Please wait a minute...

Frontiers of Earth Science

Front. Earth Sci.    2010, Vol. 4 Issue (2) : 195-204     DOI: 10.1007/s11707-010-0019-3
Research articles |
Microbial respiratory quinones as indicator of ecophysiological redox conditions
Yiliang LI,
Department of Earth Sciences & School of Biological Sciences, the University of Hong Kong, Hong Kong, China;
Download: PDF(227 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The bacterial respiratory quinones and membrane phospholipid fatty acids (PLFA) were measured to test the biochemical responses to the redox conditions after the respiration of diverse electron acceptors by microorganisms. Shewanella putrefaciens strain CN32 was examined for its growth with O2, nitrate, ferrihydrite, ferric citrate, and sulfite as electron acceptors. The same parameters were also measured for Desulfovibrio desulfuricans strain G-20, Geobacter metallireducens strain GS-15, Thioploca spp., two strains of magnetotactic bacteria (Magneteospirilum magnetotactium marine vibrioid strain MV-1 and M. sp. strain AMB-1), and environmental sediments. Microorganisms with aerobic respiratory of oxygen (MV-1 and AMB-1) have high ratios of monounsaturated to saturated straight chain PLFA and ubiquinone to menaquinone ratios; while those that conduct strict anaerobic respirations (G-20 with sulfate and GS-15 with ferric iron) have low ratios of monounsaturated to saturated straight chain PLFA and uniquinone to menaquinone ratios. The facultative respiratory of nitrate (Thioploca) has these parameters in the middle. The ratios of menaquinones to ubiquinones in CN32 cells systematically increase according to the increase of redox potential and bioavalibility of electron acceptors. The correlation between SUQ-n/SMK-n ratios and redox conditions indicates the structure of respiratory quinone responses sensitively to the microbial ecophysiological conditions.
Keywords electron acceptor      redox potential      bacterial metabolism      phospholipid fatty acid (PLFA)      respiratory quinone      ecophysiology      
Issue Date: 05 June 2010
 Cite this article:   
Yiliang LI. Microbial respiratory quinones as indicator of ecophysiological redox conditions[J]. Front. Earth Sci., 2010, 4(2): 195-204.
E-mail this article
E-mail Alert
Articles by authors
Yiliang LI
Baird H H, Nivens D E, Parker J H, White D C (1985). The biomass, community structure, and spatial distribution of the sedimentary microbiota from a high-energyarea of the deep sea. Deep-Sea Res, 32(9): 1089–1099

doi: 10.1016/0198-0149(85)90064-0
Bazylinski D A, Frankel R B (2004). Magnetosome formation in prokaryotes. Nat Rev Microbiol, 2 (3): 217–230

doi: 10.1038/nrmicro842
Bazylinski D A, Frankel R B, Jannasch H W (1988). Anaerobic magnetite production by a marine magnetotactic bacterium. Nature, 334 (6182): 518–519

doi: 10.1038/334518a0
Beliaev A S, Klingeman D M, Klappenbach J A, Wu L, Romine M F, Tiedje J M, Nealson K H, Fredrickson J K, Zhou J (2005). Globaltranscriptome analysis of Shewanella oneidensis MR-1 exposed to different terminal electron acceptors. J Bacteriol, 187 (20): 7138–7145

doi: 10.1128/JB.187.20.7138-7145.2005
Bligh E G, Dyer W J (1959). A rapid method of total lipid extraction and purification. Can J Biochem Physiol, 97: 911–917
Collins M D, Jones D (1981). Distribution of isoprenoid quinone structural types in bacteria andtheir taxonomic implication. Microbiol Rev, 45 (2): 316–354
Fossing H, Gallardo V A, Jørgensen B B, Hüttel M, Nielsen L P, Schulz H, Canfield D E, Forster S, Glud R N, Gundersen J K, Küver J, Ramsing N B, Teske A, Thamdrup B, Ulloa O (1995). Concentration and transport of nitrate by the mat-forming sulfurbacterium Thioploca. Nature, 374 (6524): 713–715

doi: 10.1038/374713a0
Frolova G M, Pavel’ K G, Shparteeva A A, Nedashkovskaia O I, Gorshkova N M, Ivanova E P, Mikhaĭlov V V (2005). Lipid composition of novel Shewanella species isolated from far Eastern seas. Mikrobiologiia, 74 (6): 766–771
Gennis R B, Stewart V (1996) Respiration in Escherichia coli and Salmonella typhimurium: cellularand molecular biology. 2nd edition. Neidhardt F C, eds. Washington D C: American Society for Microbiology, 217–261
Geyer R, Peacock A D, White D C, Lytle C, Van Berkel G J (2004). Atmospheric pressure chemical ionization and atmosphericpressure photoionization for simultaneous mass spectrometric analysisof microbial respiratory ubiquinones and menaquinones. J Mass Spectrom, 39 (8): 922–929

