Immunology of atherosclerosis: problems and prospects of immunotherapy

Stanislav Kotlyarov

Vessel Plus ›› 2025, Vol. 9 ›› Issue (1) : 10

PDF
Vessel Plus ›› 2025, Vol. 9 ›› Issue (1) :10 DOI: 10.20517/2574-1209.2025.40
Review

Immunology of atherosclerosis: problems and prospects of immunotherapy

Author information +
History +
PDF

Abstract

Atherosclerosis is one of the key problems of modern society. A growing body of evidence suggests that atherosclerosis is not only a metabolic but also an immune disease with local and systemic mechanisms. Dyslipidemia, local disturbances in vascular hemodynamics, and inflammation in the vascular wall involving various immune and non-immune cells such as endothelial and smooth muscle cells, are thought to be important for the development of atherosclerosis. In this context, there is a growing clinical and research interest in the possibility of therapeutically targeting different immune mechanisms. The aim of the current review is to discuss recent advances in understanding the immune mechanisms of atherogenesis and the challenges and prospects for immunotherapy of atherosclerosis.

Keywords

Atherosclerosis / immunotherapy / vaccination / immune cells / cytokines / lipid mediators / monoclonal antibodies

Cite this article

Download citation ▾
Stanislav Kotlyarov. Immunology of atherosclerosis: problems and prospects of immunotherapy. Vessel Plus, 2025, 9(1): 10 DOI:10.20517/2574-1209.2025.40

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ceasovschih A,Dimitriadis K.Coronary artery thromboembolism as a cause of myocardial infarction with non-obstructive coronary arteries (MINOCA).Hellenic J Cardiol2024;79:70-83

[2]

Nedkoff L,Zemedikun D,Wright FL.Global trends in atherosclerotic cardiovascular disease.Clin Ther2023;45:1087-91

[3]

Chen W,Zhao Y,Huang R.Global and national burden of atherosclerosis from 1990 to 2019: trend analysis based on the Global Burden of Disease Study 2019.Chin Med J2023;136:2442-50

[4]

Roy P,Ley K.How the immune system shapes atherosclerosis: roles of innate and adaptive immunity.Nat Rev Immunol2022;22:251-65 PMCID:PMC10111155

[5]

Wolf D.Immunity and Inflammation in Atherosclerosis.Circ Res2019;124:315-27 PMCID:PMC6342482

[6]

Fredman G,Proto JD.An imbalance between specialized pro-resolving lipid mediators and pro-inflammatory leukotrienes promotes instability of atherosclerotic plaques.Nat Commun2016;7:12859 PMCID:PMC5036151

[7]

Lubrano V,Balzan S.Classes of lipid mediators and their effects on vascular inflammation in atherosclerosis.Int J Mol Sci2023;24:1637 PMCID:PMC9863938

[8]

Kong P,Huang XF,Guo RJ.Inflammation and atherosclerosis: signaling pathways and therapeutic intervention.Signal Transduct Target Ther2022;7:131 PMCID:PMC9033871

[9]

Hou P,Liu Z.Macrophage polarization and metabolism in atherosclerosis.Cell Death Dis2023;14:691 PMCID:PMC10589261

[10]

Gusev E.Atherosclerosis and inflammation: insights from the theory of general pathological processes.Int J Mol Sci2023;24:7910 PMCID:PMC10178362

[11]

Snijckers RPM.Adaptive immunity and atherosclerosis: aging at its crossroads.Front Immunol2024;15:1350471 PMCID:PMC11056569

[12]

Ley K.Role of the adaptive immune system in atherosclerosis.Biochem Soc Trans2020;48:2273-81 PMCID:PMC7863745

[13]

Yoshizumi M,Tsuchiya K,Tamaki T.Stress and vascular responses: atheroprotective effect of laminar fluid shear stress in endothelial cells: possible role of mitogen-activated protein kinases.J Pharmacol Sci2003;91:172-6

[14]

Traub O.Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force.Arterioscler Thromb Vasc Biol1998;18:677-85

[15]

Meng Q,Qi M.Laminar shear stress inhibits inflammation by activating autophagy in human aortic endothelial cells through HMGB1 nuclear translocation.Commun Biol2022;5:425 PMCID:PMC9076621

[16]

Nigro P,Berk BC.Flow shear stress and atherosclerosis: a matter of site specificity.Antioxid Redox Signal2011;15:1405-14 PMCID:PMC3144425

[17]

Roux E,Dufourcq P.Fluid shear stress sensing by the endothelial layer.Front Physiol2020;11:861 PMCID:PMC7396610

[18]

Annink ME,Stroes ESG.Moving from lipids to leukocytes: inflammation and immune cells in atherosclerosis.Front Cell Dev Biol2024;12:1446758 PMCID:PMC11330886

[19]

Wojciak-Stothard B.Shear stress-induced endothelial cell polarization is mediated by Rho and Rac but not Cdc42 or PI 3-kinases.J Cell Biol2003;161:429-39 PMCID:PMC2172912

[20]

Janaszak-Jasiecka A,Wierońska JM,Kalinowski L.Endothelial dysfunction due to eNOS uncoupling: molecular mechanisms as potential therapeutic targets.Cell Mol Biol Lett2023;28:21 PMCID:PMC9996905

[21]

Tran N,Aniqa M,Ally A.Endothelial nitric oxide synthase (eNOS) and the cardiovascular system: in physiology and in disease states.Am J Biomed Sci Res2022;15:153-77 PMCID:PMC8774925

[22]

Cyr AR,Shiva SS.Nitric oxide and endothelial dysfunction.Crit Care Clin2020;36:307-21 PMCID:PMC9015729

[23]

Shao Y,Yang WY.Vascular endothelial cells and innate immunity.Arterioscler Thromb Vasc Biol2020;40:e138-52

[24]

Mai J,Shen J,Yang XF.An evolving new paradigm: endothelial cells-conditional innate immune cells.J Hematol Oncol2013;6:61 PMCID:PMC3765446

[25]

Salvador B,Francisco S.Modulation of endothelial function by Toll like receptors.Pharmacol Res2016;108:46-56

[26]

Deravi N,Pirzadeh M.The Yin and Yang of toll-like receptors in endothelial dysfunction.Int Immunopharmacol2022;108:108768

[27]

Bolanle IO,Weinberg PD.Transcytosis of LDL across arterial endothelium: mechanisms and therapeutic targets.Arterioscler Thromb Vasc Biol2025;45:468-80 PMCID:PMC11936472

[28]

Zhang X.Transport of LDLs into the arterial wall: impact in atherosclerosis.Curr Opin Lipidol2020;31:279-85 PMCID:PMC7951609

[29]

Mestas J.Monocyte-endothelial cell interactions in the development of atherosclerosis.Trends Cardiovasc Med2008;18:228-32 PMCID:PMC2650852

[30]

Giachini FR,Carneiro FS.Interleukin-10 attenuates vascular responses to endothelin-1 via effects on ERK1/2-dependent pathway.Am J Physiol Heart Circ Physiol2009;296:H489-96 PMCID:PMC2643883

[31]

Shao Y,Li X,Wang H.Immunosuppressive/anti-inflammatory cytokines directly and indirectly inhibit endothelial dysfunction--a novel mechanism for maintaining vascular function.J Hematol Oncol2014;7:80 PMCID:PMC4236671

[32]

Desantis V,Sgarra L.microRNAs as biomarkers of endothelial dysfunction and therapeutic target in the pathogenesis of atrial fibrillation.Int J Mol Sci2023;24:5307 PMCID:PMC10049145

[33]

Nemecz M,Tanko G.Role of MicroRNA in endothelial dysfunction and hypertension.Curr Hypertens Rep2016;18:87 PMCID:PMC7102349

[34]

Bickford JS,Nick JA.Endothelin-1-mediated vasoconstriction alters cerebral gene expression in iron homeostasis and eicosanoid metabolism.Brain Res2014;1588:25-36

[35]

Li D,Xiong Q.MicroRNA-125a/b-5p inhibits endothelin-1 expression in vascular endothelial cells.J Hypertens2010;28:1646-54

[36]

Rae GA,de Nucci G.Endothelin-1 releases eicosanoids from rabbit isolated perfused kidney and spleen.J Cardiovasc Pharmacol1989;13 Suppl 5:S89-92

[37]

Bobryshev YV,Chistiakov DA,Orekhov AN.Macrophages and their role in atherosclerosis: pathophysiology and transcriptome analysis.Biomed Res Int2016;2016:9582430 PMCID:PMC4967433

[38]

Chen S,Liu Q.Macrophages in immunoregulation and therapeutics.Signal Transduct Target Ther2023;8:207 PMCID:PMC10200802

[39]

Strizova Z,Bartolini R.M1/M2 macrophages and their overlaps - myth or reality?.Clin Sci2023;137:1067-93 PMCID:PMC10407193

[40]

den Bossche J, O'Neill LA, Menon D. Macrophage immunometabolism: where are we (going)?.Trends Immunol2017;38:395-406

[41]

Liu Y,Gu H.Metabolic reprogramming in macrophage responses.Biomark Res2021;9:1 PMCID:PMC7786975

[42]

Liu N,Sun Y,Guo S.Macrophage origin, phenotypic diversity, and modulatory signaling pathways in the atherosclerotic plaque microenvironment.Vessel Plus2021;5:43

[43]

Nishida S,Senokuchi T.Inhibition of inflammation-mediated DPP-4 expression by linagliptin increases M2 macrophages in atherosclerotic lesions.Biochem Biophys Res Commun2020;524:8-15

[44]

Xu R,Wu Y.Role of KCa3.1 channels in macrophage polarization and its relevance in atherosclerotic plaque instability.Arterioscler Thromb Vasc Biol2017;37:226-36

[45]

Bruen R,Kajani S.Liraglutide attenuates preestablished atherosclerosis in apolipoprotein E-deficient mice via regulation of immune cell phenotypes and proinflammatory mediators.J Pharmacol Exp Ther2019;370:447-58

[46]

Wang F,Fang A.Macrophage foam cell-targeting immunization attenuates atherosclerosis.Front Immunol2018;9:3127 PMCID:PMC6335275

[47]

Qiu S,Chen J.Targeted delivery of MerTK protein via cell membrane engineered nanoparticle enhances efferocytosis and attenuates atherosclerosis in diabetic ApoE-/- mice.J Nanobiotechnol2024;22:178 PMCID:PMC11015613

[48]

Sun L,Zhao Y.Dendritic cells and T cells, partners in atherogenesis and the translating road ahead.Front Immunol2020;11:1456 PMCID:PMC7403484

[49]

Gotsman I,Lichtman AH.T-cell costimulation and coinhibition in atherosclerosis.Circ Res2008;103:1220-31 PMCID:PMC2662382

[50]

Aukrust P,Yndestad A.The complex role of T-cell-based immunity in atherosclerosis.Curr Atheroscler Rep2008;10:236-43

[51]

Li N.CD4+ T cells in atherosclerosis: regulation by platelets.Thromb Haemost2013;109:980-90

[52]

Sasaki N,Takeda M.Regulatory T cells in atherogenesis.J Atheroscler Thromb2012;19:503-15

[53]

van Duijn J,Benne N.CD8+ T-cells contribute to lesion stabilization in advanced atherosclerosis by limiting macrophage content and CD4+ T-cell responses.Cardiovasc Res2019;115:729-38

[54]

Kyaw T,Bobik A.Protective role of natural IgM-producing B1a cells in atherosclerosis.Trends Cardiovasc Med2012;22:48-53

[55]

Nus M,Mallat Z.Plan B (-cell) in atherosclerosis.Eur J Pharmacol2017;816:76-81

[56]

Hamze M,Guglielmi P.[B lymphocytes: a promising target to treat atherosclerosis?].Med Sci2014;30:874-81

[57]

Perry HM,McNamara CA.B cell subsets in atherosclerosis.Front Immunol2012;3:373 PMCID:PMC3518786

[58]

Douna H,Schaftenaar FH.Bidirectional effects of IL-10+ regulatory B cells in Ldlr-/- mice.Atherosclerosis2019;280:118-25

[59]

Sage AP.Multiple potential roles for B cells in atherosclerosis.Ann Med2014;46:297-303

[60]

Tay C,Hosseini H.B cell and CD4 T cell interactions promote development of atherosclerosis.Front Immunol2019;10:3046 PMCID:PMC6965321

[61]

Leeuwen M, Damoiseaux J, Duijvestijn A, Tervaert JW. The therapeutic potential of targeting B cells and anti-oxLDL antibodies in atherosclerosis.Autoimmun Rev2009;9:53-7

[62]

Tay C,Kanellakis P.Follicular B cells promote atherosclerosis via T cell-mediated differentiation into plasma cells and secreting pathogenic immunoglobulin G.Arterioscler Thromb Vasc Biol2018;38:e71-84

[63]

Ma SD,Galkina EV.Functional role of B cells in atherosclerosis.Cells2021;10:270 PMCID:PMC7911276

[64]

Tsiantoulas D,Mallat Z.Targeting B cells in atherosclerosis: closing the gap from bench to bedside.Arterioscler Thromb Vasc Biol2015;35:296-302

[65]

Harrison J,Jiang W.Marginal zone B cells produce 'natural' atheroprotective IgM antibodies in a T cell-dependent manner.Cardiovasc Res2024;120:318-28 PMCID:PMC10939463

[66]

Nus M,Lu Y.Marginal zone B cells control the response of follicular helper T cells to a high-cholesterol diet.Nat Med2017;23:601-10

[67]

Ransegnola BP,McNamara CA.Tipping the scale: atheroprotective IgM-producing B cells in atherosclerosis.Arterioscler Thromb Vasc Biol2024;44:1906-15 PMCID:PMC11338718

[68]

