PDF
Abstract
Diabetic cardiomyopathy (DCM) is a serious complication of diabetic mellitus that occurs independently of other known cardiac diseases and is associated with significant morbidity and mortality. Microvascular injury plays a central role in the pathogenesis of DCM, contributing to its hallmark features, such as cardiac contractile dysfunction and myocardial fibrosis. Current evidence points to endothelial dysfunction (ED) as the key contributor to the development of microvascular injury. Chronic hyperglycemia, hyperinsulinemia, and insulin resistance progressively promote ED, characterized by alterations in gene expression, shifts in endothelial cell (EC) subpopulation dynamics, and dysregulated crosstalk between EC and other cardiac cell types. Ultimately, these changes result in microvascular impairments such as chronic inflammation, EC loss leading to microvascular rarefaction, endothelial-to-mesenchymal transition (EndoMT) promoting myocardial fibrosis, and loss of vasodilatory function. If left uncorrected, these impairments will progress to contractile dysfunction and widespread myocardial fibrosis, manifesting as systolic heart failure. Over the past decade, single-cell RNA sequencing (scRNA-seq) has allowed for the transcriptional profiling of individual cells, enabling the identification of distinct subpopulations within the same cell type and providing deeper insights into cellular crosstalk under both normal and disease conditions. Although research on DCM using scRNA-seq remains an emerging field, studies have identified distinct EC subpopulations, their gene expression profiles, and their contributions to DCM pathogenesis. Moreover, scRNA-seq has revealed dysregulated interactions between ECs and other cardiac cell types in DCM. The expanding application of scRNA-seq holds significant promise for mapping EC subpopulation dynamics and communication pathways in DCM, which may ultimately support the development of novel EC-targeted therapeutic strategies against ED in this condition.
Keywords
Diabetic cardiomyopathy
/
single-cell RNA sequencing
/
endothelial dysfunction
/
microvascular injury
/
pericytes
/
cell-cell interactions
Cite this article
Download citation ▾
Phannita Siriwattanawong, Ryan Justin, Prathibhani Ramawickrama Gamachchige, Dongchen Zhou, Ting Chen.
Endothelial dysfunction as a driver of microvascular injury in diabetic cardiomyopathy.
Vessel Plus, 2025, 9(1): 19 DOI:10.20517/2574-1209.2025.75
| [1] |
International Diabetes Federation. Over 250 million people worldwide unaware they have diabetes, according to new IDF research. 2025. Available from: https://idf.org/news/idf-diabetes-atlas-11th-edition/ [Last accessed on 13 Oct 2025]
|
| [2] |
Einarson TR,Ludwig C.Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007-2017.Cardiovasc Diabetol2018;17:83 PMCID:PMC5994068
|
| [3] |
Wang M,Li S.Endothelial dysfunction and diabetic cardiomyopathy.Front Endocrinol2022;13:851941 PMCID:PMC9021409
|
| [4] |
Salvatore T,Galiero R.The diabetic cardiomyopathy: the contributing pathophysiological mechanisms.Front Med2021;8:695792 PMCID:PMC8279779
|
| [5] |
Radzioch E,Balcerczyk-Lis M.Diabetic cardiomyopathy-from basics through diagnosis to treatment.Biomedicines2024;12:765
|
| [6] |
Jia G,Sowers JR.Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity.Circ Res2018;122:624-38 PMCID:PMC5819359
|
| [7] |
Tan Y,Zheng C,Keller BB.Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence.Nat Rev Cardiol2020;17:585-607 PMCID:PMC7849055
|
| [8] |
Nakamura K,Yoshida M.Pathophysiology and treatment of diabetic cardiomyopathy and heart failure in patients with diabetes mellitus.Int J Mol Sci2022;23:3587 PMCID:PMC8999085
|
| [9] |
Shi Y.Macro- and microvascular endothelial dysfunction in diabetes.J Diabetes2017;9:434-49
|
| [10] |