doi: 10.1002/jms.670
Guckert J B, Antworth C P, Nichols P D, White D C (1985). Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic communitystructure of estuarine sediments. FEMS Microbiol Letters, 31: 147–158
Hedrick D B, White D C (1986). Microbial respiratory quinones in the environment: a sensitive liquidchromatographic method. J Microbiol Methods, 5 (5–6): 243–254

doi: 10.1016/0167-7012(86)90049-7
Hiraishi A (1999). Isoprenoid quinones as biomarkersof microbial populations €€in€ €the€ €environment.€ €J €€Biosci €€Bioeng,€ €88(5): €€449–460

doi: 10.1016/S1389-1723(00)87658-6
Hiraishi A, Ueda Y, Ishihara J (1998). Quinone profiling of bacterial communities in natural and synthetic sewage activatedsludge for enhanced phosphate removal. Appl Environ Microbiol, 64(3): 992–998
Holländer R (1976). Correlation of thefunction of demethylmenaquinone in bacterial electron transport withits redox potential. FEBS Lett, 72 (1): 98–100

doi: 10.1016/0014-5793(76)80821-6
Hunter K S, Wang Y, van Cappellen P (1998). Kinetic modeling of microbially-driven redox chemistry of subsurface environments:coupling transport, microbial metabolism and geochemistry. J Hydrol (Amst), 209 (1–4): 53–80

doi: 10.1016/S0022-1694(98)00157-7
Jørgensen B B, Gallardo V A (1999). Thioploca spp: filamenteoussulfur bacteria with nitrate vacuoles. FEMS Microbiol Ecol, 28 (4): 301–313

doi: 10.1111/j.1574-6941.1999.tb00585.x
Li Y L, Peacock A, White D C, Geyer R, Zhang C L (2007). Spatial patterns of bacterial signature biomarkers in marine sedimentsof the Gulf of Mexico. Chem Geol, 238 (3–4): 168–179

doi: 10.1016/j.chemgeo.2006.11.007
Li Y L, Vali H, Yang J, Phelps T J, Zhang C L (2006). Reduction of iron oxides enhanced by a sulfate-reducing bacterium and biogenicH2S production. Geomicrobiol J, 23 (2): 103–117

doi: 10.1080/01490450500533965
Lovley D R, Coates J D, Blunt-Harris E L, Phillips E J P, Woodward J C (1996). Humic substances as electron acceptors for microbialrespiration. Nature, 382(6590): 445–448

doi: 10.1038/382445a0
Lovley D R, Giovannoni S J, White D C, Champine J E, Phillips E J P, Gorby Y A, Goodwin S (1993). Geobacter metallireducens gen. nov. sp. nov., a microorganism capableof coupling the complete oxidation of organic compounds to the reductionof iron and other metals. Arch Microbiol, 159(4): 336–344

doi: 10.1007/BF00290916
Ludvigsen L, Albrechtsen H-J, Ringelberg D B, Ekelund F, Christensen T H (1999). Distribution and composition of microbial populationsin a landfill leachate contaminated aquifer. Microbial Ecology, 37 (3): 197–207

doi: 10.1007/s002489900143
Matsunaga T, Sakaguchi T, Tadokoro F (1991). Magnetite formation by a magnetic bacterium capable of growing aerobically. Appl Microbiol Biotechnol, 35 (5): 651–655

doi: 10.1007/BF00169632
McCaffrey M A, Farrington J W, Repeta D J (1989). Goechemical implications of the lipid composition of Thioploca spp. From the Peru upwelling region15°S. Org Geochem, 14 (1): 61–68

doi: 10.1016/0146-6380(89)90019-3
McHatton S C, Barry J P, Jannasch H W, Nelson D C (1996). High nitrate concentrations in vacuolate, autotrophic marine Beggiatoa spp. Appl Environ Microbiol, 62 (3): 954–958
Moser D P, Nealson K H (1996). Growth of the facultative anaerobe Shewanella putrefaciens by elemental sulfur reduction. Appl Environ Microbiol, 62 (6): 2100–2105
Myers C R, Myers J M (2004). Shewanella oneidensis MR-1 restores menaquinone synthesis to a menaquinone-negative mutant. Appl Environ Microbiol, 70 (9): 5415–5425

doi: 10.1128/AEM.70.9.5415-5425.2004
Myers C R, Nealson K H (1988). Bacterial manganese reduction and growth with manganeseoxide as the sole electron acceptor. Science, 240 (4857): 1319–1321

doi: 10.1126/science.240.4857.1319
Nealson K H, Little B (1997). Breathing manganese and iron: solid-state respiration. Adv Appl Microbiol, 45: 213–239

doi: 10.1016/S0065-2164(08)70264-8
Nealson K H, Moser D P, Saffarini D A (1995). Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens. Appl Environ Microbiol, 61 (4): 1551–1554
Nealson K H, Myers C R (1992). Microbial reduction of manganese and iron: new approaches to carboncycling. Appl Environ Microbiol, 58 (2): 439–443
Nealson K H, Saffarini D (1994). Iron and manganese in anaerobic respiration: environmentalsignificance, physiology, and regulation. Annu Rev Microbiol, 48 (1): 311–343