Mulholland M,Katra P.LAG3 regulates T cell activation and plaque infiltration in atherosclerotic mice.JACC CardioOncol2022;4:635-45 PMCID:PMC9830219

[69]

Pryshchep S,Parashar S.Insufficient deactivation of the protein tyrosine kinase lck amplifies T-cell responsiveness in acute coronary syndrome.Circ Res2010;106:769-78 PMCID:PMC2859828

[70]

Singh P, Kashyap A, Silakari O. Exploration of the therapeutic aspects of Lck: a kinase target in inflammatory mediated pathological conditions.Biomed Pharmacother2018;108:1565-71

[71]

Luo T,Xi D.Lck inhibits heat shock protein 65-mediated reverse cholesterol transport in T cells.J Immunol2016;197:3861-70

[72]

Liu J,Zhang Y.LCK inhibitor attenuates atherosclerosis in ApoE-/- mice via regulating T cell differentiation and reverse cholesterol transport.J Mol Cell Cardiol2020;139:87-97

[73]

Karadimou G,Gallina AL.Treatment with a Toll-like Receptor 7 ligand evokes protective immunity against atherosclerosis in hypercholesterolaemic mice.J Intern Med2020;288:321-34

[74]

Kyaw T,Tay C.BAFF receptor mAb treatment ameliorates development and progression of atherosclerosis in hyperlipidemic ApoE-/- mice.PLoS One2013;8:e60430 PMCID:PMC3616162

[75]

Zhao TX,Sage AP.Rituximab in patients with acute ST-elevation myocardial infarction: an experimental medicine safety study.Cardiovasc Res2022;118:872-82 PMCID:PMC8859640

[76]

Tsioulos G,Skourtis A.Vaccination as a promising approach in cardiovascular risk mitigation: are we ready to embrace a vaccine strategy?.Biomolecules2024;14:1637 PMCID:PMC11727084

[77]

Taylor JA,Gearhart PJ.Antibodies in action: the role of humoral immunity in the fight against atherosclerosis.Immun Ageing2022;19:59 PMCID:PMC9717479

[78]

Kovanen PT,Palosuo T,Aho K.Prediction of myocardial infarction in dyslipidemic men by elevated levels of immunoglobulin classes A, E, and G, but not M.Arch Intern Med1998;158:1434-9

[79]

Khamis RY,Caga-Anan M.High serum immunoglobulin G and M levels predict freedom from adverse cardiovascular events in hypertension: a nested case-control substudy of the anglo-scandinavian cardiac outcomes trial.EBioMedicine2016;9:372-80 PMCID:PMC4972545

[80]

Moffett HF,Fitzpatrick KS,Boonyaratanakornkit J.B cells engineered to express pathogen-specific antibodies protect against infection.Sci Immunol2019;4:eaax0644 PMCID:PMC6913193

[81]

Libby P.Interleukin-1 beta as a target for atherosclerosis therapy: biological basis of CANTOS and beyond.J Am Coll Cardiol2017;70:2278-89 PMCID:PMC5687846

[82]

Mai W.Targeting IL-1β in the treatment of atherosclerosis.Front Immunol2020;11:589654 PMCID:PMC7758244

[83]

Weber A,Kracht M.Interleukin-1beta (IL-1beta) processing pathway.Sci Signal2010;3:cm2

[84]

Dinarello CA.Immunological and inflammatory functions of the interleukin-1 family.Annu Rev Immunol2009;27:519-50

[85]

Abbate A,Biondi-Zoccai GG.Blocking interleukin-1 as a novel therapeutic strategy for secondary prevention of cardiovascular events.BioDrugs2012;26:217-33

[86]

Xue Y,Hu X.Macrophages regulate vascular smooth muscle cell function during atherosclerosis progression through IL-1β/STAT3 signaling.Commun Biol2022;5:1316 PMCID:PMC9715630

[87]

Vromman A,Shvartz E.Stage-dependent differential effects of interleukin-1 isoforms on experimental atherosclerosis.Eur Heart J2019;40:2482-91 PMCID:PMC6685323

[88]

Cheng CY,Lin CC,Yang CM.IL-1beta induces expression of matrix metalloproteinase-9 and cell migration via a c-Src-dependent, growth factor receptor transactivation in A549 cells.Br J Pharmacol2010;160:1595-610 PMCID:PMC2936833

[89]

Furuyama A,Mochitate K.Interleukin-1beta and tumor necrosis factor-alpha have opposite effects on fibroblasts and epithelial cells during basement membrane formation.Matrix Biol2008;27:429-40

[90]

Aday AW.Antiinflammatory therapy in clinical care: the CANTOS trial and beyond.Front Cardiovasc Med2018;5:62 PMCID:PMC5996084

[91]

Ku EJ,Lee JI.The anti-atherosclerosis effect of anakinra, a recombinant human interleukin-1 receptor antagonist, in apolipoprotein E knockout mice.Int J Mol Sci2022;23:4906 PMCID:PMC9104865

[92]

Harouki N,Remy-Jouet I.The IL-1β antibody gevokizumab limits cardiac remodeling and coronary dysfunction in rats with heart failure.JACC Basic Transl Sci2017;2:418-30 PMCID:PMC6034492

[93]

Roubille F,Shi Y.The interleukin-1β modulator gevokizumab reduces neointimal proliferation and improves reendothelialization in a rat carotid denudation model.Atherosclerosis2014;236:277-85

[94]

Coll RC,Chae JJ.A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases.Nat Med2015;21:248-55 PMCID:PMC4392179

[95]

Zeng W,Sun Y.The selective NLRP3 inhibitor MCC950 hinders atherosclerosis development by attenuating inflammation and pyroptosis in macrophages.Sci Rep2021;11:19305 PMCID:PMC8481539

[96]

Romero A,Valencia I.Pharmacological blockade of NLRP3 inflammasome/IL-1β-positive loop mitigates endothelial cell senescence and dysfunction.Aging Dis2022;13:284-97

[97]

Feng H,Zhu F.Design, synthesis and biological evaluation of sulfonylurea derivatives as NLRP3 inflammasome inhibitors.Bioorg Med Chem Lett2024;114:129987

[98]

Gatlik E,Voltz E.First-in-human safety, tolerability, and pharmacokinetic results of DFV890, an oral low-molecular-weight NLRP3 inhibitor.Clin Transl Sci2024;17:e13789 PMCID:PMC11101992

[99]

Novartis Pharmaceuticals. A study to investigate the efficacy, safety, and tolerability of DFV890 for inflammatory marker reduction in adult participants with coronary heart disease and elevated hsCRP; 2025. Available from: https://clinicaltrials.gov/study/NCT06031844 [Last accessed on 31 Jul 2025]

[100]

Ye B,Liang X.Emodin suppresses NLRP3/GSDMD-induced inflammation via the TLR4/MyD88/NF-κB signaling pathway in atherosclerosis.Cardiovasc Drugs Ther2024;Online ahead of print

[101]

Huang Y,Chen Y.Tranilast directly targets NLRP3 to treat inflammasome-driven diseases.EMBO Mol Med2018;10:e8689 PMCID:PMC5887903

[102]

Chen S,Pan Y.Novel role for tranilast in regulating NLRP3 ubiquitination, vascular inflammation, and atherosclerosis.J Am Heart Assoc2020;9:e015513

[103]

Vrints C,Koskinas KC.2024 ESC guidelines for the management of chronic coronary syndromes.Eur Heart J2024;45:3415-537

[104]

Fiolet ATL,Mosterd A.Efficacy and safety of low-dose colchicine in patients with coronary disease: a systematic review and meta-analysis of randomized trials.Eur Heart J2021;42:2765-75

[105]

Opstal TSJ,Fiolet ATL.Long-term efficacy of colchicine in patients with chronic coronary disease: insights from LoDoCo2.Circulation2022;145:626-8

[106]

Nidorf SM,Mosterd A.Colchicine in patients with chronic coronary disease.N Engl J Med2020;383:1838-47

[107]

Tardif JC,Waters DD.Efficacy and safety of low-dose colchicine after myocardial infarction.N Engl J Med2019;381:2497-505

[108]

Feng Y,Wang Z.The role of interleukin-6 family members in cardiovascular diseases.Front Cardiovasc Med2022;9:818890

[109]

Reiss AB,De Leon J.Interleukin-6 in atherosclerosis: atherogenic or atheroprotective?.Clin Lipidol2017;12:14-23Available from: https://www.tandfonline.com/doi/full/10.1080/17584299.2017.1319787#abstract [Last accessed on 1 Aug 2025]

[110]

Fraser A,Lowe G.Interleukin-6 and incident coronary heart disease: results from the British Women's Heart and Health Study.Atherosclerosis2009;202:567-72

[111]

Amar J,Drouet L.Interleukin 6 is associated with subclinical atherosclerosis: a link with soluble intercellular adhesion molecule 1.J Hypertens2006;24:1083-8

[112]

Cau R.Interlinking pathways: a narrative review on the role of IL-6 in cancer and atherosclerosis.Cardiovasc Diagn Ther2024;14:1186-201 PMCID:PMC11707487

[113]

Feng M,Zhang W.Interleukin-6 enhances matrix metalloproteinase-14 expression via the RAF-mitogen-activated protein kinase kinase-extracellular signal-regulated kinase 1/2-activator protein-1 pathway.Clin Exp Pharmacol Physiol2010;37:162-6

[114]

Akita K,Sato-Okabayashi Y.An interleukin-6 receptor antibody suppresses atherosclerosis in atherogenic mice.Front Cardiovasc Med2017;4:84 PMCID:PMC5743912

[115]

Papastamos C,Simantiris S.Interleukin-6 signaling in atherosclerosis: from molecular mechanisms to clinical outcomes.Curr Top Med Chem2023;23:2172-83

[116]

Ou G,Yao K.Exploring the therapeutic potential of interleukin-6 receptor blockade in cardiovascular disease treatment through Mendelian randomization.Sci Rep2024;14:21452 PMCID:PMC11399143

[117]

Kim SC,Rogers JR.Cardiovascular safety of tocilizumab versus tumor necrosis factor inhibitors in patients with rheumatoid arthritis: a multi-database cohort study.Arthritis Rheumatol2017;69:1154-64 PMCID:PMC5573926

[118]

Ruiz-Limón P,Arias de la Rosa I.Tocilizumab improves the proatherothrombotic profile of rheumatoid arthritis patients modulating endothelial dysfunction, NETosis, and inflammation.Transl Res2017;183:87-103

[119]

Bacchiega BC,Usnayo MJ,Singh G.Interleukin 6 inhibition and coronary artery disease in a high-risk population: a prospective community-based clinical study.J Am Heart Assoc2017;6:e005038

[120]

Ridker PM,Baeres FMM.IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE): a double-blind, randomised, placebo-controlled, phase 2 trial.Lancet2021;397:2060-9

[121]

Wada Y,Meyer ASP,Honda H.Efficacy and safety of interleukin-6 inhibition with ziltivekimab in patients at high risk of atherosclerotic events in Japan (RESCUE-2): a randomized, double-blind, placebo-controlled, phase 2 trial.J Cardiol2023;82:279-85

[122]

McKellar GE,Sattar N.Role for TNF in atherosclerosis? Lessons from autoimmune disease.Nat Rev Cardiol2009;6:410-7

[123]

Prasongsukarn K,Chartburus P.Phenotypic alterations in human saphenous vein culture induced by tumor necrosis factor-alpha and lipoproteins: a preliminary development of an initial atherosclerotic plaque model.Lipids Health Dis2013;12:132

[124]

Brånén L,Nitulescu M,Nilsson J.Inhibition of tumor necrosis factor-alpha reduces atherosclerosis in apolipoprotein E knockout mice.Arterioscler Thromb Vasc Biol2004;24:2137-42

[125]

Tsioufis P,Tsioufis K.The impact of cytokines in coronary atherosclerotic plaque: current therapeutic approaches.Int J Mol Sci2022;23:15937 PMCID:PMC9788180

[126]

Boesten LS,van Nieuwkoop A.Tumor necrosis factor-alpha promotes atherosclerotic lesion progression in APOE*3-Leiden transgenic mice.Cardiovasc Res2005;66:179-85

[127]

Bian N,Ip MF,Chang Q.Pituitary adenylate cyclase-activating polypeptide attenuates tumor necrosis factor-α-induced apoptosis in endothelial colony-forming cells.Biomed Rep2017;7:11-6 PMCID:PMC5492523

[128]

Missiou A,Varo N.Tumor necrosis factor receptor-associated factor 1 (TRAF1) deficiency attenuates atherosclerosis in mice by impairing monocyte recruitment to the vessel wall.Circulation2010;121:2033-44

[129]

Lei L,Chen J.TNF-alpha stimulates the ACAT1 expression in differentiating monocytes to promote the CE-laden cell formation.J Lipid Res2009;50:1057-67

[130]

Chen C.Oxidized low-density lipoprotein contributes to atherogenesis via co-activation of macrophages and mast cells.PLoS One2015;10:e0123088 PMCID:PMC4374860

[131]

Minno MN, Iervolino S, Peluso R, Scarpa R, Di Minno G; CaRRDs study group. Carotid intima-media thickness in psoriatic arthritis: differences between tumor necrosis factor-α blockers and traditional disease-modifying antirheumatic drugs.Arterioscler Thromb Vasc Biol2011;31:705-12

[132]

Ahlehoff O,Gislason G.Cardiovascular disease event rates in patients with severe psoriasis treated with systemic anti-inflammatory drugs: a Danish real-world cohort study.J Intern Med2013;273:197-204

[133]

Jacobsson LTH,Gülfe A.Treatment with tumor necrosis factor blockers is associated with a lower incidence of first cardiovascular events in patients with rheumatoid arthritis.J Rheumatol2005;32:1213-8

[134]

Greenberg JD,Curtis JR.Tumour necrosis factor antagonist use and associated risk reduction of cardiovascular events among patients with rheumatoid arthritis.Ann Rheum Dis2011;70:576-82

