Endothelial dysfunction in atherosclerosis: from classical pathways to emerging mechanisms

Yuyao Feng , Chenyang Li , Junye Chen , Xingqi Xiao , Qilong Mao , Hongmei Zhao , Jing Wang , Bao Liu

Vessel Plus ›› 2025, Vol. 9 ›› Issue (1) : 8

PDF
Vessel Plus ›› 2025, Vol. 9 ›› Issue (1) :8 DOI: 10.20517/2574-1209.2025.39
Review

Endothelial dysfunction in atherosclerosis: from classical pathways to emerging mechanisms

Author information +
History +
PDF

Abstract

Endothelial dysfunction is a pivotal factor in the pathogenesis of atherosclerosis, driving plaque formation, inflammation, and thrombosis. This review synthesizes classical mechanisms and emerging perspectives on endothelial dysfunction, emphasizing its role in atherogenesis. Traditional contributors, including lifestyle factors, lipid dysregulation, shear stress, and nitric oxide (NO) deficiency, are discussed alongside novel insights from single-cell RNA sequencing, metabolomics, and intercellular communication. scRNA-seq has unveiled endothelial cell (EC) heterogeneity and endothelial-to-mesenchymal transition (EndMT) as critical contributors to plaque instability. Metabolites such as trimethylamine N-oxide (TMAO) and homocysteine derivatives exacerbate endothelial injury, while gut microbiome interactions further modulate disease progression. Exosome-mediated crosstalk between ECs, immune cells, and vascular smooth muscle cells (VSMCs) highlights new pathways in vascular inflammation and remodeling. Current pharmacotherapies, such as lipid-lowering and anti-inflammatory drugs, improve endothelial function, and emerging strategies like nanotechnology and exosome-based therapies show promise as well. Integrating classical and novel approaches could enhance our understanding of endothelial biology and lead to targeted therapies, addressing atherosclerosis-related diseases.

Keywords

Endothelial dysfunction / atherosclerosis / nitric oxide / shear stress / single-cell RNA sequencing / exosomes / metabolites

Cite this article

Download citation ▾
Yuyao Feng, Chenyang Li, Junye Chen, Xingqi Xiao, Qilong Mao, Hongmei Zhao, Jing Wang, Bao Liu. Endothelial dysfunction in atherosclerosis: from classical pathways to emerging mechanisms. Vessel Plus, 2025, 9(1): 8 DOI:10.20517/2574-1209.2025.39

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Libby P,Badimon L.Atherosclerosis.Nat Rev Dis Primers2019;5:56

[2]

Hansson GK.The immune response in atherosclerosis: a double-edged sword.Nat Rev Immunol2006;6:508-19

[3]

Bentzon JF,Virmani R.Mechanisms of plaque formation and rupture.Circ Res2014;114:1852-66

[4]

Martin SS,Allen NB.American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Committee2025 heart disease and stroke statistics: a report of US and global data from the American Heart Association.Circulation2025;151:e41-e660

[5]

Gaba P,Muller J,Stone GW.Evolving concepts of the vulnerable atherosclerotic plaque and the vulnerable patient: implications for patient care and future research.Nat Rev Cardiol2023;20:181-96

[6]

Xu S,Little PJ.Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: from mechanism to pharmacotherapies.Pharmacol Rev2021;73:924-67

[7]

Welt FGP,Spears JR.Reperfusion injury in patients with acute myocardial infarction: JACC scientific statement.J Am Coll Cardiol2024;83:2196-213

[8]

Konijnenberg LSF,Duncker DJ.Pathophysiology and diagnosis of coronary microvascular dysfunction in ST-elevation myocardial infarction.Cardiovasc Res2020;116:787-805 PMCID:PMC7061278

[9]

Ross R.The pathogenesis of atherosclerosis (first of two parts).N Engl J Med1976;295:369-77

[10]

Ross R.The pathogenesis of atherosclerosis-an update.N Engl J Med1986;314:488-500

[11]

Libby P.Inflammation in atherosclerosis.Nature2002;420:868-74

[12]

Anderson TJ,Meredith IT.Systemic nature of endothelial dysfunction in atherosclerosis.Am J Cardiol1995;75:71B-4B

[13]

Furchgott RF.The discovery of endothelium-derived relaxing factor and its importance in the identification of nitric oxide.Jama1996:276:1186-8

[14]

Glagov S,Giddens DP.Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries.Arch Pathol Lab Med1988;112:1018-31

[15]

Mussbacher M,Kral-Pointner JB,Schrammel A.More than just a monolayer: the multifaceted role of endothelial cells in the pathophysiology of atherosclerosis.Curr Atheroscler Rep2022;24:483-92 PMCID:PMC9162978

[16]

Gimbrone MA Jr.Endothelial cell dysfunction and the pathobiology of atherosclerosis.Circ Res2016;118:620-36 PMCID:PMC4762052

[17]

