Please wait a minute...

Frontiers of Computer Science

Front. Comput. Sci.    2017, Vol. 11 Issue (4) : 555-567     DOI: 10.1007/s11704-016-6120-3
NSFC EXCELLENT YOUNG SCHOLAR FORUM |
A survey on Lyapunov-based methods for stability of linear time-delay systems
Jian SUN1,2(), Jie CHEN1,2
1. School of Automation, Beijing Institute of Technology, Beijing 100081, China
2. Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Institute of Technology, Beijing 100081, China
Download: PDF(314 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Recently, stability analysis of time-delay systems has received much attention. Rich results have been obtained on this topic using various approaches and techniques. Most of those results are based on Lyapunov stability theories. The purpose of this article is to give a broad overview of stability of linear time-delay systems with emphasis on the more recent progress. Methods and techniques for the choice of an appropriate Lyapunov functional and the estimation of the derivative of the Lyapunov functional are reported in this article, and special attention is paid to reduce the conservatism of stability conditions using as few as possible decision variables. Several future research directions on this topic are also discussed.

Keywords time-delay system      delay-independent stability      delay-dependent stability      linear matrix inequality      Lyapunov-Krasovskii functional     
Corresponding Authors: Jian SUN   
Just Accepted Date: 19 July 2016   Online First Date: 19 September 2016    Issue Date: 26 July 2017
 Cite this article:   
Jian SUN,Jie CHEN. A survey on Lyapunov-based methods for stability of linear time-delay systems[J]. Front. Comput. Sci., 2017, 11(4): 555-567.
 URL:  
http://journal.hep.com.cn/fcs/EN/10.1007/s11704-016-6120-3
http://journal.hep.com.cn/fcs/EN/Y2017/V11/I4/555
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jian SUN
Jie CHEN
97 ZhangX M, HanQ L. Novel delay-derivative-dependent stability criteria using new bounding techniques. International Journal of Robust and Nonlinear Control, 2013, 23(13): 1419–1432
doi: 10.1002/rnc.2829
98 BriatC. Convergence and equivalence results for the Jensen’s inequality—application to time-delay and sampled-data systems. IEEE Transactions on Automatic Control, 2011, 56(7): 1660–1665
doi: 10.1109/TAC.2011.2121410
99 SeuretA, Gouaisbaut F. Wirtinger-based integral inequality: application to time-delay systems. Automatica, 2013, 49(9): 2860–2866
doi: 10.1016/j.automatica.2013.05.030
100 SeuretA, Gouaisbaut F, FridmanE . Stability of systems with fastvarying delay using improved wirtinger’s inequality. In: Proceedings of the 52nd IEEE Conference on Decision and Control. 2013, 946–951
doi: 10.1109/CDC.2013.6760004
101 JiX F, SuH Y. A note on equivalence between two integral inequalities for time-delay systems. Automatica, 2015, 53: 244–246
doi: 10.1016/j.automatica.2014.12.030
102 GyurkovicsE. A note onWirtinger-type integral inequalities for timedelay systems. Automatica, 2015, 61: 44–46
doi: 10.1016/j.automatica.2015.07.033
103 ParkM, KwonO, ParkJ H, Lee S, ChaE . Stability of time-delay systems via Wirtinger-based double integral inequality. Automatica, 2015, 55: 204–208
doi: 10.1016/j.automatica.2015.03.010
104 HienL V, TrinhH. Refined Jensen-based inequality approach to stability analysis of time-delay systems. IET Control Theory & Applications, 2015, 9(14): 2188–2194
doi: 10.1049/iet-cta.2014.0962
105 ParkP G, LeeW, LeeS Y. Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems. Journal of the Franklin Institute, 2015, 352(4): 1378–1396
doi: 10.1016/j.jfranklin.2015.01.004
106 KimJ H. Further improvement of Jensen inequality and application to stability of time-delayed systems. Automatica, 2016, 61: 121–125
doi: 10.1016/j.automatica.2015.08.025