[135]

Medler J,Wajant H.Tumor necrosis factor receptor 2 (TNFR2): an emerging target in cancer therapy.Cancers2022;14:2603 PMCID:PMC9179537

[136]

Lainez B,Romero X.Identification and characterization of a novel spliced variant that encodes human soluble tumor necrosis factor receptor 2.Int Immunol2004;16:169-77

[137]

Kim HL,An JN.Soluble tumor necrosis factor receptors and arterial stiffness in patients with coronary atherosclerosis.Am J Hypertens2017;30:313-8

[138]

Iversen PL,Kipshidze N.A novel therapeutic vaccine targeting the soluble TNFα receptor II to limit the progression of cardiovascular disease: AtheroVax™.Front Cardiovasc Med2023;10:1206541 PMCID:PMC10392828

[139]

Mahmoudi M,Mahmoudi MJ.Defective T-cell proliferation and IL-2 production in a subgroup of patients with coronary artery disease.Iran J Allergy Asthma Immunol2010;9:133-40

[140]

Ross SH.Signaling and function of interleukin-2 in T lymphocytes.Annu Rev Immunol2018;36:411-33

[141]

Elkind MS,Sciacca RR.Interleukin-2 levels are associated with carotid artery intima-media thickness.Atherosclerosis2005;180:181-7

[142]

Fisman EZ,Tenenbaum A.Biomarkers in cardiovascular diabetology: interleukins and matrixins. In: Fisman E, Tenenbaum A, editors. Cardiovascular Diabetology: Clinical, Metabolic and Inflammatory Facets. Basel: KARGER; 2008. pp. 44-64.

[143]

Ding R,Ostrodci DH.Effect of interleukin-2 level and genetic variants on coronary artery disease.Inflammation2013;36:1225-31

[144]

Dinh TN,Kanellakis P.Cytokine therapy with interleukin-2/anti-interleukin-2 monoclonal antibody complexes expands CD4+CD25+Foxp3+ regulatory T cells and attenuates development and progression of atherosclerosis.Circulation2012;126:1256-66

[145]

Mulholland M,Lei Y.IL-2Rβγ signalling in lymphocytes promotes systemic inflammation and reduces plasma cholesterol in atherosclerotic mice.Atherosclerosis2021;326:1-10

[146]

Zhao TX,Mallat Z.2019 ATVB plenary lecture: interleukin-2 therapy in cardiovascular disease: the potential to regulate innate and adaptive immunity.Arterioscler Thromb Vasc Biol2020;40:853-64

[147]

Sriranjan R,Tarkin J.Low-dose interleukin 2 for the reduction of vascular inflammation in acute coronary syndromes (IVORY): protocol and study rationale for a randomised, double-blind, placebo-controlled, phase II clinical trial.BMJ Open2022;12:e062602 PMCID:PMC9558794

[148]

Zhou P.Emerging mechanisms and applications of low-dose IL-2 therapy in autoimmunity.Cytokine Growth Factor Rev2022;67:80-8

[149]

Case A,Sriranjan R.The effect of low-dose interleukin-2 on the T cell receptor landscape in patients with acute myocardial infarction.Atherosclerosis2024;395:118476

[150]

Zhao TX,Griffiths C.Low-dose interleukin-2 in patients with stable ischaemic heart disease and acute coronary syndromes (LILACS): protocol and study rationale for a randomised, double-blind, placebo-controlled, phase I/II clinical trial.BMJ Open2018;8:e022452 PMCID:PMC6144322

[151]

Kobayashi T,Matsumoto M.Roles of thromboxane A2 and prostacyclin in the development of atherosclerosis in apoE-deficient mice.J Clin Invest2004;114:784-94

[152]

van den Borne P,Bovens SM.Leukotriene B4 levels in human atherosclerotic plaques and abdominal aortic aneurysms.PLoS One2014;9:e86522 PMCID:PMC3903534

[153]

Jala VR.Leukotrienes and atherosclerosis: new roles for old mediators.Trends Immunol2004;25:315-22

[154]

Bäck M.Leukotriene signaling in atherosclerosis and ischemia.Cardiovasc Drugs Ther2009;23:41-8 PMCID:PMC2663527

[155]

Sansbury BE.Resolution of acute inflammation and the role of resolvins in immunity, thrombosis, and vascular biology.Circ Res2016;119:113-30 PMCID:PMC5260827

[156]

Wang YF,Hu ZP.Decreased plasma lipoxin A4, resolvin D1, protectin D1 are correlated with the complexity and prognosis of coronary heart disease: a retrospective cohort study.Prostaglandins Other Lipid Mediat2025;178:106990

[157]

Chandrasekharan JA.Lipoxins: nature's way to resolve inflammation.J Inflamm Res2015;8:181-92 PMCID:PMC4598198

[158]

Li Y,Guo S.Targeting proprotein convertase subtilisin/Kexin type 9 (PCSK9) for lipid-lowering.Chin Pharm J2023;58:2228-34

[159]

Jeswani BM,Rathore SS,Bhatheja R.PCSK9 inhibitors: the evolving future.Health Sci Rep2024;7:e70174 PMCID:PMC11522611

[160]

Fitzgerald G.PCSK9 inhibitors and LDL reduction: pharmacology, clinical implications, and future perspectives.Expert Rev Cardiovasc Ther2018;16:567-78

[161]

Ding Z,Goel A,Mehta JL.PCSK9 and inflammation: role of shear stress, pro-inflammatory cytokines, and LOX-1.Cardiovasc Res2020;116:908-15

[162]

Mohyeldin M,Mustafa AM.Proprotein convertase subtilisin/kexin type 9 inhibitors in peripheral artery disease: a review of efficacy, safety, and outcomes.World J Cardiol2024;16:397-401 PMCID:PMC11287456

[163]

Keech AC,Sever PS.Efficacy and safety of long-term evolocumab use among asian subjects - a subgroup analysis of the further cardiovascular outcomes research with PCSK9 inhibition in subjects with elevated risk (FOURIER) trial.Circ J2021;85:2063-70

[164]

Basutkar RS,Siva H,Ponnusankar S.Evolocumab in combination with statins for CVD risk reduction: an evidential review.J Cardiovasc Dis Res2018;9:45-53

[165]

Liang D,Tu Y,Zhang M.Additive effects of ezetimibe, evolocumab, and alirocumab on plaque burden and lipid content as assessed by intravascular ultrasound: a PRISMA-compliant meta-analysis.Medicine2022;101:e31199

[166]

Murín J.[What has the GLAGOV clinical study shown?].Vnitr Lek2017;63:329-32

[167]

Kong Q,Li Y,Su G.Effect of evolocumab on the progression and stability of atherosclerotic plaques as evaluated by grayscale and iMAP-IVUS.Ann Palliat Med2020;9:3078-88

[168]

Olivares-García JD,Meráz-Martínez M.Efecto del tratamiento combinado de estatinas y evolocumab en pacientes con enfermedad arterial periférica.Rev Mex Angiol2023;51:85-92