Cimmino G,De Rosa S.Pathogenesis Of Atherosclerosis Working Group Of The Italian Society Of CardiologyEvolving concepts in the pathophysiology of atherosclerosis: from endothelial dysfunction to thrombus formation through multiple shades of inflammation.J Cardiovasc Med2023;24:e156-67

[18]

Ludmer PL,Shook TL.Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries.N Engl J Med1986;315:1046-51

[19]

Bossaller C,Yamamoto H,Wells S.Impaired muscarinic endothelium-dependent relaxation and cyclic guanosine 5’-monophosphate formation in atherosclerotic human coronary artery and rabbit aorta.J Clin Invest1987;79:170-4 PMCID:PMC424014

[20]

d’Uscio LV,Katusic ZS.Hypercholesterolemia impairs endothelium-dependent relaxations in common carotid arteries of apolipoprotein e-deficient mice.Stroke2001;32:2658-64

[21]

Ghanta SN,Odueke A.Molecular insights into ischemia-reperfusion injury in coronary artery disease: mechanisms and therapeutic implications: a comprehensive review.Antioxidants2025;14:213 PMCID:PMC11851988

[22]

de Winther MPJ,Evans P.Translational opportunities of single-cell biology in atherosclerosis.Eur Heart J2023;44:1216-30 PMCID:PMC10120164

[23]

Chen Y,Qin W.TMAO promotes vascular endothelial cell pyroptosis via the LPEAT-mitophagy pathway.Biochem Biophys Res Commun2024;703:149667

[24]

Wehbe Z,Al Khatib A.Emerging understandings of the role of exosomes in atherosclerosis.J Cell Physiol2025;240:e31454 PMCID:PMC11730360

[25]

Messner B.Smoking and cardiovascular disease: mechanisms of endothelial dysfunction and early atherogenesis.Arterioscler Thromb Vasc Biol2014;34:509-15

[26]

Mente A,Shannon HS.A systematic review of the evidence supporting a causal link between dietary factors and coronary heart disease.Arch Intern Med2009;169:659-69

[27]

Renaud S.Coronary heart disease: dietary links and pathogenesis.Public Health Nutr2001;4:459-74

[28]

Shao C,Tian J.Coronary artery disease: from mechanism to clinical practice. In: Wang M, editor. Coronary Artery Disease: Therapeutics and drug discovery. Singapore: Springer; 2020. pp. 1-36.

[29]

Willett WC.Dietary fats and coronary heart disease.J Intern Med2012;272:13-24

[30]

De Bosscher R,Claus P.Lifelong endurance exercise and its relation with coronary atherosclerosis.Eur Heart J2023;44:2388-99 PMCID:PMC10327878

[31]

Nishitani-Yokoyama M,Shimada K.Impact of physical activity on coronary plaque volume and components in acute coronary syndrome patients after early phase ii cardiac rehabilitation.Circ J2018;83:101-9

[32]

Tibuakuu M,Navas-Acien A.Air pollution and cardiovascular disease: a focus on vulnerable populations worldwide.Curr Epidemiol Rep2018;5:370-8 PMCID:PMC6435302

[33]

Hinterdobler J,Jin H.Acute mental stress drives vascular inflammation and promotes plaque destabilization in mouse atherosclerosis.Eur Heart J2021;42:4077-88 PMCID:PMC8516477

[34]

Wirtz PH.Psychological stress, inflammation, and coronary heart disease.Curr Cardiol Rep2017;19:111

[35]

Chen X,Zuo L.Environmental noise exposure and health outcomes: an umbrella review of systematic reviews and meta-analysis.Eur J Public Health2023;33:725-31 PMCID:PMC11314258

[36]

Malakar AK,Halder B,Uddin A.A review on coronary artery disease, its risk factors, and therapeutics.J Cell Physiol2019;234:16812-23

[37]

Poredos P,Gregoric I.Endothelial dysfunction and its clinical implications.Angiology2021;72:604-15

[38]

Stancu CS,Sima AV.Dual role of lipoproteins in endothelial cell dysfunction in atherosclerosis.Cell Tissue Res2012;349:433-46

[39]

Gofman JW.The role of lipids and lipoproteins in atherosclerosis.Science1950;111:166-71

[40]

Rhee M,Lee EY,Lee SH.Lipid variability induces endothelial dysfunction by increasing inflammation and oxidative stress.Endocrinol Metab2024;39:511-20

[41]

Incalza MA,Natalicchio A,Laviola L.Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases.Vascul Pharmacol2018;100:1-19

[42]

Terasaka N,Yvan-Charvet L.ABCG1 and HDL protect against endothelial dysfunction in mice fed a high-cholesterol diet.J Clin Invest2008;118:3701-13

[43]

Besler C,Rohrer L.Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease.J Clin Invest2011;121:2693-708

[44]

Nicholls SJ,Hazen SL.Formation of dysfunctional high-density lipoprotein by myeloperoxidase.Trends Cardiovasc Med2005;15:212-9

[45]

Eren E,Aydin O.Functionally defective high-density lipoprotein and paraoxonase: a couple for endothelial dysfunction in atherosclerosis.Cholesterol2013;2013:792090 PMCID:PMC3814057

[46]

Zhang C,Chen Z.Coupling of integrin α5 to annexin A2 by flow drives endothelial activation.Circ Res2020;127:1074-90

[47]

Zhou M,Chen R.Wall shear stress and its role in atherosclerosis.Front Cardiovasc Med2023;10:1083547 PMCID:PMC10106633

[48]

Nigro P,Berk BC.Flow shear stress and atherosclerosis: a matter of site specificity.Antioxid Redox Signal2011;15:1405-14 PMCID:PMC3144425

[49]

Wang X,Shang M,Munn LL.Endothelial mechanobiology in atherosclerosis.Cardiovasc Res2023;119:1656-75 PMCID:PMC10325702

[50]

Baeyens N,Coon BG,Schwartz MA.Endothelial fluid shear stress sensing in vascular health and disease.J Clin Invest2016;126:821-8

[51]

Conway DE,Hinde E,Chen CS.Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1.Curr Biol2013;23:1024-30 PMCID:PMC3676707

[52]

Tzima E,Kiosses WB.A mechanosensory complex that mediates the endothelial cell response to fluid shear stress.Nature2005;437:426-31

[53]

Fleming I,Dixit M.Role of PECAM-1 in the shear-stress-induced activation of Akt and the endothelial nitric oxide synthase (eNOS) in endothelial cells.J Cell Sci2005;118:4103-11

[54]

He S,Chen Z,Zhao Y,Zhu Y.Disruption of the novel nested gene aff3ir mediates disturbed flow-induced atherosclerosis in mice.eLife2025;13:RP103413

[55]

Wang F,Gu Y.Disturbed shear stress promotes atherosclerosis through TRIM21-regulated MAPK6 degradation and consequent endothelial inflammation.Clin Transl Med2025;15:e70168

[56]

Lv Y,Zhou W.Low-shear stress promotes atherosclerosis via inducing endothelial cell pyroptosis mediated by IKKε/STAT1/NLRP3 Pathway.Inflammation2024;47:1053-66 PMCID:PMC11147929

[57]

Nakayama A,Liang G.Disturbed flow-induced Gs-mediated signaling protects against endothelial inflammation and atherosclerosis.JCI Insight2020;5:140485

[58]

Wang Y,Luo S.High shear stress induces atherosclerotic vulnerable plaque formation through angiogenesis.Regen Biomater2016;3:257-67 PMCID:PMC4966293

[59]

Ignarro LJ,Wood KS,Chaudhuri G.Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide.Proc Natl Acad Sci U S A1987;84:9265-9 PMCID:PMC299734

[60]

Ignarro LJ,Wei LH,Wu G.Role of the arginine-nitric oxide pathway in the regulation of vascular smooth muscle cell proliferation.Proc Natl Acad Sci U S A2001;98:4202-8 PMCID:PMC31203

[61]

Hutchinson PJ,Moncada S.Comparative pharmacology of EDRF and nitric oxide on vascular strips.Eur J Pharmacol1987;141:445-51

[62]

Radomski MW,Moncada S.Comparative pharmacology of endothelium-derived relaxing factor, nitric oxide and prostacyclin in platelets.Br J Pharmacol1987;92:181-7 PMCID:PMC1853617

[63]

Griffith TM,Lewis MJ,Henderson AH.The nature of endothelium-derived vascular relaxant factor.Nature1984;308:645-7

[64]

Rapoport RM.Agonist-induced endothelium-dependent relaxation in rat thoracic aorta may be mediated through cGMP.Circ Res1983;52:352-7

[65]

Sessa WC,Barber CM.Molecular cloning and expression of a cDNA encoding endothelial cell nitric oxide synthase.J Biol Chem1992;267:15274-6

[66]

Sessa WC.eNOS at a glance.J Cell Sci2004;117:2427-9

[67]

Dudzinski DM.Life history of eNOS: partners and pathways.Cardiovasc Res2007;75:247-60 PMCID:PMC2682334

[68]

Bucci M,Rudic RD.In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation.Nat Med2000;6:1362-7

[69]

Sandoo A,Metsios GS,Kitas GD.The endothelium and its role in regulating vascular tone.Open Cardiovasc Med J2010;4:302-12 PMCID:PMC3040999

[70]

Kuchan MJ.Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells.Am J Physiol1994;266:C628-36

[71]

Gimbrone MA Jr.Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis.Cardiovasc Pathol2013;22:9-15 PMCID:PMC4564111

[72]

Chiu JJ.Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives.Physiol Rev2011;91:327-87 PMCID:PMC3844671

[73]

Lee MR,Kitazawa T.Cyclic GMP causes Ca2+ desensitization in vascular smooth muscle by activating the myosin light chain phosphatase.J Biol Chem1997;272:5063-8