Yang DR,Zhang CL.Endothelial dysfunction in vascular complications of diabetes: a comprehensive review of mechanisms and implications.Front Endocrinol2024;15:1359255 PMCID:PMC11026568
|
| [11] |
Li P.Pericyte loss in diseases.Cells2023;12:1931 PMCID:PMC10417558
|
| [12] |
Chilton R,Bloomgarden Z.Deciphering the connection: diabetes, pericyte dysfunction, and their impact on cardiovascular health.J Diabetes2024;16:e13539 PMCID:PMC10894712
|
| [13] |
Paik DT,Tian L,Wu JC.Single-cell RNA sequencing in cardiovascular development, disease and medicine.Nat Rev Cardiol2020;17:457-73 PMCID:PMC7528042
|
| [14] |
Zhang Y,Zhang X.Single-cell RNA sequencing uncovers pathological processes and crucial targets for vascular endothelial injury in diabetic hearts.Adv Sci2024;11:e2405543
|
| [15] |
Paik DT,Williams IM.Single-cell RNA sequencing unveils unique transcriptomic signatures of organ-specific endothelial cells.Circulation2020;142:1848-62
|
| [16] |
Wu L,Lee J.ErbB3 is a critical regulator of cytoskeletal dynamics in brain microvascular endothelial cells: implications for vascular remodeling and blood brain barrier modulation.J Cereb Blood Flow Metab2021;41:2242-55
|
| [17] |
Herbert SP.Molecular control of endothelial cell behaviour during blood vessel morphogenesis.Nat Rev Mol Cell Biol2011;12:551-64 PMCID:PMC3319719
|
| [18] |
Dejana E.The role of wnt signaling in physiological and pathological angiogenesis.Circ Res2010;107:943-52
|
| [19] |
Kaur N,Raja R,Liu W.Mechanisms and therapeutic prospects of diabetic cardiomyopathy through the inflammatory response.Front Physiol2021;12:694864 PMCID:PMC8257042
|
| [20] |
Bellemare M,Iglesies-Grau J,O’Meara E.Mechanisms of diabetic cardiomyopathy: Focus on inflammation.Diabetes Obes Metab2025;27:2326-38 PMCID:PMC11964996
|
| [21] |
Frati G,Chimenti I.An overview of the inflammatory signalling mechanisms in the myocardium underlying the development of diabetic cardiomyopathy.Cardiovasc Res2017;113:378-88
|
| [22] |
Su Q,Huang Y.Single-cell insights: pioneering an integrated atlas of chromatin accessibility and transcriptomic landscapes in diabetic cardiomyopathy.Cardiovasc Diabetol2024;23:139 PMCID:PMC11046823
|
| [23] |
Wen Y.Cardiac endothelial cells and cardiomyocytes alter their communication properties in diabetic mice.Biol Res2025;58:23 PMCID:PMC12036212
|
| [24] |
Li W,Zha Y.Single-cell RNA-seq of heart reveals intercellular communication drivers of myocardial fibrosis in diabetic cardiomyopathy.eLife2023;12
|
| [25] |
Song C,Fu Z.IGFBP5 promotes diabetic kidney disease progression by enhancing PFKFB3-mediated endothelial glycolysis.Cell Death Dis2022;13:340 PMCID:PMC9007962
|
| [26] |
Chatterjee A,Prabhakar S.Role of inflammation in the progression of diabetic kidney disease.Vessel Plus2024;8:28
|
| [27] |
Sayed S,Preya UH.Cathepsin S knockdown suppresses endothelial inflammation, angiogenesis, and complement protein activity under hyperglycemic conditions in vitro by inhibiting NF-κB signaling.Int J Mol Sci2023;24:5428 PMCID:PMC10049538
|
| [28] |
Kobayashi S,Kobayashi T.Hyperglycemia-induced cardiomyocyte death is mediated by lysosomal membrane injury and aberrant expression of cathepsin D.Biochem Biophys Res Commun2020;523:239-45 PMCID:PMC6941191
|
| [29] |
Cohen CD,Farrugia GE.Mapping the cellular and molecular landscape of cardiac non-myocytes in murine diabetic cardiomyopathy.iScience2023;26:107759 PMCID:PMC10509303
|
| [30] |
Zygmunciak P,Błażowska O.Extracellular vesicles in diabetic cardiomyopathy-state of the art and future perspectives.Int J Mol Sci2024;25:6117 PMCID:PMC11172920
|
| [31] |
Guo W,Zou J.Interleukin-1β polarization in M1 macrophage mediates myocardial fibrosis in diabetes.Int Immunopharmacol2024;131:111858 PMCID:PMC11330059
|
| [32] |
Li C,Wang L.Mechanism of action of non-coding RNAs and traditional Chinese medicine in myocardial fibrosis: Focus on the TGF-β/Smad signaling pathway.Front Pharmacol2023;14:1092148 PMCID:PMC9947662
