Application of senescence reporter mouse models in panvascular diseases

Haoshuo Li , Yang Zhang , Zhuang Tian , Shuyang Zhang

Vessel Plus ›› 2025, Vol. 9 ›› Issue (1) : 28

PDF
Vessel Plus ›› 2025, Vol. 9 ›› Issue (1) :28 DOI: 10.20517/2574-1209.2025.99
Review

Application of senescence reporter mouse models in panvascular diseases

Author information +
History +
PDF

Abstract

Vascular ageing accelerates panvascular diseases such as atherosclerosis, age-related arterial stiffening, pulmonary hypertension and cerebral microvascular dysfunction, yet the causal roles of senescent cells remain uncertain. This review aims to clarify those roles by systematically mapping the technological evolution, functional features and disease-specific applications of senescence reporter mouse models. We categorize senescence reporter mouse models into senescence tracing models and senescence eliminating models, and track three successive generations that progressively increased temporal, spatial and functional specificity. First-generation luciferase lines enabled non-invasive whole-body imaging; second-generation fluorescent reporters delivered single cell resolution; third-generation dual recombinase systems achieved lineage tracing and conditional clearance. In parallel, elimination platforms advanced from global ATTAC (apoptosis through targeted activation of Caspase) and trimodality reporter constructs to cell-type-restricted designs. Across atherosclerosis, arterial stiffening, pulmonary vascular remodeling and cerebral microvascular dysfunction, targeted removal or longitudinal tracking of cyclin-dependent kinase inhibitor 2A, CDKN2A (p16Ink4a) or cyclin-dependent kinase inhibitor 1A, CDKN1A (p21Waf1/Cip1) positive cells revealed both shared and tissue-specific pathogenic mechanisms, and provided genetic gold standards for benchmarking senolytic drugs. We highlight remaining gaps, particularly the reliance on single biomarkers (p16, p21, p53) that may miss heterogeneous senescent subsets, and propose integrating multi-omics profiling, artificial intelligence-assisted image analysis and next-generation dual recombinase tools to refine mechanistic insight and enable precise anti-senescence interventions in panvascular disease.

Keywords

Vascular ageing / cellular senescence / senescence reporter mice / dual recombinase systems / panvascular diseases

Cite this article

Download citation ▾
Haoshuo Li, Yang Zhang, Zhuang Tian, Shuyang Zhang. Application of senescence reporter mouse models in panvascular diseases. Vessel Plus, 2025, 9(1): 28 DOI:10.20517/2574-1209.2025.99

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhou X,Zhao Y.Panvascular medicine: an emerging discipline focusing on atherosclerotic diseases.Eur Heart J2022;43:4528-31

[2]

Liberale L,Montecucco F,Libby P.Inflammation, aging, and cardiovascular disease: JACC review topic of the week.J Am Coll Cardiol2022;79:837-47

[3]

North BJ.The intersection between aging and cardiovascular disease.Circ Res2012;110:1097-108 PMCID:PMC3366686

[4]

Ungvari Z,Sorond F,Csiszar A.Mechanisms of vascular aging, a geroscience perspective: JACC focus seminar.J Am Coll Cardiol2020;75:931-41 PMCID:PMC8559983

[5]

Birch J.Senescence and the SASP: many therapeutic avenues.Genes Dev2020;34:1565-76 PMCID:PMC7706700

[6]

McHugh D.Senescence and aging: causes, consequences, and therapeutic avenues.J Cell Biol2018;217:65-77 PMCID:PMC5748990

[7]

Lakatta EG.Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part I: aging arteries: a “set up” for vascular disease.Circulation2003;107:139-46

[8]

Vlachopoulos C,Stefanadis C.Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis.J Am Coll Cardiol2010;55:1318-27

[9]

Fritze O,Schleicher M.Age-related changes in the elastic tissue of the human aorta.J Vasc Res2012;49:77-86

[10]

Pietri P.Cardiovascular aging and longevity: JACC state-of-the-art review.J Am Coll Cardiol2021;77:189-204

[11]

Greider CW.Telomeres and senescence: the history, the experiment, the future.Curr Biol1998;8:R178-81

[12]

Toussaint O,von Zglinicki T.Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes.Exp Gerontol2000;35:927-45

[13]

Ohtani N,Takahashi A.The p16INK4a-RB pathway: molecular link between cellular senescence and tumor suppression.J Med Invest2004;51:146-53

[14]

Herbig U,Dutriaux A,Sedivy JM.Real-time imaging of transcriptional activation in live cells reveals rapid up-regulation of the cyclin-dependent kinase inhibitor gene CDKN1A in replicative cellular senescence.Aging Cell2003;2:295-304

[15]

Itahana K,Campisi J.Regulation of cellular senescence by p53.Eur J Biochem2001;268:2784-91

[16]

Lee BY,Im JS.Senescence-associated β-galactosidase is lysosomal β-galactosidase.Aging Cell2006;5:187-95

[17]

Liu S,Lin MZ.Brightening up biology: advances in luciferase systems for in vivo imaging.ACS Chem Biol2021;16:2707-18

[18]

Yamakoshi K,Hirota F.Real-time in vivo imaging of p16Ink4a reveals cross talk with p53.J Cell Biol2009;186:393-407 PMCID:PMC2728398

[19]

Burd CE,Clark KS.Monitoring tumorigenesis and senescence in vivo with a p16INK4a-luciferase model.Cell2013;152:340-51

[20]

Ohtani N,Yamakoshi K.Visualizing the dynamics of p21Waf1/Cip1 cyclin-dependent kinase inhibitor expression in living animals.Proc Natl Acad Sci U S A2007;104:15034-9

[21]

Hamstra DA,Griffin LB,Ross BD.Real-time evaluation of p53 oscillatory behavior in vivo using bioluminescent imaging.Cancer Res2006;66:7482-9

[22]

Pan C,Quacquarelli FP.Shrinkage-mediated imaging of entire organs and organisms using uDISCO.Nat Methods2016;13:859-67

[23]

Liu JY,Diekman BO.Cells exhibiting strong p16INK4a promoter activation in vivo display features of senescence.Proc Natl Acad Sci U S A2019;116:2603-11

[24]

Demidenko ZN,Gudkov AV.Paradoxical suppression of cellular senescence by p53.Proc Natl Acad Sci U S A2010;107:9660-4 PMCID:PMC2906905

[25]

Sun N,Liu J.Measuring in vivo mitophagy.Mol Cell2015;60:685-96

[26]

Sun J,Zhong Y.A Glb1-2A-mCherry reporter monitors systemic aging and predicts lifespan in middle-aged mice.Nat Commun2022;13:7028 PMCID:PMC9671911

[27]

Muris Consortium. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse.Nature2020;583:590-5

[28]

Biran A,Abou Karam P.Quantitative identification of senescent cells in aging and disease.Aging Cell2017;16:661-71 PMCID:PMC5506427

[29]

Sogabe Y,Kabata M.Characterizing primary and secondary senescence in vivo.Nat Aging2025;5:1568-88

[30]

Zhao H,Chen H.Identifying specific functional roles for senescence across cell types.Cell2024;187:7314-7334.e21

[31]

Tsien JZ,Tonegawa S.The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory.Cell1996;87:1327-38

[32]

Baker DJ,Tchkonia T.Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders.Nature2011;479:232-6 PMCID:PMC3468323

[33]

Chandra A,Farr JN.Targeted clearance of p21- but not p16-positive senescent cells prevents radiation-induced osteoporosis and increased marrow adiposity.Aging Cell2022;21:e13602

[34]

Demaria M,Youssef SA.An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA.Dev Cell2014;31:722-33 PMCID:PMC4349629

[35]

Yi Z,Wei Y.Generation of a p21 reporter mouse and its use to identify and eliminate p21high cells in vivo.Int J Mol Sci2023;24:5565

[36]

Baker DJ,Durik M.Naturally occurring p16Ink4a-positive cells shorten healthy lifespan.Nature2016;530:184-9

[37]

Grosse L,Emelyanov A.Defined p16High senescent cell types are indispensable for mouse healthspan.Cell Metab2020;32:87-99.e6

[38]

Tinkum KL,White LS.Bioluminescence imaging captures the expression and dynamics of endogenous p21 promoter activity in living mice and intact cells.Mol Cell Biol2011;31:3759-72

[39]

McMahon M,Henderson CJ.Olaparib, monotherapy or with ionizing radiation, exacerbates DNA damage in normal tissues: insights from a new p21 reporter mouse.Mol Cancer Res2016;14:1195-203 PMCID:PMC5136472

[40]

Briat A.A new transgenic mouse line to image chemically induced p53 activation in vivo.Cancer Sci2008;99:683-8 PMCID:PMC11160027

[41]

Reyes NS,Allen NC.Sentinel p16INK4a+ cells in the basement membrane form a reparative niche in the lung.Science2022;378:192-201

[42]

Farr JN,Doolittle ML.Local senolysis in aged mice only partially replicates the benefits of systemic senolysis.J Clin Invest2023;133:e162519

[43]

Chen M,Lu Y.A p21-ATD mouse model for monitoring and eliminating senescent cells and its application in liver regeneration post injury.Mol Ther2024;32:2992-3011 PMCID:PMC11403235

[44]

Omori S,Johmura Y.Generation of a p16 reporter mouse and its use to characterize and target p16high cells in vivo.Cell Metab2020;32:814-828.e6

[45]

Wang B,Gasek NS.An inducible p21-Cre mouse model to monitor and manipulate p21-highly-expressing senescent cells in vivo.Nat Aging2021;1:962-73 PMCID:PMC8746571

[46]

Battison AS,Borniger JC.The regulation of reporter transgene expression for diverse biological imaging applications.Npj Imaging2025;3:9 PMCID:PMC12118718

[47]

Blewitt M.The use of mouse models to study epigenetics.Cold Spring Harb Perspect Biol2013;5:a017939 PMCID:PMC3809579

[48]

Carver CM,Atkinson EJ.IL-23R is a senescence-linked circulating and tissue biomarker of aging.Nat Aging2025;5:291-305 PMCID:PMC11839461

[49]

Stavrou M,Traynor-White C.A rapamycin-activated Caspase 9-based suicide gene.Mol Ther2018;26:1266-76 PMCID:PMC5993966

[50]

Bahour N,Abarca C,Sanjines S.Clearance of p16Ink4a-positive cells in a mouse transgenic model does not change β-cell mass and has limited effects on their proliferative capacity.Aging2023;15:441-58 PMCID:PMC9925693

[51]

Yan W,Dai Y.Application of crotonylation modification in panvascular diseases.J Drug Target2024;32:996-1004

[52]

Tyrrell DJ.Ageing and atherosclerosis: vascular intrinsic and extrinsic factors and potential role of IL-6.Nat Rev Cardiol2021;18:58-68 PMCID:PMC7484613

[53]

Wang JC.Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence.Circ Res2012;111:245-59

[54]

Childs BG,Wijshake T,Campisi J.Senescent intimal foam cells are deleterious at all stages of atherosclerosis.Science2016;354:472-7 PMCID:PMC5112585

[55]

Childs BG,Shuja F.Senescent cells suppress innate smooth muscle cell repair functions in atherosclerosis.Nat Aging2021;1:698-714 PMCID:PMC8570576

[56]

Roos CM,Palmer AK.Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice.Aging Cell2016;15:973-7

[57]

Sadhu S,Sansbury BE.Radiation-induced macrophage senescence impairs resolution programs and drives cardiovascular inflammation.J Immunol2021;207:1812-23 PMCID:PMC8555670

[58]

Mazan-Mamczarz K,Childs BG.Single-cell and spatial transcriptomics map senescent vascular cells in arterial remodeling during atherosclerosis in mice.Nat Aging2025;5:1528-47 PMCID:PMC12323397