[74]

Gao Y,Leung SW.Hypoxic vasospasm mediated by cIMP: when soluble guanylyl cyclase turns bad.J Cardiovasc Pharmacol2015;65:545-8

[75]

Kraehling JR.Contemporary Approaches to Modulating the Nitric Oxide-cGMP Pathway in Cardiovascular Disease.Circ Res2017;120:1174-82 PMCID:PMC5391494

[76]

Procter NE,Sverdlov AL,Chirkov YY.Aging of platelet nitric oxide signaling: pathogenesis, clinical implications, and therapeutics.Semin Thromb Hemost2014;40:660-8

[77]

Radomski MW,Moncada S.Modulation of platelet aggregation by an L-arginine-nitric oxide pathway.Trends Pharmacol Sci1991;12:87-8

[78]

Bath PM.The effect of nitric oxide-donating vasodilators on monocyte chemotaxis and intracellular cGMP concentrations in vitro.Eur J Clin Pharmacol1993;45:53-8

[79]

Kuhlencordt PJ,Gerszten RE.Role of endothelial nitric oxide synthase in endothelial activation: insights from eNOS knockout endothelial cells.Am J Physiol Cell Physiol2004;286:C1195-202

[80]

Huang PL.Lessons learned from nitric oxide synthase knockout animals.Semin Perinatol2000;24:87-90

[81]

Kuhlencordt PJ,Han F.Accelerated atherosclerosis, aortic aneurysm formation, and ischemic heart disease in apolipoprotein E/endothelial nitric oxide synthase double-knockout mice.Circulation2001;104:448-54

[82]

Freiman PC,Heistad DD,Harrison DG.Atherosclerosis impairs endothelium-dependent vascular relaxation to acetylcholine and thrombin in primates.Circ Res1986;58:783-9

[83]

Davignon J.Role of endothelial dysfunction in atherosclerosis.Circulation2004;109:III27-32

[84]

Förstermann U.Nitric oxide synthases: regulation and function.Eur Heart J2012;33:829-37 PMCID:PMC3345541

[85]

Garcia V.Endothelial NOS: perspective and recent developments.Br J Pharmacol2019;176:189-96 PMCID:PMC6295413

[86]

Aulak KS,Tian L.Specific O-GlcNAc modification at Ser-615 modulates eNOS function.Redox Biol2020;36:101625 PMCID:PMC7334407

[87]

Qin JZ,Xia C.microRNAs regulate nitric oxide release from endothelial cells by targeting NOS3.J Thromb Thrombolysis2018;46:275-82

[88]

Bonauer A,Iwasaki M.MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice.Science2009;324:1710-3

[89]

Chistiakov DA,Orekhov AN.Human miR-221/222 in physiological and atherosclerotic vascular remodeling.Biomed Res Int2015;2015:354517 PMCID:PMC4499635

[90]

Chen PY,Baeyens N.Endothelial-to-mesenchymal transition drives atherosclerosis progression.J Clin Invest2015;125:4514-28

[91]

Evrard SM,Michelis KC.Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability.Nat Commun2016;7:11853 PMCID:PMC4931033

[92]

Zhao G,Liu Y.Single-cell transcriptomics reveals endothelial plasticity during diabetic atherogenesis.Front Cell Dev Biol2021;9:689469 PMCID:PMC8170046

[93]

Huang Q,Yu Z,Zhong Z.Endothelial to mesenchymal transition: an insight in atherosclerosis.Front Cardiovasc Med2021;8:734550 PMCID:PMC8484517

[94]

Chen PY,Li G.Endothelial TGF-β signalling drives vascular inflammation and atherosclerosis.Nat Metab2019;1:912-26 PMCID:PMC6767930

[95]

Zhang Z,Ma C.USF1 transcriptionally activates USP14 to drive atherosclerosis by promoting EndMT through NLRC5/Smad2/3 axis.Mol Med2024;30:32 PMCID:PMC10905873

[96]

Chen LJ,Nguyen P.Single-cell RNA sequencing unveils unique transcriptomic signatures of endothelial cells and role of ENO1 in response to disturbed flow.Proc Natl Acad Sci U S A2024;121:e2318904121 PMCID:PMC10835041

[97]

Singh A,Nguyen HC,Singh KK.Endothelial-to-mesenchymal transition in cardiovascular pathophysiology.Int J Mol Sci2024;25:6180 PMCID:PMC11173124

[98]

Dong M,Chen M.ASF1A-dependent P300-mediated histone H3 lysine 18 lactylation promotes atherosclerosis by regulating EndMT.Acta Pharm Sin B2024;14:3027-48 PMCID:PMC11252488

[99]

Lecce L,V’Gangula B.Histone deacetylase 9 promotes endothelial-mesenchymal transition and an unfavorable atherosclerotic plaque phenotype.J Clin Invest2021;131

[100]

Murugavel S,Matkar PN.Valproic acid induces endothelial-to-mesenchymal transition-like phenotypic switching.Front Pharmacol2018;9:737 PMCID:PMC6050396

[101]

Zhao J,Yang F.DNMT1 mediates the disturbed flow-induced endothelial to mesenchymal transition through disrupting β-alanine and carnosine homeostasis.Theranostics2023;13:4392-411 PMCID:PMC10465216

[102]

Wakabayashi T.Cellular heterogeneity and stem cells of vascular endothelial cells in blood vessel formation and homeostasis: Insights from single-cell RNA sequencing.Front Cell Dev Biol2023;11:1146399 PMCID:PMC10070846

[103]

Kalucka J,Goveia J.Single-cell transcriptome atlas of murine endothelial cells.Cell2020;180:764-779.e20

[104]

Kalluri AS,Edelman ER.Single-Cell analysis of the normal mouse aorta reveals functionally distinct endothelial cell populations.Circulation2019;140:147-63

[105]

He D,Zheng CB.Aortic heterogeneity across segments and under high fat/salt/glucose conditions at the single-cell level.Natl Sci Rev2020;7:881-96 PMCID:PMC8289085

[106]

Tan J,Yang Z.Single-cell transcriptomics reveals crucial cell subsets and functional heterogeneity associated with carotid atherosclerosis and cerebrovascular events.Arterioscler Thromb Vasc Biol2023;43:2312-32

[107]

Jakubowski H.Homocysteine metabolites, endothelial dysfunction, and cardiovascular disease.Int J Mol Sci2025;26:746 PMCID:PMC11765536

[108]

Jakubowski H.Homocysteine modification in protein structure/function and human disease.Physiol Rev2019;99:555-604

[109]

Gurda D,Kotkowiak W.Homocysteine thiolactone and N-homocysteinylated protein induce pro-atherogenic changes in gene expression in human vascular endothelial cells.Amino Acids2015;47:1319-39 PMCID:PMC4458266

[110]

Witucki Ł.Homocysteine metabolites impair the PHF8/H4K20me1/mTOR/autophagy pathway by upregulating the expression of histone demethylase PHF8-targeting microRNAs in human vascular endothelial cells and mice.FASEB J2024;38:e70072

[111]

Jakubowski H,Bardeguez A.Homocysteine thiolactone and protein homocysteinylation in human endothelial cells: implications for atherosclerosis.Circ Res2000;87:45-51

[112]

Xiang P,Chen L.Metabolite Neu5Ac triggers SLC3A2 degradation promoting vascular endothelial ferroptosis and aggravates atherosclerosis progression in ApoE-/- mice.Theranostics2023;13:4993-5016

[113]

Boutagy NE,Fowler JW.Dynamic metabolism of endothelial triglycerides protects against atherosclerosis in mice.J Clin Invest2024;134

[114]

Brown JM.Microbial modulation of cardiovascular disease.Nat Rev Microbiol2018;16:171-81 PMCID:PMC5885760

[115]

Qian B,Li Y.Update on gut microbiota in cardiovascular diseases.Front Cell Infect Microbiol2022;12:1059349 PMCID:PMC9684171

[116]

Luqman A,Ullah M.Role of the intestinal microbiome and its therapeutic intervention in cardiovascular disorder.Front Immunol2024;15:1321395 PMCID:PMC10853344

[117]

Querio G,Geddo F,Gallo MP.Modulation of endothelial function by TMAO, a gut microbiota-derived metabolite.Int J Mol Sci2023;24:5806 PMCID:PMC10054148

[118]

Querio G,Geddo F,Gallo MP.Trimethylamine N-oxide (TMAO) impairs purinergic induced intracellular calcium increase and nitric oxide release in endothelial Cells.Int J Mol Sci2022;23:3982 PMCID:PMC8999849

[119]

Ma G,Chen Y.Trimethylamine N-oxide in atherogenesis: impairing endothelial self-repair capacity and enhancing monocyte adhesion.Biosci Rep2017;37:BSR20160244

[120]

Singh GB,Boini KM.High mobility group box 1 mediates TMAO-induced endothelial dysfunction.Int J Mol Sci2019;20:3570 PMCID:PMC6678463

[121]

Bingyu W,Bingyang L,Jianqing Z.Trimethylamine N-oxide promotes PERK-mediated endothelial-mesenchymal transition and apoptosis thereby aggravates atherosclerosis.Int Immunopharmacol2024;142:113209

[122]

Seldin MM,Qi H.Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-κB.J Am Heart Assoc2016;5:e002767

[123]

Yu B,Chen J.TMAO induces pyroptosis of vascular endothelial cells and atherosclerosis in ApoE-/- mice via MBOAT2-mediated endoplasmic reticulum stress.Biochim Biophys Acta Mol Cell Biol Lipids2024;1869:159559

[124]

Wu P,Chen J.Trimethylamine N-oxide promotes ApoE-/- mice atherosclerosis by inducing vascular endothelial cell pyroptosis via the SDHB/ROS pathway.J Cell Physiol2020;235:6582-91

[125]

Zhu Y,Wang Y.Probiotic enterococcus faecium attenuated atherosclerosis by improving SCFAs associated with gut microbiota in ApoE-/- mice.Bioengineering2024;11:1033

[126]

Yang H,Cui G.Dietary methionine restriction ameliorates atherosclerosis by remodeling the gut microbiota in apolipoprotein E-knockout mice.Food Funct2025;16:4904-22

[127]

Luo Z,Zhu T.Aucubin ameliorates atherosclerosis by modulating tryptophan metabolism and inhibiting endothelial-mesenchymal transitions via gut microbiota regulation.Phytomedicine2024;135:156122

[128]

Nageswaran V,Reinshagen L.Gut microbial metabolite imidazole propionate impairs endothelial cell function and promotes the development of atherosclerosis.Arterioscler Thromb Vasc Biol2025;45:823-39

[129]

Paone S,Hulett MD.Endothelial cell apoptosis and the role of endothelial cell-derived extracellular vesicles in the progression of atherosclerosis.Cell Mol Life Sci2019;76:1093-106 PMCID:PMC11105274

[130]

Lin W,Yuan Y.Endothelial exosomes work as a functional mediator to activate macrophages.Front Immunol2023;14:1169471 PMCID:PMC10416261

[131]

He S,Xiao J,Sun Z.Endothelial extracellular vesicles modulate the macrophage phenotype: Potential implications in atherosclerosis.Scand J Immunol2018;87:e12648

[132]

Chang YJ,Wu CC.Extracellular MicroRNA-92a mediates endothelial cell-macrophage communication.Arterioscler Thromb Vasc Biol2019;39:2492-504

[133]

Bennett MR,Owens GK.Vascular smooth muscle cells in atherosclerosis.Circ Res2016;118:692-702 PMCID:PMC4762053

[134]

Wang H,Salvador AM.Exosomes: multifaceted messengers in atherosclerosis.Curr Atheroscler Rep2020;22:57

[135]

Zhang Z,Zhou J.Exosomal LINC01005 derived from oxidized low-density lipoprotein-treated endothelial cells regulates vascular smooth muscle cell phenotypic switch.Biofactors2020;46:743-53

[136]

Dabravolski SA,Glanz VY,Orekhov NA.Exosomes in atherosclerosis: role in the pathogenesis and targets for therapy.Curr Med Chem2025;32:3106-21

[137]

Xu L,Zang G.Exosome derived from CD137-modified endothelial cells regulates the Th17 responses in atherosclerosis.J Cell Mol Med2020;24:4659-67

[138]

Gao H,Lin C.Exosomal MALAT1 derived from ox-LDL-treated endothelial cells induce neutrophil extracellular traps to aggravate atherosclerosis.Biol Chem2020;401:367-76

[139]

Chen L,Li Q,Li H.Exosome-encapsulated miR-505 from ox-LDL-treated vascular endothelial cells aggravates atherosclerosis by inducing NET formation.Acta Biochim Biophys Sin2019;51:1233-41

[140]

Liu P,Wang G.Macrophage-derived exosomal miR-4532 promotes endothelial cells injury by targeting SP1 and NF-κB P65 signalling activation.J Cell Mol Med2022;26:5165-80

[141]

Tang N,Gupta A,Pulliam L.Monocyte exosomes induce adhesion molecules and cytokines via activation of NF-κB in endothelial cells.FASEB J2016;30:3097-106 PMCID:PMC5001509

[142]

Chen S,Zhang B.Exosomal miR-512-3p derived from mesenchymal stem cells inhibits oxidized low-density lipoprotein-induced vascular endothelial cells dysfunction via regulating Keap1.J Biochem Mol Toxicol2021;35:1-11

[143]

Xing X,Yang X.Adipose-derived mesenchymal stem cells-derived exosome-mediated microRNA-342-5p protects endothelial cells against atherosclerosis.Aging2020;12:3880-98 PMCID:PMC7066923

[144]

Li J,Xiang Q,Yan H.Thrombin-activated platelet-derived exosomes regulate endothelial cell expression of ICAM-1 via microRNA-223 during the thrombosis-inflammation response.Thromb Res2017;154:96-105

[145]

Segal SS.Regulation of myoendothelial junction formation: bridging the gap.Circ Res2010;106:1014-6

[146]

Shu X,Keller TCS 4th.Heterocellular contact can dictate arterial function.Circ Res2019;124:1473-81

[147]

Lemmey HA,Dora KA.Intrinsic regulation of microvascular tone by myoendothelial feedback circuits.Curr Top Membr2020;85:327-55

[148]

Straub AC,Isakson BE.The myoendothelial junction: connections that deliver the message.Physiology2014;29:242-9 PMCID:PMC4103062

[149]

