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sens Environ, 117: 34–49
doi: 10.1016/j.rse.2011.02.030
13 Weng Q, Liu H, Lu D (2007). Assessing the effects of land use and land cover patterns on thermal conditions using land scape metrics in city of Indianapolis, United States. Urban Ecosyst, 10(2): 203–219
doi: 10.1007/s11252-007-0020-0
14 Weng Q, Lu D, Schubring J (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens Environ, 89(4): 467–483
doi: 10.1016/j.rse.2003.11.005
15 Wong N H, Yu C (2005). Study of green areas and urban heat island in a tropical city. Habitat Int, 29(3): 547–558
doi: 10.1016/j.habitatint.2004.04.008
16 Xian G, Crane M, Su J (2007). An analysis of urban development and its environmental impact on the Tampa Bay watershed. J Environ Manage, 85(4): 965–976
doi: 10.1016/j.jenvman.2006.11.012
17 Xiao R B, Ouyang Z Y, Zheng H, Li E F, Schienke E W Wang X K (2007). Spatial pattern of impervious surfaces and their impacts on land surface temperature in Beijing, China. J Environ Sci (China), 19(2): 250–256
doi: 10.1016/S1001-0742(07)60041-2
18 Xu J H, Ai N S, Chen Y, Mei A X, Liao H J (2003). Quantitative analysis and fractal modeling on the mosaic structure of landscape in the central area of Shanghai metropolis. Chin Geogr Sci, 13(3): 199–206
doi: 10.1007/s11769-003-0017-4
19 Xu J H, Lu Y, Ai N S, Yue W Z (2001). A study on landscape mosaic structure in urban-rural area in Northwest of China with RS and GIS. Chin Geogr Sci, 11(4): 366–376
doi: 10.1007/s11769-001-0053-x
20 Yuan F, Bauer M E (2005). Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sensing of Environment, 106(3): 375–386.
21 Yue W (2009). Improvement of urban impervious surface estimation in Shanghai using Landsat7 ETM<?A3B2 h=-0.3h?>+ data. Chin Geogr Sci, 19(3): 283–290
doi: 10.1007/s11769-009-0283-x
22 Yue W, Liu Y, Fan P, Ye X, Wu C (2012). Assessing spatial pattern of urban thermal environment in Shanghai, China. Stochastic Environ Res Risk Assess, 26(7): 899–911
doi: 10.1007/s00477-012-0638-1
23 Zhang Y, Odeh I OA, Han C (2009a). Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. International Journal of Applied Earth Observation and Geoinformation, 11(4): 256–264
24 Zhang X, Zhong T, Feng X, Wang K (2009b). Estimation of the relationship between vegetation patches and urban land surface temperature with remote sensing. Int J Remote Sens, 30(8): 2105–2118
doi: 10.1080/01431160802549252
25 Zhou S Z, Zhang C (1982). On the Shanghai urban heat island effect. Acta Geographica Sinica, 37(4): 372–381 (in Chinese)
26 Zhou W, Huang G, Cadenasso M L (2011). Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landsc Urban Plan, 102(1): 54–63
doi: 10.1016/j.landurbplan.2011.03.009
27 Van De Gfiend A, Owe M (1993). On the relationship between thermal emissivity and the normalized difference vegetation index for nature surfaces. In ternational Journal of Remote Sensing, 14(6): 1119–1131
doi: 10.1080/01431160151144369
28 Yang X, Liu Z (2005). Use of satellite-derived landscape imperviousness index to characterize urban spatial growth. Computers, Environment and Urban Systems, 29(5): 524–540.
29 Yue W (2005). Study on Urban Landscape Pattern and Its Thermal Environment Eeffect Based on Remote Sensing Image. East China Normal University
Related articles from Frontiers Journals
[1] Qin NIE,Jianhua XU,Wang MAN. Long-range cross-correlation between urban impervious surfaces and land surface temperatures[J]. Front. Earth Sci., 2016, 10(1): 117-125.
[2] Weichun MA,Liguo ZHOU,Hao ZHANG,Yan ZHANG,Xiaoyan DAI. Air temperature field distribution estimations over a Chinese mega-city using MODIS land surface temperature data: the case of Shanghai[J]. Front. Earth Sci., 2016, 10(1): 38-48.
[3] Junyong AI,Xiang SUN,Lan FENG,Yangfan LI,Xiaodong ZHU. Analyzing the spatial patterns and drivers of ecosystem services in rapidly urbanizing Taihu Lake Basin of China[J]. Front. Earth Sci., 2015, 9(3): 531-545.
[4] Xiangsheng YI, Yanyu YIN, Yaojie YUE. Temporal and spatial changes of residential land in the Yuyang desert region of northern Shaanxi Province in recent 20 years[J]. Front Earth Sci, 2012, 6(3): 250-260.
[5] Laibin HUANG, Junhong BAI, Denghua YAN, Bin CHEN, Rong XIAO, Haifeng GAO. Changes of wetland landscape patterns in Dadu River catchment from 1985 to 2000, China[J]. Front Earth Sci, 2012, 6(3): 237-249.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed