Digital vessel for the diagnosis of cardiovascular diseases

Wenkang Zhang , Haipeng Lin , Mengbo Luan , Pengfei Wei , Yaning Han

Vessel Plus ›› 2025, Vol. 9 ›› Issue (1) : 20

PDF
Vessel Plus ›› 2025, Vol. 9 ›› Issue (1) :20 DOI: 10.20517/2574-1209.2025.82
Review

Digital vessel for the diagnosis of cardiovascular diseases

Author information +
History +
PDF

Abstract

Over the past few decades, advances in physiological monitoring, imaging technologies, and artificial intelligence (AI) have greatly improved the diagnosis and treatment of cardiovascular diseases. However, traditional diagnostic methods have limitations, particularly in dynamic assessment and personalized care. Digital Twin technology offers a solution by creating virtual replicas of physical entities, enabling precise disease prediction and personalized interventions. This review introduces the concept of the digital vessel, a patient-specific cardiovascular digital twin that integrates imaging data, physiological signals, and AI-driven simulations. We define its core framework, summarize advances in image analysis, computational modeling, and predictive AI, and compare digital vessel models with conventional diagnostic tools in terms of data input, individualization, feedback, and scalability. Finally, we outline key challenges, including data integration, computational cost, clinical validation, and regulatory issues, and propose future research directions. By consolidating current knowledge, this review positions the digital vessel as a pathway toward precision diagnosis and personalized cardiovascular care.

Keywords

Digital vessel / cardiovascular disease / digital twin / artificial intelligence / precision health

Cite this article

Download citation ▾
Wenkang Zhang, Haipeng Lin, Mengbo Luan, Pengfei Wei, Yaning Han. Digital vessel for the diagnosis of cardiovascular diseases. Vessel Plus, 2025, 9(1): 20 DOI:10.20517/2574-1209.2025.82

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yeates K,Sleeth J,Rajkotia Y.A Global perspective on cardiovascular disease in vulnerable populations.Can J Cardiol2015;31:1081-93 PMCID:PMC4787293

[2]

Spînu M,Homorodean C,Ober MC.Optical coherence tomography-OCT for characterization of non-atherosclerotic coronary lesions in acute coronary syndromes.J Clin Med2022;11:265 PMCID:PMC8745669

[3]

Sun X,Yang Q.Artificial intelligence in cardiovascular diseases: diagnostic and therapeutic perspectives.Eur J Med Res2023;28:242 PMCID:PMC10360247

[4]

Szczykutowicz TP.Computed tomography angiography: principles and advances.Radiol Clin North Am2024;62:371-83

[5]

Kocaoglu M,Fleck RJ.Cardiothoracic magnetic resonance angiography.Curr Probl Diagn Radiol2024;53:154-65

[6]

Upadhyay RK.Emerging risk biomarkers in cardiovascular diseases and disorders.J Lipids2015;2015:971453 PMCID:PMC4407625

[7]

Barbiero P,Lió P.Graph representation forecasting of patient’s medical conditions: toward a digital twin.Front Genet2021;12:652907

[8]

Yao JF,Wang XC.Systematic review of digital twin technology and applications.Vis Comput Ind Biomed Art2023;6:10 PMCID:PMC10229487

[9]

Emmert-Streib F.What is a digital twin? Experimental design for a data-centric machine learning perspective in health.Int J Mol Sci2022;23:13149 PMCID:PMC9653941

[10]

Moztarzadeh O,Sargolzaei S.Metaverse and healthcare: machine learning-enabled digital twins of cancer.Bioengineering2023;10:455 PMCID:PMC10136137

[11]

Barricelli BR,Fogli D.A survey on digital twin: definitions, characteristics, applications, and design implications.IEEE Access2019;7:167653-71

[12]

Liu M,Dong H.Review of digital twin about concepts, technologies, and industrial applications.J Manuf Syst2021;58:346-61

[13]

Emmert-streib F.Defining a digital twin: a data science-based unification.Mach Learn Knowl Extr2023;5:1036-54

[14]

Sel K,Zare F.Building digital twins for cardiovascular health: from principles to clinical impact.J Am Heart Assoc2024;13:e031981

[15]

Niederer SA,Girolami M.Scaling digital twins from the artisanal to the industrial.Nat Comput Sci2021;1:313-20

[16]

Bruynseels K,van den Hoven J.Digital twins in health care: ethical implications of an emerging engineering paradigm.Front Genet2018;9:31 PMCID:PMC5816748

[17]

Corral-Acero J,Marciniak M.The ‘Digital Twin’ to enable the vision of precision cardiology.Eur Heart J2020;41:4556-64 PMCID:PMC7774470

[18]

Hormuth DA 2nd,Lorenzo G.Math, magnets, and medicine: enabling personalized oncology.Expert Rev Precis Med Drug Dev2021;6:79-81

[19]

Shamanna P,Damodharan S.Reducing HbA1c in Type 2 diabetes using digital twin technology-enabled precision nutrition: a retrospective analysis.Diabetes Ther2020;11:2703-14 PMCID:PMC7547935

[20]

