Collections

Machine Learning
Quality article selection in Machine Learning field
Publication years
Loading ...
Article types
Loading ...
  • Select all
  • RESEARCH ARTICLE
    Hai WANG, Shao-Bo WANG, Yu-Feng LI
    Frontiers of Computer Science, 2018, 12(4): 725-735. https://doi.org/10.1007/s11704-017-6543-5

    Graph-based semi-supervised learning is an important semi-supervised learning paradigm. Although graphbased semi-supervised learning methods have been shown to be helpful in various situations, they may adversely affect performance when using unlabeled data. In this paper, we propose a new graph-based semi-supervised learning method based on instance selection in order to reduce the chances of performance degeneration. Our basic idea is that given a set of unlabeled instances, it is not the best approach to exploit all the unlabeled instances; instead, we should exploit the unlabeled instances that are highly likely to help improve the performance, while not taking into account the ones with high risk. We develop both transductive and inductive variants of our method. Experiments on a broad range of data sets show that the chances of performance degeneration of our proposed method are much smaller than those of many state-of-the-art graph-based semi-supervised learning methods.

  • RESEARCH ARTICLE
    Ning CHEN, Jun ZHU, Jianfei CHEN, Ting CHEN
    Frontiers of Computer Science, 2018, 12(4): 694-713. https://doi.org/10.1007/s11704-018-7314-7

    Dropout and other feature noising schemes have shown promise in controlling over-fitting by artificially corrupting the training data. Though extensive studies have been performed for generalized linear models, little has been done for support vector machines (SVMs), one of the most successful approaches for supervised learning. This paper presents dropout training for both linear SVMs and the nonlinear extension with latent representation learning. For linear SVMs, to deal with the intractable expectation of the non-smooth hinge loss under corrupting distributions, we develop an iteratively re-weighted least square (IRLS) algorithm by exploring data augmentation techniques. Our algorithm iteratively minimizes the expectation of a reweighted least square problem, where the re-weights are analytically updated. For nonlinear latent SVMs, we consider learning one layer of latent representations in SVMs and extend the data augmentation technique in conjunction with first-order Taylor-expansion to deal with the intractable expected hinge loss and the nonlinearity of latent representations. Finally, we apply the similar data augmentation ideas to develop a new IRLS algorithm for the expected logistic loss under corrupting distributions, and we further develop a non-linear extension of logistic regression by incorporating one layer of latent representations. Our algorithms offer insights on the connection and difference between the hinge loss and logistic loss in dropout training. Empirical results on several real datasets demonstrate the effectiveness of dropout training on significantly boosting the classification accuracy of both linear and nonlinear SVMs.

  • RESEARCH ARTICLE
    Tao SUN, Zhi-Hua ZHOU
    Frontiers of Computer Science, 2018, 12(3): 560-570. https://doi.org/10.1007/s11704-018-7151-8

    Decision trees are a kind of off-the-shelf predictive models, and they have been successfully used as the base learners in ensemble learning. To construct a strong classifier ensemble, the individual classifiers should be accurate and diverse. However, diversity measure remains a mystery although there were many attempts. We conjecture that a deficiency of previous diversity measures lies in the fact that they consider only behavioral diversity, i.e., how the classifiers be have when making predictions, neglecting the fact that classifiers may be potentially different even when they make the same predictions. Based on this recognition, in this paper, we advocate to consider structural diversity in addition to behavioral diversity, and propose the TMD (tree matching diversity) measure for decision trees. To investigate the usefulness of TMD, we empirically evaluate performances of selective ensemble approacheswith decision forests by incorporating different diversity measures. Our results validate that by considering structural and behavioral diversities together, stronger ensembles can be constructed. This may raise a new direction to design better diversity measures and ensemble methods.

  • RESEARCH ARTICLE
    Bo SUN, Haiyan CHEN, Jiandong WANG, Hua XIE
    Frontiers of Computer Science, 2018, 12(2): 331-350. https://doi.org/10.1007/s11704-016-5306-z

    In the class imbalanced learning scenario, traditional machine learning algorithms focusing on optimizing the overall accuracy tend to achieve poor classification performance especially for the minority class in which we are most interested. To solve this problem, many effective approaches have been proposed. Among them, the bagging ensemble methods with integration of the under-sampling techniques have demonstrated better performance than some other ones including the bagging ensemble methods integrated with the over-sampling techniques, the cost-sensitive methods, etc. Although these under-sampling techniques promote the diversity among the generated base classifiers with the help of random partition or sampling for the majority class, they do not take any measure to ensure the individual classification performance, consequently affecting the achievability of better ensemble performance. On the other hand, evolutionary under-sampling EUS as a novel undersampling technique has been successfully applied in searching for the best majority class subset for training a goodperformance nearest neighbor classifier. Inspired by EUS, in this paper, we try to introduce it into the under-sampling bagging framework and propose an EUS based bagging ensemble method EUS-Bag by designing a new fitness function considering three factors to make EUS better suited to the framework. With our fitness function, EUS-Bag could generate a set of accurate and diverse base classifiers. To verify the effectiveness of EUS-Bag, we conduct a series of comparison experiments on 22 two-class imbalanced classification problems. Experimental results measured using recall, geometric mean and AUC all demonstrate its superior performance.

  • REVIEW ARTICLE
    Min-Ling ZHANG, Yu-Kun LI, Xu-Ying LIU, Xin GENG
    Frontiers of Computer Science, 2018, 12(2): 191-202. https://doi.org/10.1007/s11704-017-7031-7

    Multi-label learning deals with problems where each example is represented by a single instance while being associated with multiple class labels simultaneously. Binary relevance is arguably the most intuitive solution for learning from multi-label examples. It works by decomposing the multi-label learning task into a number of independent binary learning tasks (one per class label). In view of its potential weakness in ignoring correlations between labels, many correlation-enabling extensions to binary relevance have been proposed in the past decade. In this paper, we aim to review the state of the art of binary relevance from three perspectives. First, basic settings for multi-label learning and binary relevance solutions are briefly summarized. Second, representative strategies to provide binary relevancewith label correlation exploitation abilities are discussed. Third, some of our recent studies on binary relevance aimed at issues other than label correlation exploitation are introduced. As a conclusion, we provide suggestions on future research directions.

  • PERSPECTIVE
    Bing LIU
    Frontiers of Computer Science, 2017, 11(3): 359-361. https://doi.org/10.1007/s11704-016-6903-6