|
| [33] |
Rossi E,Smadja DM.Endoglin as an adhesion molecule in mature and progenitor endothelial cells: a function beyond TGF-β.Front Med2019;6:10 PMCID:PMC6363663
|
| [34] |
Meng L,Wang X.NPRC deletion attenuates cardiac fibrosis in diabetic mice by activating PKA/PKG and inhibiting TGF-β1/Smad pathways.Sci Adv2023;9:eadd4222 PMCID:PMC10396312
|
| [35] |
Biernacka A,Wang J.Smad3 signaling promotes fibrosis while preserving cardiac and aortic geometry in obese diabetic mice.Circ Heart Fail2015;8:788-98
|
| [36] |
Kanter JE.FOXP1: A Gatekeeper of endothelial cell inflammation.Circ Res2019;125:606-8 PMCID:PMC6750721
|
| [37] |
Kanisicak O,Ivey MJ.Genetic lineage tracing defines myofibroblast origin and function in the injured heart.Nat Commun2016;7:12260 PMCID:PMC5512625
|
| [38] |
Li Y,He CY,Chen Z.Activating transcription factor 4 drives the progression of diabetic cardiac fibrosis.ESC Heart Fail2023;10:2510-23 PMCID:PMC10375070
|
| [39] |
Wang L,Qi H,Grossfeld P.Endothelial loss of ETS1 impairs coronary vascular development and leads to ventricular non-compaction.Circ Res2022;131:371-87
|
| [40] |
Peng ML,Wu CW,Ren H.Signaling pathways related to oxidative stress in diabetic cardiomyopathy.Front Endocrinol2022;13:907757 PMCID:PMC9240190
|
| [41] |
Zheng ZQ,Song YF.Identification of immune feature genes and intercellular profiles in diabetic cardiomyopathy.World J Diabetes2024;15:2093-110 PMCID:PMC11525719
|
| [42] |
Woll AW,Sigmund CD.PPARγ and retinol binding protein 7 form a regulatory hub promoting antioxidant properties of the endothelium.Physiol Genomics2017;49:653-8 PMCID:PMC5792137
|
| [43] |
Zhang X,Li H,Wang Y.CD36 signaling in diabetic cardiomyopathy.Aging Dis2021;12:826-40
|
| [44] |
Chen J,Day DS.VEGF amplifies transcription through ETS1 acetylation to enable angiogenesis.Nat Commun2017;8:383
|
| [45] |
Yang X,Friedl A.STAT5 and prolactin participate in a positive autocrine feedback loop that promotes angiogenesis.J Biol Chem2013;288:21184-96
|
| [46] |
Park CW,Lim JH.Vascular endothelial growth factor inhibition by dRK6 causes endothelial apoptosis, fibrosis, and inflammation in the heart via the Akt/eNOS axis in db/db mice.Diabetes2009;58:2666-76
|
| [47] |
Cerychova R.HIF-1, metabolism, and diabetes in the embryonic and adult heart.Front Endocrinol2018;9:460 PMCID:PMC6104135
|
| [48] |
Ullah K.Hypoxia-inducible factor regulates endothelial metabolism in cardiovascular disease.Front Physiol2021;12:670653 PMCID:PMC8287728
|
| [49] |
Sabolová G,Rabajdová M,Vašková J.Association of inflammation, oxidative stress, and deteriorated cognitive functions in patients after cardiac surgery.Vessel Plus2024;8:27
|
| [50] |
Gou W,Tang XY.Circulating proteome and progression of type 2 diabetes.J Clin Endocrinol Metab2022;107:1616-25
|
| [51] |
Ngo D,Long JZ.Proteomic profiling reveals biomarkers and pathways in type 2 diabetes risk.JCI Insight2021;6:144392 PMCID:PMC8021115
|
| [52] |
Li JP,Tai GJ.NLRP3 inflammasome-modulated angiogenic function of EPC via PI3K/ Akt/mTOR pathway in diabetic myocardial infarction.Cardiovasc Diabetol2025;24:6 PMCID:PMC11705910
|
| [53] |
Manea SA,Manea A.High glucose-induced increased expression of endothelin-1 in human endothelial cells is mediated by activated CCAAT/enhancer-binding proteins.PLoS One2013;8:e84170 PMCID:PMC3871648
|
| [54] |
Hu X,Yang M,Li X.IGFBP5 promotes EndoMT and renal fibrosis through H3K18 lactylation in diabetic nephropathy.Cell Mol Life Sci2025;82:215 PMCID:PMC12116956
|
| [55] |
Glatz JFC,Luiken JJFP.CD36 as a gatekeeper of myocardial lipid metabolism and therapeutic target for metabolic disease.Physiol Rev2024;104:727-64
|
| [56] |
Bellini S,Mastrocola R,Bruno G.Heat shock proteins in vascular diabetic complications: review and future perspective.Int J Mol Sci2017;18:2709 PMCID:PMC5751310
|
| [57] |
Horton WB.Microvascular dysfunction in diabetes mellitus and cardiometabolic disease.Endocr Rev2021;42:29-55 PMCID:PMC7846151
|
| [58] |
Litviňuková M,Maatz H.Cells of the adult human heart.Nature2020;588:466-72 PMCID:PMC7681775
|
| [59] |
Koenig AL,Amrute J.Single-cell transcriptomics reveals cell-type-specific diversification in human heart failure.Nat Cardiovasc Res2022;1:263-80 PMCID:PMC9364913
|
| [60] |
McCracken IR,Bennett M.Mapping the developing human cardiac endothelium at single-cell resolution identifies MECOM as a regulator of arteriovenous gene expression.Cardiovasc Res2022;118:2960-72 PMCID:PMC9648824
|
| [61] |
Zhao G,Liu Y.Single-cell transcriptomics reveals endothelial plasticity during diabetic atherogenesis.Front Cell Dev Biol2021;9:689469 PMCID:PMC8170046
|
| [62] |
Kalucka J,Goveia J.Single-cell transcriptome atlas of murine endothelial cells.Cell2020;180:764-779.e20
|
| [63] |
Skelly DA,McLellan MA.Single-cell transcriptional profiling reveals cellular diversity and intercommunication in the mouse heart.Cell Rep2018;22:600-10
|
| [64] |
Zhao Q,Parveen A.Single-cell transcriptome analyses reveal endothelial cell heterogeneity in tumors and changes following antiangiogenic treatment.Cancer Res2018;78:2370-82
|
| [65] |
Peisker F,Nagai J.Mapping the cardiac vascular niche in heart failure.Nat Commun2022;13:3027 PMCID:PMC9156759
|
| [66] |
Morikawa M,Miyazono K.TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology.Cold Spring Harb Perspect Biol2016;8:a021873 PMCID:PMC4852809
|
| [67] |
Alvandi Z.Endothelial-mesenchymal transition in cardiovascular disease.Arterioscler Thromb Vasc Biol2021;41:2357-69 PMCID:PMC8387428
|
| [68] |
Liu Y,Han Q,Xue Y.Identification of biomarkers associated with macrophage polarization in diabetic cardiomyopathy based on bioinformatics and machine learning approaches.Life Sci2025;364:123443
|
| [69] |
Wan A.Endothelial cell-cardiomyocyte crosstalk in diabetic cardiomyopathy.Cardiovasc Res2016;111:172-83 PMCID:PMC4957492
|
| [70] |
Guan H,Fang X.Frontier technologies for investigating endothelial heterogeneity and function in diabetic vascular disease: an updated review.Biomed Pharmacother2025;191:118445
|
| [71] |
Tate M,Ritchie RH.Are targeted therapies for diabetic cardiomyopathy on the horizon?.Clin Sci2017;131:897-915
|
| [72] |
Lovisa S.Fatty acid oxidation regulates the activation of endothelial-to-mesenchymal transition.Trends Mol Med2018;24:432-4
|
| [73] |
Botros M,Mukherjee D.The role of inflammatory response in the development of atherosclerosis, myocardial infarction, and remodeling.Vessel Plus2024;8:31
|
| [74] |
Zhang Z,Ge J.Endothelial-to-mesenchymal transition in cardiovascular diseases.Trends Mol Med2025:S1471-4914(25)00113
|
| [75] |
Tombor LS,Glaser SF.Single cell sequencing reveals endothelial plasticity with transient mesenchymal activation after myocardial infarction.Nat Commun2021;12:681
|
| [76] |
Martín-Bórnez M,Morrugares R.New insights into the reparative angiogenesis after myocardial infarction.Int J Mol Sci2023;24:12298 PMCID:PMC10418963
|
| [77] |
Dubé KN,Munshaw S,Riley PR.Recapitulation of developmental mechanisms to revascularize the ischemic heart.JCI Insight2017;2:96800 PMCID:PMC5752387
|
| [78] |
Gogiraju R,Schäfer K.Angiogenic endothelial cell signaling in cardiac hypertrophy and heart failure.Front Cardiovasc Med2019;6:20 PMCID:PMC6415587
|
| [79] |
Peng Z,Zhang Y.Endothelial response to pathophysiological stress.Arterioscler Thromb Vasc Biol2019;39:e233-43
|
| [80] |
Islam S,Di Carlo D.The mechanobiology of endothelial-to-mesenchymal transition in cardiovascular disease.Front Physiol2021;12:734215 PMCID:PMC8458763
|
| [81] |
Csányi G,Pagano PJ.NOX and inflammation in the vascular adventitia.Free Radic Biol Med2009;47:1254-66 PMCID:PMC3061339
|
| [82] |
Lee SJ,Kim KH.High glucose enhances MMP-2 production in adventitial fibroblasts via Akt1-dependent NF-κB pathway.FEBS Lett2007;581:4189-94
|
| [83] |
Titus AS,Venugopal H,Lakatta EG.Metformin attenuates hyperglycaemia-stimulated pro-fibrotic gene expression in adventitial fibroblasts via inhibition of discoidin domain receptor 2.Int J Mol Sci2022;24:585 PMCID:PMC9820506
|
| [84] |
Tian J,Suo M.Dapagliflozin alleviates cardiac fibrosis through suppressing EndMT and fibroblast activation via AMPKα/TGF-β/Smad signalling in type 2 diabetic rats.J Cell Mol Med2021;25:7642-59
|
| [85] |
Yue Y,Pu Y.Transforming growth factor beta (TGF-β) mediates cardiac fibrosis and induces diabetic cardiomyopathy.Diabetes Res Clin Pract2017;133:124-30
|
| [86] |
Xiao L.Fine-tuning vascular fate during endothelial-mesenchymal transition.J Pathol2017;241:25-35 PMCID:PMC5164846
|
| [87] |
Li H,Cao X,Zhou J.Single-cell analysis reveals lysyl oxidase (Lox)+ fibroblast subset involved in cardiac fibrosis of diabetic mice.J Adv Res2023;54:223-37 PMCID:PMC10703720
|
| [88] |
Zhang S,Duan X.Melatonin attenuates diabetic cardiomyopathy by increasing autophagy of cardiomyocytes via regulation of VEGF-B/GRP78/PERK signaling pathway.Cardiovasc Diabetol2024;23:19 PMCID:PMC10777497
|
| [89] |
Lal N,Wang F.Loss of VEGFB and its signaling in the diabetic heart is associated with increased cell death signaling.Am J Physiol Heart Circ Physiol2017;312:H1163-75
|
| [90] |
Xia M,Wang XH.Single-cell RNA sequencing reveals a unique pericyte type associated with capillary dysfunction.Theranostics2023;13:2515-30 PMCID:PMC10196835
|
| [91] |
Lee C,Sun G.VEGF-B prevents excessive angiogenesis by inhibiting FGF2/FGFR1 pathway.Signal Transduct Target Ther2023;8:305 PMCID:PMC10435562
|
| [92] |
Lai J,Chen J.Overexpression of decorin promoted angiogenesis in diabetic cardiomyopathy via IGF1R-AKT-VEGF signaling.Sci Rep2017;7:44473 PMCID:PMC5349602
|
| [93] |
Phang RJ,Hausenloy DJ,Lim SY.Cellular interplay between cardiomyocytes and non-myocytes in diabetic cardiomyopathy.Cardiovasc Res2023;119:668-90 PMCID:PMC10153440
|
| [94] |
Ding M,Du Y.O-GlcNAcylation-mediated endothelial metabolic memory contributes to cardiac damage via small extracellular vesicles.Cell Metab2025;37:1344-1363.e6
|
| [95] |
Huang JP,Kuo CY.Exosomal microRNAs miR-30d-5p and miR-126a-5p are associated with heart failure with preserved ejection fraction in STZ-induced type 1 diabetic rats.Int J Mol Sci2022;23:7514 PMCID:PMC9318774
|
| [96] |
Chandrasekera DNK,van Hout I.Upregulation of microRNA-532 enhances cardiomyocyte apoptosis in the diabetic heart.Apoptosis2020;25:388-99
|
| [97] |
Veitch S,Chandy M.MiR-30 promotes fatty acid beta-oxidation and endothelial cell dysfunction and is a circulating biomarker of coronary microvascular dysfunction in pre-clinical models of diabetes.Cardiovasc Diabetol2022;21:31 PMCID:PMC8876371
|
| [98] |
Wang X,Liu G.Cardiomyocytes mediate anti-angiogenesis in type 2 diabetic rats through the exosomal transfer of miR-320 into endothelial cells.J Mol Cell Cardiol2014;74:139-50 PMCID:PMC4120246
|
| [99] |
Lafuse WP,Rajaram MVS.Role of cardiac macrophages on cardiac inflammation, fibrosis and tissue repair.Cells2020;10:51 PMCID:PMC7824389
|
| [100] |
Watanabe R,Zhang H.Glucose metabolism controls disease-specific signatures of macrophage effector functions.JCI Insight2018;3:123047 PMCID:PMC6237479
|
| [101] |
Shi K,Zhao Y.Identification of potential therapeutic targets for nonischemic cardiomyopathy in European ancestry: an integrated multiomics analysis.Cardiovasc Diabetol2024;23:338 PMCID:PMC11396958
|
| [102] |
Malhi NK,tang X.Abstract 2005: interrogating the cross-talk: endothelial-macrophage interactions in diabetic vascular dysfunction.Arterioscler Thromb Vasc Biol2024;44:A2005
|
| [103] |
Shi X,Chen J.Endothelial MICU1 alleviates diabetic cardiomyopathy by attenuating nitrative stress-mediated cardiac microvascular injury.Cardiovasc Diabetol2023;22:216 PMCID:PMC10436431
|
| [104] |
Su H,Zeng H,Chen JX.Emerging role of pericytes and their secretome in the heart.Cells2021;10:548 PMCID:PMC8001346
|
| [105] |
Liu Z.Cardiac microvascular dysfunction and cardiomyopathy in diabetes: is ferroptosis a therapeutic target?.Diabetes2023;72:313-5 PMCID:PMC10090265
|
| [106] |
Simmonds SJ,Cuijpers I.Pericyte loss initiates microvascular dysfunction in the development of diastolic dysfunction.Eur Heart J Open2024;4:oead129 PMCID:PMC10763525
|
| [107] |
Grootaert MOJ,Raman J.Mural cell dysfunction contributes to diastolic heart failure by promoting endothelial dysfunction and vessel remodelling.Cardiovasc Diabetol2025;24:62 PMCID:PMC11806843
|
| [108] |
Caporali A,Miscianinov V,Vono R.Contribution of pericyte paracrine regulation of the endothelium to angiogenesis.Pharmacol Ther2017;171:56-64
|
| [109] |
Zhang Q,Ma L,Yang YM.VEGF levels in plasma in relation to metabolic control, inflammation, and microvascular complications in type-2 diabetes: a cohort study.Medicine2018;97:e0415
|
| [110] |
Zhang T,Zhang X.The role of nonmyocardial cells in the development of diabetic cardiomyopathy and the protective effects of FGF21: a current understanding.Cell Commun Signal2024;22:446 PMCID:PMC11426003
|
| [111] |
Salemkour Y.Endothelial autophagy dysregulation in diabetes.Cells2023;12:947 PMCID:PMC10047205
|
| [112] |
Sheu ML,Yang RS.High glucose induces human endothelial cell apoptosis through a phosphoinositide 3-kinase-regulated cyclooxygenase-2 pathway.Arterioscler Thromb Vasc Biol2005;25:539-45
|
| [113] |
Paone S,Hulett MD.Endothelial cell apoptosis and the role of endothelial cell-derived extracellular vesicles in the progression of atherosclerosis.Cell Mol Life Sci2019;76:1093-106 PMCID:PMC11105274
|
| [114] |
Seferović PM.Clinical diabetic cardiomyopathy: a two-faced disease with restrictive and dilated phenotypes.Eur Heart J2015;36:1718-27
|
| [115] |
Knapp M,Wu R.Vascular endothelial dysfunction, a major mediator in diabetic cardiomyopathy.Acta Pharmacol Sin2019;40:1-8 PMCID:PMC6318313
|
| [116] |
Camici PG,Di Carli MF,Van Linthout S.Coronary microvascular dysfunction in hypertrophy and heart failure.Cardiovasc Res2020;116:806-16
|
| [117] |
Man S,Ten Dijke P.The therapeutic potential of targeting the endothelial-to-mesenchymal transition.Angiogenesis2019;22:3-13 PMCID:PMC6510911
|
| [118] |
Wang E,Chakrabarti S.Endothelial-to-mesenchymal transition: an underappreciated mediator of diabetic complications.Front Endocrinol2023;14:1050540 PMCID:PMC9911675
|
| [119] |
Cho JG,Chang W,Kim J.Endothelial to mesenchymal transition represents a key link in the interaction between inflammation and endothelial dysfunction.Front Immunol2018;9:294 PMCID:PMC5826197
|
| [120] |
Li C,Yuan W.The canonical Wnt/β-catenin signaling pathway upregulates carbonic anhydrase 2 via transcription factor 7-like 2 to promote cardiomyopathy in type 2 diabetic mice.Life Sci2025;368:123506
|
| [121] |
Geng H.MiR-18a-5p inhibits endothelial-mesenchymal transition and cardiac fibrosis through the Notch2 pathway.Biochem Biophys Res Commun2017;491:329-36
|
| [122] |
Sánchez-Duffhues G,Ten Dijke P.Endothelial-to-mesenchymal transition in cardiovascular diseases: developmental signaling pathways gone awry.Dev Dyn2018;247:492-508
|
| [123] |
Gamrat A,Chyrchel B.Endothelial dysfunction: a contributor to adverse cardiovascular remodeling and heart failure development in type 2 diabetes beyond accelerated atherogenesis.J Clin Med2020;9:2090 PMCID:PMC7408687
|
| [124] |
Kolluru GK,Kevil CG.Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing.Int J Vasc Med2012;2012:918267 PMCID:PMC3348526
|
| [125] |
Chen D,Huang MLH,Jenkins AJ.Diabetic cardiomyopathy: insights into pathophysiology, diagnosis and clinical management.J Mol Cell Cardiol2025;206:55-69
|
| [126] |
Schmidt K,Groß S.SGLT2 inhibitors attenuate endothelial to mesenchymal transition and cardiac fibroblast activation.Sci Rep2024;14:16459 PMCID:PMC11252266
|
| [127] |
Wang D,Wang Y.Glucagon-like peptide-1 protects against cardiac microvascular injury in diabetes via a cAMP/PKA/Rho-dependent mechanism.Diabetes2013;62:1697-708 PMCID:PMC3636622
|
| [128] |
Li N.SGLT2 inhibitors: a novel player in the treatment and prevention of diabetic cardiomyopathy.Drug Des Devel Ther2020;14:4775-88
|
| [129] |
Wu M,Zu C.Losartan attenuates myocardial endothelial-to-mesenchymal transition in spontaneous hypertensive rats via inhibiting TGF-β/Smad signaling.PLoS One2016;11:e0155730 PMCID:PMC4866756
|
| [130] |
Kanasaki K,Kanasaki M.Linagliptin-mediated DPP-4 inhibition ameliorates kidney fibrosis in streptozotocin-induced diabetic mice by inhibiting endothelial-to-mesenchymal transition in a therapeutic regimen.Diabetes2014;63:2120-31
|
| [131] |
Sabe SA,Broadwin M.Comparative effects of canagliflozin and sitagliptin in chronically ischemic myocardium.Vessel Plus2024;8:2 PMCID:PMC11339913
|
| [132] |
Wu M,Liu H,Pan MM.Cinacalcet attenuates the renal endothelial-to-mesenchymal transition in rats with adenine-induced renal failure.Am J Physiol Renal Physiol2014;306:F138-46
|
| [133] |
Guo Y,Bledsoe G,Chao L.Kallistatin inhibits TGF-β-induced endothelial-mesenchymal transition by differential regulation of microRNA-21 and eNOS expression.Exp Cell Res2015;337:103-10
|
| [134] |
Cipriani P,Ruscitti P.The endothelial-mesenchymal transition in systemic sclerosis is induced by endothelin-1 and transforming growth factor-β and may be blocked by macitentan, a dual endothelin-1 receptor antagonist.J Rheumatol2015;42:1808-16
|
| [135] |
Hall IF,Xu Y,Kovacic JC.Endothelial to mesenchymal transition: at the axis of cardiovascular health and disease.Cardiovasc Res2024;120:223-36 PMCID:PMC10939465
|
| [136] |
Teng X,Zhong H.Selective deletion of endothelial cell calpain in mice reduces diabetic cardiomyopathy by improving angiogenesis.Diabetologia2019;62:860-72 PMCID:PMC6702672
|
| [137] |
Widyantoro B,Nakayama K.Endothelial cell-derived endothelin-1 promotes cardiac fibrosis in diabetic hearts through stimulation of endothelial-to-mesenchymal transition.Circulation2010;121:2407-18
|
| [138] |
Lu S,Lu X.Hyperglycemia acutely increases cytosolic reactive oxygen species via O-linked GlcNAcylation and CaMKII activation in mouse ventricular myocytes.Circ Res2020;126:e80-96
|
| [139] |
Prakoso D,Erickson JR.Fine-tuning the cardiac O-GlcNAcylation regulatory enzymes governs the functional and structural phenotype of the diabetic heart.Cardiovasc Res2022;118:212-25
|
| [140] |
Yao Y,Hu C.Endothelial cell metabolic memory causes cardiovascular dysfunction in diabetes.Cardiovasc Res2022;118:196-211
|
| [141] |
Liu Y,Su JB.Potential clinical value of fibrinogen-like protein 1 as a serum biomarker for the identification of diabetic cardiomyopathy.Sci Rep2024;14:10311 PMCID:PMC11070422
|
| [142] |
Johnson R,Cour M.Identification of potential biomarkers for predicting the early onset of diabetic cardiomyopathy in a mouse model.Sci Rep2020;10:12352 PMCID:PMC7378836
|
| [143] |
Li J,Wu Y.Identification of metabolic pathways and serum biomarkers in diabetic cardiomyopathy using untargeted metabolomics.Sci Rep2025;15:18718 PMCID:PMC12119909
|
| [144] |
Zampetaki A,Drozdov I.Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes.Circ Res2010;107:810-7
|
| [145] |
Prattichizzo F,Sabbatinelli J.CD31+ extracellular vesicles from patients with type 2 diabetes shuttle a miRNA signature associated with cardiovascular complications.Diabetes2021;70:240-54
|
| [146] |
Prattichizzo F,De Nigris V.Extracellular microRNAs and endothelial hyperglycaemic memory: a therapeutic opportunity?.Diabetes Obes Metab2016;18:855-67 PMCID:PMC5094499
|
| [147] |
Rawal S,Shindikar A.Down-regulation of proangiogenic microRNA-126 and microRNA-132 are early modulators of diabetic cardiac microangiopathy.Cardiovasc Res2017;113:90-101
|
| [148] |
Kura B,Singla D,Bartekova M.Mechanistic insight into the role of cardiac-enriched microRNAs in diabetic heart injury.Am J Physiol Heart Circ Physiol2025;328:H865-84 PMCID:PMC12069993
|
| [149] |
Copier CU,Fernández M,Calligaris SD.Circulating miR-19b and miR-181b are potential biomarkers for diabetic cardiomyopathy.Sci Rep2017;7:13514 PMCID:PMC5647433
|
| [150] |
Zhu H.MicroRNA biomarkers of type 2 diabetes: evidence synthesis from meta-analyses and pathway modelling.Diabetologia2023;66:288-99 PMCID:PMC9807484
|
| [151] |
Bielska A,Kretowski A.Recent highlights of research on miRNAs as early potential biomarkers for cardiovascular complications of type 2 diabetes mellitus.Int J Mol Sci2021;22:3153 PMCID:PMC8003798
|
| [152] |
de Gonzalo-Calvo D,Rijzewijk LJ.Serum microRNA-1 and microRNA-133a levels reflect myocardial steatosis in uncomplicated type 2 diabetes.Sci Rep2017;7:47 PMCID:PMC5428350
|
| [153] |
Kuschnerus K,Müller MF,Landmesser U.Increased expression of miR-483-3p impairs the vascular response to injury in type 2 diabetes.Diabetes2019;68:349-60
|
| [154] |
Jin ZQ.MicroRNA targets and biomarker validation for diabetes-associated cardiac fibrosis.Pharmacol Res2021;174:105941
|
| [155] |
Liu S,Xu M,Wang J.Micro-RNA 21Targets dual specific phosphatase 8 to promote collagen synthesis in high glucose-treated primary cardiac fibroblasts.Can J Cardiol2014;30:1689-99
|
| [156] |
Maiocchi S,Peterson AR.Plasma microrna quantification protocol.Vessel Plus2023;7:27 PMCID:PMC10914336
|
| [157] |
Cabrera-Becerra SE,García-Rubio VG.siRNA knockdown of angiopoietin 2 significantly reduces neovascularization in diabetic rats.J Drug Target2022;30:673-86
|
| [158] |
Waghode P,Choudhary D,Joshi G.Small interfering RNA (siRNA) as a potential gene silencing strategy for diabetes and associated complications: challenges and future perspectives.J Diabetes Metab Disord2024;23:365-83 PMCID:PMC11196550
|
| [159] |
Zhao Q,Huang S.The insulin-like growth factor binding protein-microfibrillar associated protein-sterol regulatory element binding protein axis regulates fibroblast-myofibroblast transition and cardiac fibrosis.Br J Pharmacol2024;181:2492-508
|
| [160] |
Song SE,Kim JY,Kim JR.IGFBP5 mediates high glucose-induced cardiac fibroblast activation.J Mol Endocrinol2013;50:291-303
|
| [161] |
Cao L,Wang X.Integrative Single-cell and spatial transcriptomics reveal functional and spatial heterogeneity of atrial and ventricular cardiomyocytes in the heart.Mol Biotechnol2025;
|
| [162] |
Han S,Du Y.Single-cell spatial transcriptomics in cardiovascular development, disease, and medicine.Genes Dis2024;11:101163 PMCID:PMC11367031
|
| [163] |
Wang X,Liang C,Wu G.ETS1-THBS1 axis regulates macrophage polarization and exacerbates myocardial injury in diabetic cardiomyopathy.J Cardiovasc Pharmacol2025;
|
| [164] |
Sun J,Liu M.The role of myocardial fibrosis in the diabetic cardiomyopathy.Diabetol Metab Syndr2025;17:242 PMCID:PMC12186413
|
| [165] |
Tuleta I.Fibrosis of the diabetic heart: clinical significance, molecular mechanisms, and therapeutic opportunities.Adv Drug Deliv Rev2021;176:113904 PMCID:PMC8444077
|
| [166] |
Vistnes M.Hitting the Target! Challenges and opportunities for TGF-β inhibition for the treatment of cardiac fibrosis.Pharmaceuticals2024;17:267 PMCID:PMC10975989
|
| [167] |
Lezoualc’h F,Baker H.Diabetic cardiomyopathy: the need for adjusting experimental models to meet clinical reality.Cardiovasc Res2023;119:1130-45
|
| [168] |
Prakoso D,Tate M.Current landscape of preclinical models of diabetic cardiomyopathy.Trends Pharmacol Sci2022;43:940-56
|