[169]

Pouwer MG,Worms N.Alirocumab, evinacumab, and atorvastatin triple therapy regresses plaque lesions and improves lesion composition in mice.J Lipid Res2020;61:365-75

[170]

Marfella R,Sardu C.Evidence of an anti-inflammatory effect of PCSK9 inhibitors within the human atherosclerotic plaque.Atherosclerosis2023;378:117180

[171]

Zhang Y,Hong L.Inclisiran: a new generation of lipid-lowering siRNA therapeutic.Front Pharmacol2023;14:1260921 PMCID:PMC10611522

[172]

Tsouka AN,Tselepis AD.Pharmacology of PCSK9 inhibitors: current status and future perspectives.Curr Pharm Des2018;24:3622-33

[173]

Graham MJ,Whipple CP.Antisense inhibition of proprotein convertase subtilisin/kexin type 9 reduces serum LDL in hyperlipidemic mice.J Lipid Res2007;48:763-7

[174]

Barter PJ,Chapman MJ,Rader DJ.Cholesteryl ester transfer protein: a novel target for raising HDL and inhibiting atherosclerosis.Arterioscler Thromb Vasc Biol2003;23:160-7

[175]

Barter P.Lessons learned from the investigation of lipid level management to understand its impact in atherosclerotic events (ILLUMINATE) trial.Am J Cardiol2009;104:10E-5E

[176]

Kotlyarov S.High-density lipoproteins: a role in inflammation in COPD.Int J Mol Sci2022;23:8128 PMCID:PMC9331387

[177]

Johns DG,Fisher T,Forrest MJ.On- and off-target pharmacology of torcetrapib: current understanding and implications for the structure activity relationships (SAR), discovery and development of cholesteryl ester-transfer protein (CETP) inhibitors.Drugs2012;72:491-507

[178]

Watts GF,Raal FJ.Inhibition of ANGPTL3 as a target for treating dyslipidemias. Elsevier; 2024. pp. 253-67.e1.

[179]

Wang X.Angiopoietin-like 3: from discovery to therapeutic gene editing.JACC Basic Transl Sci2019;4:755-62 PMCID:PMC6834959

[180]

Tikka A.The role of ANGPTL3 in controlling lipoprotein metabolism.Endocrine2016;52:187-93 PMCID:PMC4824806

[181]

Hatsuda S,Shinohara K.Association between plasma angiopoietin-like protein 3 and arterial wall thickness in healthy subjects.J Vasc Res2007;44:61-6

[182]

Liu YZ,Jiang JF.Angiopoietin-like proteins in atherosclerosis.Clin Chim Acta2021;521:19-24

[183]

Luo F,Chen J.ANGPTL3 possibly promotes cardiac angiogenesis through improving proangiogenic ability of endothelial progenitor cells after myocardial infarction.Lipids Health Dis2018;17:184 PMCID:PMC6081830

[184]

Chan DC.Inhibition of the ANGPTL3/8 complex for the prevention and treatment of atherosclerotic cardiovascular disease.Curr Atheroscler Rep2024;27:6

[185]

Lang W.Angiopoietin-like 3 protein inhibition: a new frontier in lipid-lowering treatment.Cardiol Rev2019;27:211-7

[186]

Xu S,Chen J,Moss J.LOX-1 in atherosclerosis: biological functions and pharmacological modifiers.Cell Mol Life Sci2013;70:2859-72 PMCID:PMC4142049

[187]

Kattoor AJ,Mehta JL.Role of Ox-LDL and LOX-1 in atherogenesis.Curr Med Chem2019;26:1693-700

[188]

Duprat F,Castillo MP.LOX-1 activation by oxLDL induces AR and AR-V7 expression via NF-κB and STAT3 signaling pathways reducing enzalutamide cytotoxic effects.Int J Mol Sci2023;24:5082 PMCID:PMC10049196

[189]

Vohra RS,Walker JH,Homer-Vanniasinkam S.Atherosclerosis and the lectin-like OXidized low-density lipoprotein scavenger receptor.Trends Cardiovasc Med2006;16:60-4

[190]

Ran XL,Shi JS.Role of lectin-like oxidized low-density lipoprotein receptor-1 in atherosclerosis.Chin J Pharmacol Toxicol2013;27:865-71

[191]

Cilingiroglu M.The lectin-like oxidized low-density lipoprotein receptor and its role in atherosclerosis.Curr Atheroscler Rep2005;7:103-7

[192]

Navarra T,Berti S.The lectin-like oxidized low-density lipoprotein receptor-1 and its soluble form: cardiovascular implications.J Atheroscler Thromb2010;17:317-31

[193]

Yurina V,Rudijanto A,Handono K.Design and construction of DNA vaccine expressing lectin-like oxidize-LDL receptor-1 (LOX-1) as atherosclerosis vaccine candidate.J Biotech Res2017;8:103-12Available from: https://www.btsjournals.com/assets/2017v8p103-11272098.pdf [Last accessed on 1 Aug 2025]

[194]

Adianingsih OR,Putri AP.Lectin-like oxidized LDL receptor-1 (LOX-1) protein vaccination reduces inflammation and attenuates atherosclerosis progression in atherogenic-diet wistar rats.Int Cardiovasc Res J2016;10:e9803Available from: https://brieflands.com/articles/ircrj-9803 [Last accessed on 1 Aug 2025]

[195]

Babakr AT.Oxidized low-density lipoproteins and their contribution to atherosclerosis.Rev Clin Pharm Drug Ther2024;22:351-60

[196]

Babakr AT.Scavenger receptors: different classes and their role in the uptake of oxidized low-density lipoproteins.Biomed Pharmacol J2024;17:699-712

[197]

Yang X.Role of oxidized low density lipoprotein in the diagnosis of atherosclerotic cardiovascular disease.Chin J Lab Med44:563-8

[198]

Maiolino G,Caielli P,Rossi GP.The role of oxidized low-density lipoproteins in atherosclerosis: the myths and the facts.Mediators Inflamm2013;2013:714653 PMCID:PMC3816061

[199]

Jiang H,Nabavi SM.Mechanisms of oxidized LDL-mediated endothelial dysfunction and its consequences for the development of atherosclerosis.Front Cardiovasc Med2022;9:925923 PMCID:PMC9199460

[200]

Nilsson J,Schiopu A,Jansson B.Oxidized LDL antibodies in treatment and risk assessment of atherosclerosis and associated cardiovascular disease.Curr Pharm Des2007;13:1021-30

[201]

Nilsson J,Björkbacka H,Shah PK.Vaccines modulating lipoprotein autoimmunity as a possible future therapy for cardiovascular disease.J Intern Med2009;266:221-31

[202]

Habets KL,van Duivenvoorde LM.Vaccination using oxidized low-density lipoprotein-pulsed dendritic cells reduces atherosclerosis in LDL receptor-deficient mice.Cardiovasc Res2010;85:622-30

[203]