Ledoux J,Bonev AD.Functional architecture of inositol 1,4,5-trisphosphate signaling in restricted spaces of myoendothelial projections.Proc Natl Acad Sci U S A2008;105:9627-32 PMCID:PMC2474537

[150]

Han Y,Yao Q.Mechanobiology in vascular remodeling.Nat Sci Rev2018;5:933-46

[151]

Lateef OM,Ramirez-perez FI.Vascular smooth muscle cell mechanical stretch modulates tissue transglutaminase activity and cytoskeletal dynamics.Physiology2024;39:735

[152]

Zaric B,Trpkovic A,Mikhailidis DP.Endothelial dysfunction in dyslipidaemia: molecular mechanisms and clinical implications.Curr Med Chem2020;27:1021-40

[153]

Gao D,Jiesisibieke D.C-reactive protein and coronary atheroma regression following statin therapy: a meta-regression of randomized controlled trials.Front Cardiovasc Med2022;9:989527 PMCID:PMC9691666

[154]

Egede R,Hansen HS.Effect of intensive lipid-lowering treatment compared to moderate lipid-lowering treatment with rosuvastatin on endothelial function in high risk patients.Int J Cardiol2012;158:376-9

[155]

Takayama T,Yoda S.Effect of aggressive lipid-lowering treatment with rosuvastatin on vascular endoTHelium function: evaluation of vascular endothelium function (EARTH study).Heart Vessels2018;33:590-4

[156]

Kater AL,Ferreira SR.Improved endothelial function with simvastatin but unchanged insulin sensitivity with simvastatin or ezetimibe.Metabolism2010;59:921-6

[157]

Ziogos E,Harb T.Platelet activation and endothelial dysfunction biomarkers in acute coronary syndrome: the impact of PCSK9 inhibition.Eur Heart J Cardiovasc Pharmacother2023;9:636-46 PMCID:PMC12098939

[158]

Liu S,Stolarz A.PCSK9 attenuates efferocytosis in endothelial cells and promotes vascular aging.Theranostics2023;13:2914-29 PMCID:PMC10240829

[159]

Taddei S,Ghiadoni L,Salvetti A.Effects of antihypertensive drugs on endothelial dysfunction: clinical implications.Drugs2002;62:265-84

[160]

Miyamoto M,Ishibashi S.The effect of antihypertensive drugs on endothelial function as assessed by flow-mediated vasodilation in hypertensive patients.Int J Vasc Med2012;2012:453264 PMCID:PMC3303797

[161]

Flammer AJ,Li J.Renin inhibition with aliskiren lowers circulating endothelial progenitor cells in patients with early atherosclerosis.J Hypertens2013;31:632-5

[162]

Virdis A,Taddei S.Effects of antihypertensive treatment on endothelial function.Curr Hypertens Rep2011;13:276-81

[163]

Wang Y,Wang J.Effects of antidiabetic drugs on endothelial function in patients with type 2 diabetes mellitus: a bayesian network meta-analysis.Front Endocrinol2022;13:818537 PMCID:PMC8969579

[164]

Maruhashi T.Pathophysiological association between diabetes mellitus and endothelial dysfunction.Antioxidants2021;10:1306 PMCID:PMC8389282

[165]

Dandona P.Endothelial dysfunction in patients with type 2 diabetes and the effects of thiazolidinedione antidiabetic agents.J Diabetes Complications2004;18:91-102

[166]

Pereira CA,Matsumoto T.Bonus effects of antidiabetic drugs: possible beneficial effects on endothelial dysfunction, vascular inflammation and atherosclerosis.Basic Clin Pharmacol Toxicol2018;123:523-38

[167]

Huang AL.Effects of systemic inflammation on endothelium-dependent vasodilation.Trends Cardiovasc Med2006;16:15-20 PMCID:PMC2715166

[168]

Shao Y,Li X,Wang H.Immunosuppressive/anti-inflammatory cytokines directly and indirectly inhibit endothelial dysfunction-a novel mechanism for maintaining vascular function.J Hematol Oncol2014;7:80

[169]

Vera M,Martin-Rodriguez S.Antioxidant and anti-inflammatory strategies based on the potentiation of glutathione peroxidase activity prevent endothelial dysfunction in chronic kidney disease.Cell Physiol Biochem2018;51:1287-300

[170]

Penna C.Endothelial dysfunction: redox imbalance, NLRP3 inflammasome, and inflammatory responses in cardiovascular diseases.Antioxidants2025;14:256 PMCID:PMC11939635

[171]

van der Heijden T,Venema W.NLRP3 Inflammasome inhibition by MCC950 reduces atherosclerotic lesion development in apolipoprotein E-deficient mice-brief report.Arterioscler Thromb Vasc Biol2017;37:1457-61

[172]

Kajikawa M,Tomiyama H.Effect of short-term colchicine treatment on endothelial function in patients with coronary artery disease.Int J Cardiol2019;281:35-9