doi: 10.1146/annurev.mi.48.100194.001523
Nealson K H, Scott J (2006). Ecophysiology of the Genus Shewanella. The Prokaryotes, 6: 1133–1151

doi: 10.1007/0-387-30746-X_45
Otte S, Kuenen J G, Nielsen L P, Paerl H W, Zopfi J, Schulz H N, Teske A, Strotmann B, Gallardo VA, Jørgensen BB (1999). Nitrogen, carbon, and sulfur metabolism in natural Thioploca samples. Appl Environ Microbiol, 65 (7): 3148–3157
Parkes R J, Taylor J (1983). The relationship between fatty acid distributions andbacterial respiratory types in contemporary marine sediments. Estuar Coast Shelf Sci, 16 (2): 173–174

doi: 10.1016/0272-7714(83)90139-7
Parkes R J (1987). Analysis of microbial communitieswithin sediments using biomarkers. 141–177. In: Fletcher M, Gray T R Gand Jones J, eds. Ecology of Microbial Communities. Cambridge University Press: Cambridge
Perry KA, Kostka J E, Luther G W, Nealson K H (1993). Mediation of sulfur speciation by a Black Sea facultative anaerobe. Science, 259 (5096): 801–803

doi: 10.1126/science.259.5096.801
Polglase W J, Pun W T, Withaar J (1966). Lipoquinones of Escherichia coli. Biochim Biophys Acta, 118 (2): 425–426
Ringelberg D B, Sutton S, White D C (1997). Biomass, bioactivity and biodiversity: microbial ecology of the deep subsurface:analysis of ester-linked phospholipid fatty acids. FEMS Microbiol Rev, 20 (3–4): 371–377

doi: 10.1111/j.1574-6976.1997.tb00322.x
Ruebush S S, Icopini G A, Brantley S L, Tien M (2006). In vitro enzymatic reduction kineticsof mineral oxides by membrane fractions from Shewanella oneidensis MR-1. Geochim et Cosmochim Acta, 70 (1): 56–70

doi: 10.1016/j.gca.2005.08.020
Schröder I, Johnson E, de Vries S (2003). Microbial ferric iron reductases. FEMS Microbiol Rev, 27 (2–3): 427–447

doi: 10.1016/S0168-6445(03)00043-3
Schulz H N, Jørgensen B B (2001). Big bacteria. Annu Rev Microbiol, 55 (1): 105–137

doi: 10.1146/annurev.micro.55.1.105
Søballe B, Poole R K (1999). Microbial ubiquinones: multiple roles in respiration,gene regulation and oxidative stress management. Microbiology, 145 (8): 1817–1830

doi: 10.1099/13500872-145-8-1817
Straub K L, Benz M, Schink B (2001). Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiol Ecol, 34 (3): 181–186

doi: 10.1111/j.1574-6941.2001.tb00768.x
Whistance G R, Threlfall D R (1968). Effect of anaerobiosis on the concentrations of demethylmenaquinone,menaquinone and ubiquinone in Escherichia freundii, Proteus mirabilisand Aeromonas punctata. Biochem J, 108 (3): 505–507
Wissenbach U, Ternes D, Unden G (1992). An Escherichia coli mutant containing only demethylmenaquinone,but no menaquinone: effects on fumarate, dimethylsulfoxide, trimethylamineN-oxide and nitrate respiration. Arch Microbiol, 158 (1): 68–73

doi: 10.1007/BF00249068
White D C, Davis W M, Nickels J S, King J D, Bobbie R J (1979). Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia, 40 (1): 51–62

doi: 10.1007/BF00388810
White D C, Ringelberg D B, MacNaughton S J, Alugupalli S A, Schram D (1997) Signature lipid biomarker analysis for quantitative assessmentin situ of environmental microbial ecology. In: Molecular markers in environmental geochemistry. Eganhouse R P, ed. ACS Symposium Series671, American Chemical Society, Washington D C, 22–34
Zhang C L, Huang Z Y, Cantu J, Pancost R D, Brigmon R L, Lyons T W, Sassen R (2005). Lipid biomarkers and carbon isotope signatures of amicrobial (Beggiatoa) mat associatedwith gas hydrates in the gulf of Mexico. Appl Environ Microbiol, 71 (4): 2106–2112

doi: 10.1128/AEM.71.4.2106-2112.2005
Zopfi J, Kjaer T, Nielsen L P, Jørgensen B B (2001). Ecology of Thioploca spp.: nitrate and sulfur storage in relation to chemical microgradientsand influence of Thioploca spp. on the sedimentary nitrogen cycle. Appl Environ Microbiol, 67 (12): 5530–5537

doi: 10.1128/AEM.67.12.5530-5537.2001
Full text