Oikonomou E,Lampsas S.Current concepts and future applications of non-invasive functional and anatomical evaluation of coronary artery disease.Life2022;12:1803 PMCID:PMC9696378

[21]

Libby P,Hansson GK.Progress and challenges in translating the biology of atherosclerosis.Nature2011;473:317-25

[22]

Dong Y,Hou X.Kindlin-2 controls angiogenesis through modulating Notch1 signaling.Cell Mol Life Sci2023;80:223 PMCID:PMC11072286

[23]

Hou X,Jin J.Phosphoinositide signalling in cell motility and adhesion.Nat Cell Biol2025;27:736-48

[24]

Benjamim CJR,Pontes YMM.Caffeine slows heart rate autonomic recovery following strength exercise in healthy subjects.Rev Port Cardiol2021;40:399-406

[25]

Hunter PJ.Integration from proteins to organs: the Physiome Project.Nat Rev Mol Cell Biol2003;4:237-43

[26]

Zadelaar S,Verschuren L.Mouse models for atherosclerosis and pharmaceutical modifiers.Arterioscler Thromb Vasc Biol2007;27:1706-21

[27]

Bowley G,Wilkinson R.Zebrafish as a tractable model of human cardiovascular disease.Br J Pharmacol2022;179:900-17

[28]

Taylor CA.Patient-specific modeling of cardiovascular mechanics.Annu Rev Biomed Eng2009;11:109-34 PMCID:PMC4581431

[29]

Members WG,Bakris GL.2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease: a report of the American college of cardiology foundation/American heart association task force on practice guidelines, American association for thoracic surgery, American college of radiology, American stroke association, society of cardiovascular anesthesiologists, society for cardiovascular angiography and interventions, society of interventional radiology, society of thoracic surgeons, and society for vascular medicine.Circulation2010;121:e266-369

[30]

Yuan C,Ferguson MS.In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques.Circulation2001;104:2051-6

[31]

Mosquera-Lopez C.Digital twins and artificial intelligence in metabolic disease research.Trends Endocrinol Metab2024;35:549-57

[32]

LeCun Y,Hinton G.Deep learning.Nature2015;521:436-44

[33]

Wang YJ,Wen Y.Screening and diagnosis of cardiovascular disease using artificial intelligence-enabled cardiac magnetic resonance imaging.Nat Med2024;30:1471-80 PMCID:PMC11108784

[34]

Yu X,Fang B,Zhang LB.Cardiac LGE MRI segmentation with cross-modality image augmentation and improved U-Net.IEEE J Biomed Health Inform2023;27:588-97

[35]

Thangaraj PM,Oikonomou EK,Khera R.Cardiovascular care with digital twin technology in the era of generative artificial intelligence.Eur Heart J2024;45:4808-21 PMCID:PMC11638093

[36]

Ali WA,Roccotelli M.A review of digital twin technology for electric and autonomous vehicles.Applied Sciences2023;13:5871

[37]

Vallée A.Envisioning the future of personalized medicine: role and realities of digital twins.J Med Internet Res2024;26:e50204 PMCID:PMC11130780

[38]

Laubenbacher R,Shmulevich I.Digital twins in medicine.Nat Comput Sci2024;4:184-91 PMCID:PMC11102043

[39]

Kamel Boulos MN.Digital twins: from personalised medicine to precision public health.J Pers Med2021;11:745 PMCID:PMC8401029

[40]

Vallée A.Digital twins for personalized medicine require epidemiological data and mathematical modeling: viewpoint.J Med Internet Res2025;27:e72411 PMCID:PMC12365566

[41]

Guo B,Guo X.Diagnostic and prognostic performance of artificial intelligence-based fully-automated on-site CT-FFR in patients with CAD.Sci Bull2024;69:1472-85

[42]

Chakshu NK,Nithiarasu P.Towards enabling a cardiovascular digital twin for human systemic circulation using inverse analysis.Biomech Model Mechanobiol2021;20:449-65 PMCID:PMC7979679

[43]

Suriani I,Mischi M.An in silico study of the effects of cardiovascular aging on carotid flow waveforms and indexes in a virtual population.Am J Physiol Heart Circ Physiol2024;326:H877-99

[44]

Rieke N,Li W.The future of digital health with federated learning.NPJ Digit Med2020;3:119 PMCID:PMC7490367

[45]

Boutouyrie P,Humphrey JD.Arterial stiffness and cardiovascular risk in hypertension.Circ Res2021;128:864-86

[46]

Wu S,Chen S.Arterial stiffness and blood pressure in treated hypertension: a longitudinal study.J Hypertens2023;41:768-74

[47]

Islam K,Nguyen I.Diabetes mellitus and associated vascular disease: pathogenesis, complications, and evolving treatments.Adv Ther2025;42:2659-78 PMCID:PMC12085338

[48]

Meir J,Mahmood S,Cohen S.The vascular complications of diabetes: a review of their management, pathogenesis, and prevention.Expert Rev Endocrinol Metab2024;19:11-20

[49]

Han Y,Wang Y.Multi-animal 3D social pose estimation, identification and behaviour embedding with a few-shot learning framework.Nat Mach Intell2024;6:48-61

[50]

Fu Y,Lei Y.Mask R-CNN based coronary artery segmentation in coronary computed tomography angiography. In: Hahn HK, Mazurowski MA, Editors. Medical Imaging 2020: Computer-Aided Diagnosis; 2020 Feb 15-20; Houston, Texas, United States. SPIE, 2020;11314:1047-52.