[173]

Tanase DM,Gosav EM.Portrayal of NLRP3 inflammasome in atherosclerosis: current knowledge and therapeutic targets.Int J Mol Sci2023;24:8162 PMCID:PMC10179095

[174]

Mankan AK,Jenne D.The NLRP3/ASC/Caspase-1 axis regulates IL-1β processing in neutrophils.Eur J Immunol2012;42:710-5

[175]

Paget C,Winter N.Specific NLRP3 inflammasome assembling and regulation in neutrophils: relevance in inflammatory and infectious diseases.Cells2022;11:1188 PMCID:PMC8997905

[176]

Fountoulakis PN,Vlachakis PK.Gut microbiota in heart failure-the role of inflammation.Biomedicines2025;13:911

[177]

Dufour D,Nuyens V.Native and myeloperoxidase-oxidized low-density lipoproteins act in synergy to induce release of resolvin-D1 from endothelial cells.Atherosclerosis2018;272:108-17

[178]

Pichavaram P,Singh NK.Cholesterol crystals promote endothelial cell and monocyte interactions via H2O2-mediated PP2A inhibition, NFκB activation and ICAM1 and VCAM1 expression.Redox Biol2019;24:101180 PMCID:PMC6477634

[179]

Varadharaj S,Khayat RN,Ahmed N.Role of dietary antioxidants in the preservation of vascular function and the modulation of health and disease.Front Cardiovasc Med2017;4:64 PMCID:PMC5671956

[180]

Mortensen A.Does vitamin C enhance nitric oxide bioavailability in a tetrahydrobiopterin-dependent manner?.Nitric Oxide2014;36:51-7

[181]

Paulo M,Bonaventura D,Bendhack LM.Nitric oxide donors as potential drugs for the treatment of vascular diseases due to endothelium dysfunction.Curr Pharm Des2020;26:3748-59

[182]

Parsamanesh N,Sardari S.Resveratrol and endothelial function: a literature review.Pharmacol Res2021;170:105725

[183]

Ulker S,Bayraktutan U.Vitamins reverse endothelial dysfunction through regulation of eNOS and NAD(P)H oxidase activities.Hypertension2003;41:534-9

[184]

Xue HM,Underwood MJ,Yang Q.AVE3085 protects coronary endothelium from the impairment of asymmetric dimethylarginine by activation and recoupling of eNOS.Cardiovasc Drugs Ther2012;26:383-92

[185]

Yang Q,Underwood MJ.Mechanistic studies of AVE3085 against homocysteine in endothelial protection.Cardiovasc Drugs Ther2013;27:511-20

[186]

Yang Q,Wong WT.AVE3085, an enhancer of endothelial nitric oxide synthase, restores endothelial function and reduces blood pressure in spontaneously hypertensive rats.Br J Pharmacol2011;163:1078-85 PMCID:PMC3130953

[187]

Li X,Lin A.Oxidative stress, endothelial dysfunction, and N-acetylcysteine in type 2 diabetes mellitus.Antioxid Redox Signal2024;40:968-89

[188]

Vera R,Galisteo M.Chronic administration of genistein improves endothelial dysfunction in spontaneously hypertensive rats: involvement of eNOS, caveolin and calmodulin expression and NADPH oxidase activity.Clin Sci2007;112:183-91

[189]

Pottecher J,Huet O.β2-adrenergic agonist protects human endothelial cells from hypoxia/reoxygenation injury in vitro.Crit Care Med2006;34:165-72

[190]

Barbato E,Benit E.Long-term effect of molsidomine, a direct nitric oxide donor, as an add-on treatment, on endothelial dysfunction in patients with stable angina pectoris undergoing percutaneous coronary intervention: results of the MEDCOR trial.Atherosclerosis2015;240:351-4

[191]

Vera OD,Braun AP.Endothelial KCa channels: novel targets to reduce atherosclerosis-driven vascular dysfunction.Front Pharmacol2023;14:1151244 PMCID:PMC10102451

[192]

Gao F,Zhu H.A potential strategy for treating atherosclerosis: improving endothelial function via AMP-activated protein kinase.Sci China Life Sci2018;61:1024-9

[193]

Tong X,Liu D.Exosome-derived circ_0001785 delays atherogenesis through the ceRNA network mechanism of miR-513a-5p/TGFBR3.J Nanobiotechnology2023;21:362 PMCID:PMC10548746

[194]

Huang HC,Rousseau J.Biomimetic nanodrug targets inflammation and suppresses YAP/TAZ to ameliorate atherosclerosis.Biomaterials2024;306:122505 PMCID:PMC11479593

[195]

Li B,Xu Z.Biomimetic ROS-responsive hyaluronic acid nanoparticles loaded with methotrexate for targeted anti-atherosclerosis.Regen Biomater2024;11:rbae102 PMCID:PMC11474234

PDF

288

Accesses

0

Citation

Detail

Sections
Recommended

/