107 ParkP, KoJ W. Stability and robust stability for systems with a timevarying delay. Automatica, 2007, 43(10): 1855–1858
doi: 10.1016/j.automatica.2007.02.022
108 KimJ H. Note on stability of linear systems with time-varying delay. Automatica, 2011, 47(9): 2118–2121
doi: 10.1016/j.automatica.2011.05.023
1 LiuG P, ReesD, ChaiS C, Nie X Y. Design, simulation and implementation of networked predictive control systems. Measurement & Control, 2005, 38: 17–21
doi: 10.1177/002029400503800102
2 LiuG P, MuJ, ReesD. Design and stability analysis of networked control systems with random communication time delay using the modified MPC. International Journal of Control, 2006, 79: 288–297
doi: 10.1080/00207170500533288
109 ParkP, KoJ W, JeongC. Reciprocally convex approach to stability of systems with time-varying delays. Automatica, 2011, 47(1): 235–238
doi: 10.1016/j.automatica.2010.10.014
110 LeeW I, ParkP. Second-order reciprocally convex approach to stability of systems with interval time-varying delays. Applied Mathematics and Computation, 2014, 229: 245–253
doi: 10.1016/j.amc.2013.12.025
111 ZhuX L, WangY, YangG H. New stability criteria for continuoustime systems with interval time-varying delay. IET Control Theory & Applications, 2010, 4(6): 1101–1107
doi: 10.1049/iet-cta.2009.0176
112 TangM, WangY W, WenC. Improved delay-range-dependent stability criteria for linear systems with interval time-varying delays. IET Control Theory & Applications, 2012, 6(6): 868–873
doi: 10.1049/iet-cta.2011.0360
3 LiuG P, XiaY, ReesD, Hu W S. Design and stability criteria of networked predictive control systems with random network delay in the feedback channel. IEEE Transactions on Systems, Man and Cybernetics–Part C, 2007, 37(2): 173–184
doi: 10.1109/TSMCC.2006.886987
4 SunJ, ChenJ, GanM G. A necessary and sufficient stability criterion for networked predictive control systems.Science China Technological Sciences, 2016, 59(1): 2–8
doi: 10.1007/s11431-015-5973-2
5 LiM, SunJ, DouL, Stability of an improved dynamic quantized system with time-varying delay and packet losses. IET Control Theory & Applications, 2015, 9(6): 988–995
doi: 10.1049/iet-cta.2013.1052
6 SunJ, ChenJ. Networked predictive control for systems with unknown or partially known delay. IET Control Theory & Applications, 2014, 8(18): 2282–2288
doi: 10.1049/iet-cta.2014.0210
7 MichielsW, Niculescu S-I, MoreauL . Using delays and time-varying gains to improve the static output feedback stabilizability of linear systems: a comparison. IMA Journal of Mathematical Control and Information, 2004, 21(4): 393–418
doi: 10.1093/imamci/21.4.393
8 SalariehH, AlastyA. Delayed feedback control of chaotic spinning disk via minimum entropy approach. Nonlinear Analysis: Theory, Methods and Applications, 2008, 69(10): 3273–3280
9 ZhangB L, HuangZ W, HangQ L. Delayed non-fragile H∞ control for offshore steel jacket platforms. Journal of Vibration and Control, 2015, 21(5): 959–974
doi: 10.1177/1077546313488159
10 El’sgol’tsL E , NorkinS B. Introduction to the theory and applications of differential equations with deviating arguments. Mathematics in Science and Engineering, Vol 105. New York: Academic Press,1973
11 KolmanovskiiV B, Nosov V R. Stability of functional differential equations. Mathematics in Science and Engineering, Vol 180. New York: Academic Press, 1986
12 KolmanovskiiV B, Myshkis A. Applied Theory of Functional Differential Equations. Boston: Kluwer Academic Publishers, 1992
doi: 10.1007/978-94-015-8084-7
13 DugardL, Verriest E I. Stability and Control of Time-delay Systems, London: Springer-Verlag, 1998
doi: 10.1007/BFb0027478
14 KolmanovskiiV, Myshkis A. Applied theory of functional differential equations. Dordrecht: Kluwer, 1999
15 NiculescuS I. Delay Effects on Stability: A Robust Control Approach (Lecture Notes in Control and Information Sciences). London: Springer-Verlag, 2001
16 BoukasE K, LiuZ K. Deterministic and Stochastic Time Delay Systems. Boston: Birkhäuser, 2002.
doi: 10.1007/978-1-4612-0077-2
17 ChiassonJ, Loiseau J J. Applications of Time Delay Systems (Lecture Notes in Control and Information Sciences). London: Springer– Verlag, 2007
18 FridmanE. New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems. System & Control Letters, 2001, 43: 309–319
doi: 10.1016/S0167-6911(01)00114-1
19 FridmanE, ShakedU. An improved stabilization method for linear systems with time-delay. IEEE Transactions on Automatic Control, 2002, 47(11): 1931–1937
doi: 10.1109/TAC.2002.804462
20 FridmanE, OrlovY. Exponential stability of linear distributed parameter systems with time-varying delays. Automatica, 2009, 45(2): 194–201
doi: 10.1016/j.automatica.2008.06.006
21 FridmanE, ShakedU, LiuK. New conditions for delay-derivativedependent stability. Automatica, 2009, 45(11): 2723–2727
doi: 10.1016/j.automatica.2009.08.002
22 LiuK, Fridman E. Wirtinger’s inequality and Lyapunov-based sampled-data stabilization. Automatica, 2012, 48(1): 102–108
doi: 10.1016/j.automatica.2011.09.029
23 HanQ L. Robust stability of uncertain delay-differential systems of neutral type. Automatica, 2002, 38(4): 719–723
doi: 10.1016/S0005-1098(01)00250-3
24 HanQ L. On robust stability of neutral systems with time-varying discrete delay and norm-bounded uncertainty. Automatica, 2004, 40(6): 1087–1092
doi: 10.1016/j.automatica.2004.01.007
25 JiangX, HanQ L. On H∞ control for linear systems with interval time-varying delay. Automatica, 2005, 41(12): 2099–2106
doi: 10.1016/j.automatica.2005.06.012
26 JiangX, HanQ L. Delay-dependent robust stability for uncertain linear systems with interval time-varying delay. Automatica, 2006, 42(6): 1059–1065
doi: 10.1016/j.automatica.2006.02.019
27 GaoH J, WangC H. Comments and further results on “A descriptor system approach to H∞ control of linear time-delay systems”. IEEE Transactions on Automatic Control, 2003, 48(3): 520–525
doi: 10.1109/TAC.2003.809154
28 GaoH J, WangC H. A delay-dependent approach to robust H∞ filtering for uncertain discrete-time state-delayed systems. IEEE Transactions on Signal Processing, 2004, 52(6): 1631–1640
doi: 10.1109/TSP.2004.827188
29 GaoH J, MengX Y, ChenT W. Stabilization of networked control systems with a new delay characterization. IEEE Transactions on Automatic Control, 2008, 53(9): 2142–2148
doi: 10.1109/TAC.2008.930190
30 LamJ, GaoH J, WangC H. Stability analysis for continuous systems with two additive time-varying delay components. Systems & Control Letters, 2007, 56(1): 16–24
doi: 10.1016/j.sysconle.2006.07.005
31 YueD, HanQ L, PengC. State feedback controller design of networked control systems. IEEE Transactions on Circuits and Systems—II: Express Briefs, 2004, 41: 640–644
doi: 10.1109/TCSII.2004.836043
32 YueD, HanQ L, LamJ. Network-based robust H∞ control of systems with uncertainty. Automatica, 2005, 41(6): 999–1007
doi: 10.1016/j.automatica.2004.12.011
33 XuS Y, LamJ. Improved delay-dependent stability criteria for timedelay systems. IEEE Transactions on Automatic Control, 2005, 50(3): 384–387
doi: 10.1109/TAC.2005.843873
34 XuS Y, LamJ, ZouY. Further results on delay-dependent robust stability conditions of uncertain neutral systems. International Journal of Robust and Nonlinear Control, 2005, 15(5): 233–246
doi: 10.1002/rnc.983
35 LiX, De Souza C E. Delay-dependent robust stability and stabilisation of uncertain linear delay systems: a linear matrix inequality approach. IEEE Transactions on Automatic Control, 1997, 42(8): 1144–1148
doi: 10.1109/9.618244
36 ShaoH Y. Improved delay-dependent stability criteria for systems with a delay varying in a range. Automatica, 2008, 44(12): 3215–3218
doi: 10.1016/j.automatica.2008.09.003