[51]

Cui H,Li Y.An improved combination of faster R-CNN and U-Net network for accurate multi-modality whole heart segmentation.IEEE J Biomed Health Inform2023;27:3408-19

[52]

Ren K,Wan M,Chen Q.An improved U-net based retinal vessel image segmentation method.Heliyon2022;8:e11187 PMCID:PMC9614856

[53]

Liu F,Lv B.Auxiliary segmentation method of osteosarcoma MRI Image based on transformer and U-Net.Comput Intell Neurosci2022;2022:9990092 PMCID:PMC9678467

[54]

Viedma IA,Read SA.OCT retinal and choroidal layer instance segmentation using mask R-CNN.Sensors2022;22:2016 PMCID:PMC8914986

[55]

Tiwari R,Malik S,Kumar P.Analysis of heart rate variability and implication of different factors on heart rate variability.Curr Cardiol Rev2021;17:e160721189770

[56]

Li J,Kong F.An automatic Doppler angle analysis method for interventional blood flow velocity calibration.Ultrasonics2025;155:107706

[57]

Abdelrahman KM,Dey AK.Coronary computed tomography angiography from clinical uses to emerging technologies: JACC State-of-the-Art Review.J Am Coll Cardiol2020;76:1226-43 PMCID:PMC7480405

[58]

Yin ZX.An unsupervised image segmentation algorithm for coronary angiography.BioData Min2022;15:27 PMCID:PMC9587570

[59]

Wang Y,Choudhury RP.DeepCA: deep learning-based 3D coronary artery tree reconstruction from two 2D non-simultaneous X-ray angiography projections. In: 2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2025 Feb 26 - 2025 Mar 6; Tucson, AZ, USA. IEEE; 2025. pp. 337-46,

[60]

Bruns N.Blender: universal 3D processing and animation software.Unfallchirurg2020;123:747-50

[61]

Kim B,Mass P.A novel virtual reality medical image display system for group discussions of congenital heart disease: development and usability testing.JMIR Cardio2020;4:e20633 PMCID:PMC7755535

[62]

Siddqi ZF.Computational fluid dynamics: modeling and analysis of blood flow in arteries. In: Singh RE, editor. Motion Analysis of Biological Systems. Cham: Springer International Publishing; 2024. pp. 89-121.

[63]

Kurniatie MD,Mayasari DA.Finite element analysis on blood vessels: understanding clipping phenomenon. In: 2024 International Seminar on Application for Technology of Information and Communication (iSemantic); 2024 Sep 21-22; Semarang, Indonesia. IEEE; 2024. pp. 107-11.

[64]

Syed F,Toma M.Modeling dynamics of the cardiovascular system using fluid-structure interaction methods.Biology2023;12:1026 PMCID:PMC10376821

[65]

Meystre S,Goris A.AI-based gut-brain axis digital twins. In: Hägglund M, Blusi M, Bonacina S, Nilsson L, Cort Madsen I, Pelayo S, Moen A, Benis A, Lindsköld L, Gallos P, editors. Caring is Sharing - Exploiting the Value in Data for Health and Innovation. IOS Press; 2023. pp. 1007-8.

[66]

Ran X,Chen Y.Multimodal neuroimage data fusion based on multikernel learning in personalized medicine.Front Pharmacol2022;13:947657 PMCID:PMC9428611

[67]

Raissi M,Karniadakis G.Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations.J Comput Phys2019;378:686-707

[68]

Viceconti M,Morley-fletcher E.In silico clinical trials: how computer simulation will transform the biomedical industry.Int J Clin Trials2016;3:37

[69]

Topol EJ.High-performance medicine: the convergence of human and artificial intelligence.Nat Med2019;25:44-56

[70]

Huang K,Chen K.A hierarchical 3D-motion learning framework for animal spontaneous behavior mapping.Nat Commun2021;12:2784 PMCID:PMC8119960

[71]

Lyu K,Liu Z,Wang R.3D human motion prediction: a survey.Neurocomputing2022;489:345-65

[72]

Han Y,Ju F,Liu Q.BL-BERT: Extracting Body Language From Behavior Sequences In Freely Moving Mice. In: Liu Q, Qu Y, Wu H, Qi Y, Zeng A, Pan D, editors. Human Brain and Artificial Intelligence. Singapore: Springer Nature; 2025. pp. 181-91.

[73]

Wang S.Homeostatic medicine: a strategy for exploring health and disease.Curr Med2022;1:16 PMCID:PMC9510546

[74]

Li X,Chen M.Mitochondrial homeostasis: shaping health and disease.Curr Med2024;3:32

[75]

Li X,Chen M.Redox signaling and homeostasis.Oral Sci Homeost Med2025;1:9610003

PDF

243

Accesses

0

Citation

Detail

Sections
Recommended

/