Hulthe J.Antibodies to oxidized LDL in atherosclerosis development-clinical and animal studies.Clin Chim Acta2004;348:1-8

[204]

Carvalho JF, Sherer Y, Shoenfeld Y. The fine-tuning of anti-oxidized low-density lipoprotein antibodies in cardiovascular disease and thrombosis.Thromb Haemost2007;98:1157-9

[205]

Kimura T,Sette A.Vaccination to modulate atherosclerosis.Autoimmunity2015;48:152-60 PMCID:PMC4429861

[206]

Zhong Y,Ji Q.CD4+LAP + and CD4 +CD25 +Foxp3 + regulatory T cells induced by nasal oxidized low-density lipoprotein suppress effector T cells response and attenuate atherosclerosis in ApoE-/- mice.J Clin Immunol2012;32:1104-17

[207]

van Puijvelde GH,de Vos P.Induction of oral tolerance to oxidized low-density lipoprotein ameliorates atherosclerosis.Circulation2006;114:1968-76

[208]

Kotlyarov S.Clinical significance of polyunsaturated fatty acids in the prevention of cardiovascular diseases.Front Nutr2022;9:998291 PMCID:PMC9582942

[209]

Aubeux D,Pérez F,Gaudin A.In vitro phenotypic effects of Lipoxin A4 on M1 and M2 polarized macrophages derived from THP-1.Mol Biol Rep2023;50:339-48

[210]

Yuan J,Chen L.Lipoxin A4 regulates M1/M2 macrophage polarization via FPR2-IRF pathway.Inflammopharmacology2022;30:487-98

[211]

Filep JG,Petasis NA,Serhan CN.Lipoxin A4 and aspirin-triggered 15-Epi-lipoxin A4 modulate adhesion molecule expression on human leukocytes in whole blood and inhibit neutrophil-endothelial cell adhesion. In: Honn KV, Marnett LJ, Nigam S, Dennis E, Serhan C, editors. Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation, and Radiation Injury, 5. Boston: Springer US; 2002. pp. 223-8.

[212]

Baylor College of Medicine. The effect of ticagrelor on 15-Epi-lipoxin A4 and inflammation. 2019. Available from: https://clinicaltrials.gov/study/NCT02626169 [Last accessed on 31 Jul 2025]

[213]

University of California, San Francisco. The effects of omega-3 fatty acids supplementation on endothelial function and inflammation (OMEGA-PAD). 2021. Available from: https://clinicaltrials.gov/study/NCT01310270 [Last accessed on 31 Jul 2025]

[214]

Grenon SM,Nosova EV.Short-term, high-dose fish oil supplementation increases the production of omega-3 fatty acid-derived mediators in patients with peripheral artery disease (the OMEGA-PAD I Trial).J Am Heart Assoc2015;4:e002034

[215]

Millar B.Posing the rationale for synthetic lipoxin mimetics as an adjuvant treatment to gold standard atherosclerosis therapies.Front Pharmacol2023;14:1125858 PMCID:PMC9971729

[216]

Gerlach BD,Heinz J.Resolvin D1 promotes the targeting and clearance of necroptotic cells.Cell Death Differ2020;27:525-39 PMCID:PMC7206090

[217]

Kohli P.Resolvins and protectins: mediating solutions to inflammation.Br J Pharmacol2009;158:960-71 PMCID:PMC2785519

[218]

Spite M,Serhan CN.Resolvins, specialized proresolving lipid mediators, and their potential roles in metabolic diseases.Cell Metab2014;19:21-36 PMCID:PMC3947989

[219]

Serhan CN,Gronert K.Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals.J Exp Med2002;196:1025-37 PMCID:PMC2194036

[220]

Bazan HA,Jun B,Woods TC.Circulating inflammation-resolving lipid mediators RvD1 and DHA are decreased in patients with acutely symptomatic carotid disease.Prostaglandins Leukot Essent Fatty Acids2017;125:43-7 PMCID:PMC5909403

[221]

Hosseini Z,Decker C.Resolvin D1 enhances necroptotic cell clearance through promoting macrophage fatty acid oxidation and oxidative phosphorylation.Arterioscler Thromb Vasc Biol2021;41:1062-75

[222]

Yang Y,Xiao J.Maresin conjugates in tissue regeneration 1 prevents lipopolysaccharide-induced cardiac dysfunction through improvement of mitochondrial biogenesis and function.Biochem Pharmacol2020;177:114005

[223]

Saito-Sasaki N,Nakamura M.Maresin-1 and inflammatory disease.Int J Mol Sci2022;23:1367 PMCID:PMC8835953

[224]

Liu WC,Wang YC,Wang CW.Maresin: macrophage mediator for resolving inflammation and bridging tissue regeneration-a system-based preclinical systematic review.Int J Mol Sci2023;24:11012 PMCID:PMC10341548

[225]

Marcon R,Dutra RC,Leite DF.Maresin 1, a proresolving lipid mediator derived from omega-3 polyunsaturated fatty acids, exerts protective actions in murine models of colitis.J Immunol2013;191:4288-98

[226]

Liu M,Makni-Maalej K.Protectin DX, a double lipoxygenase product of DHA, inhibits both ROS production in human neutrophils and cyclooxygenase activities.Lipids2014;49:49-57 PMCID:PMC5040756

[227]

Serhan CN,Colas RA,Chiang N.Protectins and maresins: new pro-resolving families of mediators in acute inflammation and resolution bioactive metabolome.Biochim Biophys Acta2015;1851:397-413 PMCID:PMC4324013

[228]

Hansen T, Serhan CN. Protectins: Their biosynthesis, metabolism and structure-functions.Biochem Pharmacol2022;206:115330 PMCID:PMC9838224

[229]

Zeitlinger M,Reindl-Schwaighofer R.A phase I study assessing the safety, tolerability, immunogenicity, and low-density lipoprotein cholesterol-lowering activity of immunotherapeutics targeting PCSK9.Eur J Clin Pharmacol2021;77:1473-84 PMCID:PMC8440313

[230]

Li Z,Zong J.Dendritic cells immunotargeted therapy for atherosclerosis.Acta Pharm Sin B2025;15:792-808 PMCID:PMC11959979

[231]

Zhu R,Pan C,Zhong Y.Role of IL-37- and IL-37-treated dendritic cells in acute coronary syndrome.Oxid Med Cell Longev2021;2021:6454177 PMCID:PMC8405329

[232]

Schiopu A,Söderberg I.Recombinant human antibodies against aldehyde-modified apolipoprotein B-100 peptide sequences inhibit atherosclerosis.Circulation2004;110:2047-52

[233]

Schiopu A,Jansson B.Recombinant antibodies to an oxidized low-density lipoprotein epitope induce rapid regression of atherosclerosis in apobec-1-/-/low-density lipoprotein receptor-/- mice.J Am Coll Cardiol2007;50:2313-8

[234]

Lehrer-Graiwer J,Abdelbaky A.FDG-PET imaging for oxidized LDL in stable atherosclerotic disease: a phase II study of safety, tolerability, and anti-inflammatory activity.JACC Cardiovasc Imaging2015;8:493-4

[235]

van Leeuwen M,de Winther MP.Passive immunization with hypochlorite-oxLDL specific antibodies reduces plaque volume in LDL receptor-deficient mice.PLoS One2013;8:e68039 PMCID:PMC3713002

[236]

Gounopoulos P,Hansen LF,Tsimikas S.Antibodies to oxidized low density lipoprotein: epidemiological studies and potential clinical applications in cardiovascular disease.Minerva Cardioangiol2007;55:821-37

[237]

Baganha F,de Jong RCM.Phosphorylcholine monoclonal antibody therapy decreases intraplaque angiogenesis and intraplaque hemorrhage in murine vein grafts.Int J Mol Sci2022;23:13662 PMCID:PMC9653839

[238]

de Vries MR,de Jong RCM.Identification of IgG1 isotype phosphorylcholine antibodies for the treatment of inflammatory cardiovascular diseases.J Intern Med2021;290:141-56 PMCID:PMC8359267

[239]

Fredrikson GN,Söderberg I,Nilsson J.Treatment with apo B peptide vaccines inhibits atherosclerosis in human apo B-100 transgenic mice without inducing an increase in peptide-specific antibodies.J Intern Med2008;264:563-70

[240]

Klingenberg R,Hermansson A.Intranasal immunization with an apolipoprotein B-100 fusion protein induces antigen-specific regulatory T cells and reduces atherosclerosis.Arterioscler Thromb Vasc Biol2010;30:946-52

[241]

Pierides C,Fredrikson GN,Oviedo-Orta E.Immune responses elicited by apoB-100-derived peptides in mice.Immunol Res2013;56:96-108

[242]

Wigren M,Dunér P.Evidence for a role of regulatory T cells in mediating the atheroprotective effect of apolipoprotein B peptide vaccine.J Intern Med2011;269:546-56

[243]

Govea-Alonso DO,Salazar-González JA,Rosales-Mendoza S.Progress and future opportunities in the development of vaccines against atherosclerosis.Expert Rev Vaccines2017;16:337-50

[244]

Yang M,Lin Z,Li C.Costimulatory and coinhibitory molecules of B7-CD28 family in cardiovascular atherosclerosis: a review.Medicine2022;101:e31667

[245]

Foks AC,Frodermann V.Interference of the CD30-CD30L pathway reduces atherosclerosis development.Arterioscler Thromb Vasc Biol2012;32:2862-8

[246]

Jung IH.The roles of CD137 signaling in atherosclerosis.Korean Circ J2016;46:753-61 PMCID:PMC5099328

[247]

Olofsson PS,Wågsäter D.CD137 is expressed in human atherosclerosis and promotes development of plaque inflammation in hypercholesterolemic mice.Circulation2008;117:1292-301

[248]

Bosmans LA,Kusters PJH,Seijkens TTP.The CD40-CD40L dyad as Immunotherapeutic target in cardiovascular disease.J Cardiovasc Transl Res2021;14:13-22 PMCID:PMC7892683

[249]

Seijkens TTP,Kusters PJH.Targeting CD40-induced TRAF6 signaling in macrophages reduces atherosclerosis.J Am Coll Cardiol2018;71:527-42

[250]

Matsumoto T,Yamashita T.Overexpression of cytotoxic T-lymphocyte-associated antigen-4 prevents atherosclerosis in mice.Arterioscler Thromb Vasc Biol2016;36:1141-51

[251]

Doesch AO,Gleissner CA.Inhibition of B7-1 (CD80) by RhuDex® reduces lipopolysaccharide-mediated inflammation in human atherosclerotic lesions.Drug Des Devel Ther2014;8:447-57

[252]

Wu X,Zhou Y.Identification of key genes for atherosclerosis in different arterial beds.Sci Rep2024;14:6543 PMCID:PMC10951242

[253]

Gummesson A,Chen QS.A genome-wide association study of imaging-defined atherosclerosis.Nat Commun2025;16:2266 PMCID:PMC11958696

[254]

Chen H,Liu S,Zhou X.MircroRNA-19a promotes vascular inflammation and foam cell formation by targeting HBP-1 in atherogenesis.Sci Rep2017;7:12089 PMCID:PMC5608705

[255]

Feinberg MW.MicroRNA regulation of atherosclerosis.Circ Res2016;118:703-20 PMCID:PMC4762069

[256]

Churov A,Grechko A,Orekhov A.MicroRNAs as potential biomarkers in atherosclerosis.Int J Mol Sci2019;20:5547 PMCID:PMC6887712

[257]

Tang H,Yan C,Serhan CN.Protective actions of aspirin-triggered (17R) resolvin D1 and its analogue, 17R-hydroxy-19-para-fluorophenoxy-resolvin D1 methyl ester, in C5a-dependent IgG immune complex-induced inflammation and lung injury.J Immunol2014;193:3769-78 PMCID:PMC4170233

[258]

Serhan CN,Yang R.Novel proresolving aspirin-triggered DHA pathway.Chem Biol2011;18:976-87 PMCID:PMC3164791

[259]

Sun YP,Uddin J.Resolvin D1 and its aspirin-triggered 17R epimer. Stereochemical assignments, anti-inflammatory properties, and enzymatic inactivation.J Biol Chem2007;282:9323-34

[260]

Crane JM.Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes.Biophys J2004;86:2965-79 PMCID:PMC1304164

[261]

Ruysschaert JM.Role of lipid microdomains in TLR-mediated signalling.Biochim Biophys Acta2015;1848:1860-7

[262]

Wang S,Lei T.Statins attenuate activation of the NLRP3 inflammasome by oxidized LDL or TNFα in vascular endothelial cells through a PXR-dependent mechanism.Mol Pharmacol2017;92:256-64

[263]

Luo B,Wang W.Rosuvastatin alleviates diabetic cardiomyopathy by inhibiting NLRP3 inflammasome and MAPK pathways in a type 2 diabetes rat model.Cardiovasc Drugs Ther2014;28:33-43

[264]

Kong F,Lin L,Huang W.Atorvastatin suppresses NLRP3 inflammasome activation via TLR4/MyD88/NF-κB signaling in PMA-stimulated THP-1 monocytes.Biomed Pharmacother2016;82:167-72

[265]

González-Herrera F,Pimentel P.Simvastatin attenuates endothelial activation through 15-Epi-lipoxin A4 production in murine chronic chagas cardiomyopathy.Antimicrob Agents Chemother2017;61:e02137-16 PMCID:PMC5328563

[266]

Zhang J,Li W.Simvastatin upregulates lipoxin A4 and accelerates neuroinflammation resolution after intracerebral hemorrhage.Curr Neurovasc Res2022;19:321-32 PMCID:PMC9982195

[267]

Levy BD.Myocardial 15-epi-lipoxin A4 generation provides a new mechanism for the immunomodulatory effects of statins and thiazolidinediones.Circulation2006;114:873-5

PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

/