37 ShaoH Y. New delay-dependent stability criteria for systems with interval delay. Automatica, 2009, 45(3): 744–749
doi: 10.1016/j.automatica.2008.09.010
38 ChenW H, ZhengW X. Delay-dependent robust stabilization for uncertain neutral systems with distributed delays. Automatica, 2007, 43(1): 95–104
doi: 10.1016/j.automatica.2006.07.019
39 MahmoudM S. Resilient L2−L∞ filtering of polytopic systems with state delays. IET Control Theory & Applications, 2007, 1(1): 141–154
doi: 10.1049/iet-cta:20045281
40 ZhangX M, HanQ L. Abel lemma-based finite-sum inequality and its application to stability analysis for linear discrete time-delay systems. Automatica, 2015, 57: 199–202
doi: 10.1016/j.automatica.2015.04.019
41 LiuK, Fridman E, JohanssonK H , XiaY. Generalized Jensen inequalities with application to stability analysis of systems with distributed delays over infinite time-horizons. Automatica, 2016, 69: 222–231
doi: 10.1016/j.automatica.2016.02.038
42 ChenY G, FeiS M, GuZ, LiY M. New mixed-delay-dependent robust stability conditions for uncertain linear neutral systems. IET Control Theory Applications, 2014, 8(8): 606–613
doi: 10.1049/iet-cta.2013.0569
43 ZhangB Y, LamJ, XuS Y. Stability analysis of distributed delay neural networks based on relaxed Lyapunov-Krasovskii functionals. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(7): 1480–1492
doi: 10.1109/TNNLS.2014.2347290
44 PengD, HuaC C. Improved approach to delay-dependent stability and stabilisation of two-dimensional discrete-time systems with interval time-varying delays. IET Control Theory Applications, 2015, 9(12): 1839–1845
doi: 10.1049/iet-cta.2014.0886
45 LiJ, ChenZ H, CaiD S, Zhen W, HuangQ . Delay-Dependent stability control for power system with multiple time-delays. IEEE Transactions on Power Systems, 2016, 31(3): 2316–2326
doi: 10.1109/TPWRS.2015.2456037
46 DingL, HeY, WuM, NingC. Improved mixed-delay-dependent asymptotic stability criteria for neutral systems. IET Control Theory Applications, 2015, 9(14): 2180–2187
doi: 10.1049/iet-cta.2015.0022
47 ZhangC K, HeY, JiangL, Wu M, ZengH B . Delay-variationdependent stability of delayed discrete-time systems. IEEE Transactions on Automatic Control, 2015
48 BoydS, GhaouiL E, FeronE, Balakrishnan V. Linear Matrix Inequality in Systems and Control Theory (SIAM Studies in Applied Mathematics). Philadelphia, PA: SIAM, 1994
doi: 10.1137/1.9781611970777
49 HaleJ K, LunelS M V. Introduction to functional differential equations. New York: Springer, 1993
doi: 10.1007/978-1-4612-4342-7
50 GuK, Kharitonov V L, ChenJ . Stability of Time-delay Systems, Boston: Brikhäuser, 2003
doi: 10.1007/978-1-4612-0039-0
51 FridmanE. Introduction to Time-delay Systems: Analysis and Control (Systems and Control: Foundations and Applications). Springer, 2014
52 WuM, HeY, SheJ H, Liu G P. New delay-dependent stability criteria for robust stability of time-varying delay systems. Automatica, 2004; 40(8): 1435–1439
doi: 10.1016/j.automatica.2004.03.004
53 HeY, WangQ G, LinC, Wu M. Augmented Lyapunov functional and delay-dependent stability criteria for neutral systems. International Journal of Robust and Nonlinear Control, 2005, 15(18): 923–933
doi: 10.1002/rnc.1039
54 HeY, WangQ G, XieL, Lin C. Further improvement of freeweighting matrices technique for systems with time-varying delay. IEEE Transactions on Automatic Control, 2007, 52(2): 293–299
doi: 10.1109/TAC.2006.887907
55 SunJ, LiuG P, ChenJ. Delay-dependent stability and stabilization of neutral time-delay systems. International Journal of Robust and Nonlinear Control, 2009, 19(12): 1364–1375
doi: 10.1002/rnc.1384
56 SunJ, LiuG P. On improved delay-dependent stability criteria for neutral time-delay systems. European Journal of Control, 2009, 15(6): 613–623
doi: 10.3166/ejc.15.613-623