[59]

Clayton ZS,Hutton DA.Tumor necrosis factor alpha-mediated inflammation and remodeling of the extracellular matrix underlies aortic stiffening induced by the common chemotherapeutic agent doxorubicin.Hypertension2021;77:1581-90

[60]

Rossman MJ,Clayton ZS,Seals DR.Targeting mitochondrial fitness as a strategy for healthy vascular aging.Clin Sci2020;134:1491-519

[61]

Steven S,Oelze M.Vascular inflammation and oxidative stress: major triggers for cardiovascular disease.Oxid Med Cell Longev2019;2019:7092151 PMCID:PMC6612399

[62]

Clayton ZS,Mahoney SA.Cellular senescence contributes to large elastic artery stiffening and endothelial dysfunction with aging: amelioration with senolytic treatment.Hypertension2023;80:2072-87

[63]

Mahoney SA,Venkatasubramanian R.Late life supplementation of 25-hydroxycholesterol reduces aortic stiffness and cellular senescence in mice.Aging Cell2025;24:e70118

[64]

Mocumbi A,Saxena A.Pulmonary hypertension.Nat Rev Dis Primers2024;10:1

[65]

Hu Y,Li P,Li H.Hypoxia and panvascular diseases: exploring the role of hypoxia-inducible factors in vascular smooth muscle cells under panvascular pathologies.Sci Bull2023;68:1954-74

[66]

Ramadhiani R,Miyagawa K.Endothelial cell senescence exacerbates pulmonary hypertension by inducing juxtacrine Notch signaling in smooth muscle cells.iScience2023;26:106662 PMCID:PMC10182325

[67]

Wang AP,Tian Y.Pulmonary artery smooth muscle cell senescence promotes the proliferation of PASMCs by paracrine IL-6 in hypoxia-induced pulmonary hypertension.Front Physiol2021;12:656139 PMCID:PMC8058366

[68]

van der Feen DE,Hagdorn QAJ.Cellular senescence impairs the reversibility of pulmonary arterial hypertension.Sci Transl Med2020;12 PMCID:PMC7891555

[69]

Born E,Breau M.Eliminating senescent cells can promote pulmonary hypertension development and progression.Circulation2023;147:650-66

[70]

Cho SJ.Aging and lung disease.Annu Rev Physiol2020;82:433-59 PMCID:PMC7998901

[71]

Cottage CT,Kearley J.Targeting p16-induced senescence prevents cigarette smoke-induced emphysema by promoting IGF1/Akt1 signaling in mice.Commun Biol2019;2:307 PMCID:PMC6689060

[72]

Kaur G,Rahman I.Clearance of senescent cells reverts the cigarette smoke-induced lung senescence and airspace enlargement in p16-3MR mice.Aging Cell2023;22:e13850 PMCID:PMC10352560

[73]

Zlokovic BV.Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders.Nat Rev Neurosci2011;12:723-38 PMCID:PMC4036520

[74]

Kim SY.Senescence-associated microvascular endothelial dysfunction: A focus on the blood-brain and blood-retinal barriers.Ageing Res Rev2024;100:102446

[75]

Wang C,Liu X.MAVS antagonizes human stem cell senescence as a mitochondrial stabilizer.Research2023;6:0192 PMCID:PMC10374246

[76]

Zhou X,Wang W.Comprehensive cellular senescence evaluation to aid targeted therapies.Research2025;8:0576 PMCID:PMC11735710

[77]

Onishi M,Sato M,Okamoto K.Molecular mechanisms and physiological functions of mitophagy.EMBO J2021;40:e104705 PMCID:PMC7849173

[78]

Zhou X,Yuan ST.Multiple functions of autophagy in vascular calcification.Cell Biosci2021;11:159 PMCID:PMC8369777

[79]

Zhang Y,Huan L,Xu F.Mitophagy in atherosclerosis: from mechanism to therapy.Front Immunol2023;14:1165507 PMCID:PMC10228545

[80]

Tyrrell DJ,Song J,Goldstein DR.Aging impairs mitochondrial function and mitophagy and elevates interleukin 6 within the cerebral vasculature.J Am Heart Assoc2020;9:e017820 PMCID:PMC7763766

[81]

Junnila RK,Berryman DE,Kopchick JJ.The GH/IGF-1 axis in ageing and longevity.Nat Rev Endocrinol2013;9:366-76 PMCID:PMC4074016

[82]

Gulej R,Faakye J.Endothelial deficiency of insulin-like growth factor-1 receptor leads to blood-brain barrier disruption and accelerated endothelial senescence in mice, mimicking aspects of the brain aging phenotype.Microcirculation2024;31:e12840

[83]

Gulej R,Ahire C.Elimination of senescent cells by treatment with Navitoclax/ABT263 reverses whole brain irradiation-induced blood-brain barrier disruption in the mouse brain.Geroscience2023;45:2983-3002 PMCID:PMC10643778

[84]

Ahire C,DelFavero J.Accelerated cerebromicrovascular senescence contributes to cognitive decline in a mouse model of paclitaxel (Taxol)-induced chemobrain.Aging Cell2023;22:e13832

[85]

Csik B,Gulej R.Cisplatin and methotrexate induce brain microvascular endothelial and microglial senescence in mouse models of chemotherapy-associated cognitive impairment.Geroscience2025;47:3447-59 PMCID:PMC12181529

[86]

Chaib S,Kirkland JL.Cellular senescence and senolytics: the path to the clinic.Nat Med2022;28:1556-68 PMCID:PMC9599677

[87]

Xu M,Farr JN.Senolytics improve physical function and increase lifespan in old age.Nat Med2018;24:1246-56

[88]

Kroemer G,Cuervo AM.From geroscience to precision geromedicine: understanding and managing aging.Cell2025;188:2043-62 PMCID:PMC12037106

[89]

Mahoney SA,Darrah MA.Intermittent supplementation with fisetin improves arterial function in old mice by decreasing cellular senescence.Aging Cell2024;23:e14060 PMCID:PMC10928570

[90]

Garrido AM,Uryga AK.Efficacy and limitations of senolysis in atherosclerosis.Cardiovasc Res2022;118:1713-27 PMCID:PMC9215197

[91]

Bloom SI,Lesniewski LA.Mechanisms and consequences of endothelial cell senescence.Nat Rev Cardiol2023;20:38-51 PMCID:PMC10026597

[92]

Sophia AM,Douglas RS,Matthew JR.Mechanisms of cellular senescence-induced vascular aging: evidence of senotherapeutic strategies.J Cardiovasc Aging2025;5:6 PMCID:PMC12422706

[93]

Ding Y,Zhang B.Comprehensive human proteome profiles across a 50-year lifespan reveal aging trajectories and signatures.Cell2025;188:5763-5784.e26

[94]

Dulić V,Frebourg G,Stein GH.Uncoupling between phenotypic senescence and cell cycle arrest in aging p21-deficient fibroblasts.Mol Cell Biol2000;20:6741-54 PMCID:PMC86196

[95]

Avelar RA,Tacutu R.A multidimensional systems biology analysis of cellular senescence in aging and disease.Genome Biol2020;21:91 PMCID:PMC7333371

[96]

Saul D,Atkinson EJ.A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues.Nat Commun2022;13:4827 PMCID:PMC9381717

[97]

Wang J,Yu P.A transcriptome-based human universal senescence index (hUSI) robustly predicts cellular senescence under various conditions.Nat Aging2025;5:1159-75 PMCID:PMC12176644

[98]

Duran I,Sun B.Detection of senescence using machine learning algorithms based on nuclear features.Nat Commun2024;15:1041 PMCID:PMC10838307

[99]

Wang R,Zhong Z.Deep learning-based vascular aging prediction from retinal fundus images.Transl Vis Sci Technol2024;13:10 PMCID:PMC11238877

PDF

19

Accesses

0

Citation

Detail

Sections
Recommended

/