57 SunJ, ChenJ, LiuG P, Rees D. Delay-dependent robust H∞ filter design for uncertain linear systems with time-varying delay. Circuits, Systems, and Signal Processing, 2009, 28(5): 763–775
doi: 10.1007/s00034-009-9120-9
58 SunJ, LiuG P, ChenJ, Rees D. Improved stability criteria for neural networks with time-varying delay. Physics Letters A, 2009, 373(3): 342–348
doi: 10.1016/j.physleta.2008.11.048
59 SunJ, LiuG P. A new delay-dependent stability criterion for timedelay systems. Asian Journal of Control, 2009, 11(4): 427–431
doi: 10.1002/asjc.121
60 SunJ, ChenJ, LiuG P, Rees D. Delay-range-dependent and raterange- dependent stability criteria for linear systems with time-varying delays. In: Proceedings of IEEE Conference on Decision and Control. 2009, 251–256
61 SunJ, ChenJ, LiuG P, Rees D. On robust stability of uncertain neutral systems with discrete and distributed delays. In: Proceedings of American Control Conference. 2009, 5469–5473
doi: 10.1109/acc.2009.5160416
62 SunJ, LiuG P, ChenJ, Rees D. Improved delay-range-dependent stability criteria for linear systems with time-varying delays. Automatica, 2010, 46(2): 466–470
doi: 10.1016/j.automatica.2009.11.002
63 SunJ, LiuG P, ChenJ, Rees D. Improved stability criteria for linear systems with time-varying delay. IET Control Theory & Applications, 2010, 4(4): 683–689
doi: 10.1049/iet-cta.2008.0508
64 ChenJ, SunJ, LiuG P, Rees D. New delay-dependent stability criteria for neural networks with time-varying interval delay. Physics Letters A, 2010, 374(43): 4397–4405
doi: 10.1016/j.physleta.2010.08.070
65 QianW, CongS, LiT, FeiS M. Improved stability conditions for systems with interval time-varying delay. International Journal of Control, Automation, and Systems, 2012, 10(6): 1146–1152
doi: 10.1007/s12555-012-0609-9
66 LeeW I, JeongC, ParkP G. Further improvement of delay-dependent stability criteria for linear systems with time-varying delays. In: Proceedings of the 12th International Conference on Control, Automation and Systems. 2012, 1300–1304
67 LiuJ, HouZ W. New stability analysis for systems with interval timevarying delay based on Lyapunov functional method. Journal of Information & Computational Science, 2014, 11(6): 1843–1851
doi: 10.12733/jics20103176
68 HeY, WangQ G, LinC, Wu M. Delay-dependent stability for systems with time-varying delay. Automatica, 2007, 43(2): 371–376
doi: 10.1016/j.automatica.2006.08.015
69 SunJ, HanQ L, ChenJ, Liu G P. Less conservative stability criteria for linear systems with interval time-varying delays. International Journal of Robust and Nonlinear Control, 2015, 25(40): 475–485
doi: 10.1002/rnc.3096
70 SunJ, ChenJ. Stability analysis of static recurrent neural networks with interval time-varying delay. Applied Mathematics and Computation, 2013, 221(15): 111–120
doi: 10.1016/j.amc.2013.06.028
71 QianW, LiuJ, FeiS M. New augmented Lyapunov functional method for stability of uncertain neutral systems with equivalent delays. Mathematics and Computers in Simulation, 2012, 84: 42–50
doi: 10.1016/j.matcom.2012.08.003
72 GuK. Discretized LMI set in the stability problem of linear uncertain time-delay systems. International Journal of Control, 1997, 68(4): 923–934
doi: 10.1080/002071797223406
73 GuK, HanQ L, LuoA C J, Niculescu S I. Discretized Lyapunov functional for systems with distributed delay and piecewise constant coefficients. International Journal of Control, 2001, 74(7): 737–744
doi: 10.1080/00207170010031486
74 GuK. An improved stability criterion for systems with distributed delays. International Journal of Robust and Nonlinear Control, 2003, 13(9): 819–831
doi: 10.1002/rnc.847
75 KharitonovV L, Niculescu S I. On the stability of linear systems with uncertain delay. IEEE Transactoins on Automatic Control, 2003, 48(1): 127–132
doi: 10.1109/TAC.2002.806665
76 KharitonovV L, ZhabkoA P. Lyapunov-Krasovskii approach to the robust stability analysis of time-delay systems. Automatica, 2003, 39(1): 15–20
doi: 10.1016/S0005-1098(02)00195-4
77 FridmanE, Niculescu S I. On complete Lyapunov-Krasovskii functional techniques for uncertain systems with fast-varying delays. International Journal of Robust Nonlinear Control, 2008, 18(3): 364–374
doi: 10.1002/rnc.1230
78 HeY, LiuG P, ReesD. New delay-dependent stability criteria for neural networks with time-varying delay. IEEE Transactions on Neural Network, 2007, 18(1): 310–314
doi: 10.1109/TNN.2006.888373
79 HeY, WuM, liuG P, She J H. Output feedback stabilization for a discrete-time systems with a time-varying delay. IEEE Transactions on Automatic Control, 2008, 53(10): 2372–2377
doi: 10.1109/TAC.2008.2007522
80 FridmanE, ShakedU. Delay-dependent stability and H∞ control: constant and time-varying delays. International Journal of Control, 2003, 76(1): 48–60
doi: 10.1080/0020717021000049151
81 ParkP. A delay-dependent stability criterion for systems with uncertain time-invariant delays. IEEE Transactions on Automatic Control, 1999, 44(4): 876–877
doi: 10.1109/9.754838
82 MoonY S, ParkP, KwonW H, Lee Y S. Delay-dependent robust stabilization of uncertain state-delayed systems. International Journal of Control, 2001, 74(14): 1447–1455
doi: 10.1080/00207170110067116
83 WuM, HeY, SheJ H. Stability Analyssi and Robust Control of Timedelay Systems. London: Springer, 2010.
doi: 10.1007/978-3-642-03037-6
84 XuS, LamJ. A survey of linear matrix inequality techniques in stability analysis of delay systems. International Journal of Systems Science, 2008, 39(12): 1095–1113
doi: 10.1080/00207720802300370
85 HeY, WuM, SheJ H, Liu G P. Parameter-dependent Lyapunov for stability of time-delay systems with polytopic-type uncertainties. IEEE Transactions on Automatic Control, 2004, 49(5): 828–832
doi: 10.1109/TAC.2004.828317
86 HeY, WuM, SheJ H. An improved H∞ filter design for systems with time-varying interval delay. IEEE Transactions on Signal Processing, 2006, 53(11): 1235–1239
87 HeY, WuM, SheJ H. An improved global asymptotic stability criterion for delayed cellular neural networks.IEEE Transactions on Neural Network, 2006, 17(1): 250–252
doi: 10.1109/TNN.2005.860874
88 HeY, WuM, SheJ H. Delay-dependent exponential stability of delayed neural networks with time-varying delay. IEEE Transactions on Circuits and Systems—II: Express Briefs, 2006, 53(7): 553–557
doi: 10.1109/TCSII.2006.876385
89 WuM, HeY, SheJ H. New delay-dependent stability criteria and stabilising method for neutral systems. IEEE Transactions on Automatic Control, 2004, 49(12): 2266–2271
doi: 10.1109/TAC.2004.838484
90 ZhangX M, WuM, SheJ H, He Y. Delay-dependent stabilization of linear systems with time-varying state and input delays. Automatica, 2005, 41(8): 1405–1412
doi: 10.1016/j.automatica.2005.03.009
91 ZengH B, HeY, WuM, SheJ H. Free-matrix-based integral inequality for stability analysis of systems with time-varying delay. IEEE Transactions on Automatic Control, 2015, 60(10): 2768–2772
doi: 10.1109/TAC.2015.2404271
92 GuK. An integral inequality in the stability problem of time-delay systems. In: Proceedings of the 39th IEEE Conference on Decision and Control. 2000, 2805–2810
doi: 10.1109/cdc.2000.914233
93 GahinetP, Apkarian P. A linear matrix inequality approach to H∞ control. International Journal of Robust and Nonlinear Control, 1994, 4(4): 421–448
doi: 10.1002/rnc.4590040403
94 GouaisbautF, Peaucelle D. A note on stability of time delay systems. In: Proceedings of the 5th IFAC Symposium on Robust Control Design. 2006
doi: 10.3182/20060705-3-fr-2907.00095
95 GouaisbautF, Peaucelle D. Delay-dependent robust stability of time delay systems. In: Proceedings of the 5th IFAC Symposium on Robust Control Design. 2006
doi: 10.3182/20060705-3-fr-2907.00078
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed