Role of inflammation in the progression of diabetic kidney disease

Arunita Chatterjee , Jacqueline Tumarin , Sharma Prabhakar

Vessel Plus ›› 2024, Vol. 8 ›› Issue (1) : 28

PDF
Vessel Plus ›› 2024, Vol. 8 ›› Issue (1) :28 DOI: 10.20517/2574-1209.2024.21
Review

Role of inflammation in the progression of diabetic kidney disease

Author information +
History +
PDF

Abstract

Diabetic kidney disease (DKD) is a global health burden and the leading cause of end-stage renal disease. Its clinical management focuses on controlling hyperglycemia, hypertension, and hyperlipidemia. While the progression of DKD can be slowed with intervention, it cannot be stopped or reversed yet. The pathogenesis of DKD is complex, with an interplay of numerous signaling pathways, and research continues to decipher the players and their role, be it beneficial or pathogenic. Inflammation is an essential defense of our bodies against internal or external insults. The injuries that trigger inflammation range from pathogenic infections and wounds to dysregulated metabolism. Inflammation is helpful only if it is controlled and subsides after it has helped defend the individual against the insult. Uncontrolled or chronic inflammation is recognized as a contributor to numerous chronic diseases. Dysregulated inflammation plays a role in multiple aspects of DKD: glomerular hyperfiltration, mesangial expansion, podocyte injury, tubular injury, basement membrane thickening, fibrosis, and scarring. Since inflammation plays an integral role in the progression of DKD, targeting it for therapy is also reasonable. There is a growing trend of targeting inflammation as a therapeutic approach, with new targets being discovered and drugs evaluated every year. The exponential increase in literature necessitates a comprehensive summary of current information, hence this review.

Keywords

Diabetes / inflammation / diabetic nephropathy / DKD / CKD / fibrosis / oxidative stress

Cite this article

Download citation ▾
Arunita Chatterjee, Jacqueline Tumarin, Sharma Prabhakar. Role of inflammation in the progression of diabetic kidney disease. Vessel Plus, 2024, 8(1): 28 DOI:10.20517/2574-1209.2024.21

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

IDF Diabetes Atlas. 2021. Available from: https://www.diabetesatlas.org [Last accessed on 5 Jul 2024]

[2]

Pavkov ME. Diabetes and kidney disease. In: Magliano DJ, Boyko EJ, Genitsaridi I, Piemonte L, Riley P, Salpea P, editors. IDF diabetes atlas reports. Brussels, Belgium: International Diabetes Federation; 2023.

[3]

Parving HH,Ravid M,Hunsicker LG.DEMAND investigatorsPrevalence and risk factors for microalbuminuria in a referred cohort of type II diabetic patients: a global perspective.Kidney Int2006;69:2057-63

[4]

The International Diabetes Federation (IDF) and the International Society of Nephrology (ISN). Renewing the fight: a call to action on diabetes and chronic kidney disease. 2023. Available from: https://idf.org/what-we-do/advocacy/resources/?search=Renewing+the+fight%3A+a+call+to+action+on+diabetes+and+chronic+kidney+disease&type=&audience= [Last accessed on 5 Jul 2024]

[5]

Medzhitov R.Inflammation 2010: new adventures of an old flame.Cell2010;140:771-6

[6]

Pahwa R,Jialal I. Chronic inflammation. 2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK493173/ [Last accessed on 5 Jul 2024]

[7]

Pickup JC,Thomas SM.Plasma interleukin-6, tumour necrosis factor alpha and blood cytokine production in type 2 diabetes.Life Sci2000;67:291-300

[8]

Pickup JC,Chusney GD.NIDDM as a disease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X.Diabetologia1997;40:1286-92

[9]

Pradhan AD,Rifai N,Ridker PM.C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus.JAMA2001;286:327-34

[10]

Woroniecka KI,Mohtat D,Pullman JM.Transcriptome analysis of human diabetic kidney disease.Diabetes2011;60:2354-69 PMCID:PMC3161334

[11]

Fu S,Wang X.Identification of diagnostic gene biomarkers and immune infiltration in patients with diabetic kidney disease using machine learning strategies and bioinformatic analysis.Front Med2022;9:918657 PMCID:PMC9556813

[12]

Guo W,Sun Y.Systemic immune-inflammation index is associated with diabetic kidney disease in type 2 diabetes mellitus patients: evidence from NHANES 2011-2018.Front Endocrinol2022;13:1071465 PMCID:PMC9763451

[13]

Sheng X,Liu H.Systematic integrated analysis of genetic and epigenetic variation in diabetic kidney disease.Proc Natl Acad Sci USA2020;117:29013-24 PMCID:PMC7682409

[14]

Liu W,Du X.Association of systemic immune-inflammation index and systemic inflammation response index with diabetic kidney disease in patients with type 2 diabetes mellitus.Diabetes Metab Syndr Obes2024;17:517-31 PMCID:PMC10849098

[15]

Fu J,Wang X.The single-cell landscape of kidney immune cells reveals transcriptional heterogeneity in early diabetic kidney disease.Kidney Int2022;102:1291-304 PMCID:PMC9691617

[16]

Zhang X,Zhang L.Single-cell RNA and transcriptome sequencing profiles identify immune-associated key genes in the development of diabetic kidney disease.Front Immunol2023;14:1030198 PMCID:PMC10091903

[17]

Wilson PC,Kirita Y.The single-cell transcriptomic landscape of early human diabetic nephropathy.Proc Natl Acad Sci USA2019;116:19619-25 PMCID:PMC6765272

[18]

Alicic RZ,Tuttle KR.Inflammatory mechanisms as new biomarkers and therapeutic targets for diabetic kidney disease.Adv Chronic Kidney Dis2018;25:181-91

[19]

Niewczas MA,Skupien J.A signature of circulating inflammatory proteins and development of end-stage renal disease in diabetes.Nat Med2019;25:805-13 PMCID:PMC6508971

[20]

Wolkow PP,Perkins B.Association of urinary inflammatory markers and renal decline in microalbuminuric type 1 diabetics.J Am Soc Nephrol2008;19:789-97 PMCID:PMC2390964

[21]

Araújo LS,da Silva CA.Analysis of serum inflammatory mediators in type 2 diabetic patients and their influence on renal function.PLoS One2020;15:e0229765 PMCID:PMC7055870

[22]

Winter L,Jerums G.Use of readily accessible inflammatory markers to predict diabetic kidney disease.Front Endocrinol2018;9:225 PMCID:PMC5992400

[23]

Mottl AK,Bakris GL. Diabetic kidney disease: manifestations, evaluation, and diagnosis. 2024. Available from: https://medilib.ir/uptodate/show/119881 [Last accessed on 5 Jul 2024]

[24]

Ekinci EI,Skene A.Renal structure in normoalbuminuric and albuminuric patients with type 2 diabetes and impaired renal function.Diabetes Care2013;36:3620-6 PMCID:PMC3816854

[25]

Dasu MR,Zhao L,Jialal I.High glucose induces toll-like receptor expression in human monocytes: mechanism of activation.Diabetes2008;57:3090-8 PMCID:PMC2570406

[26]

Iskender H,Terim Kapakin KA.Effects of high fructose diet on lipid metabolism and the hepatic NF-κB/ SIRT-1 pathway.Biotech Histochem2022;97:30-8

[27]

Pasqualli T,da Veiga Pereira L,Flávio Souza de Oliveira L.The use of fructose as a sweetener. Is it a safe alternative for our immune system?.J Food Biochem2020;44:e13496

[28]

Fajstova A,Coufal S.Diet rich in simple sugars promotes pro-inflammatory response via gut microbiota alteration and TLR4 signaling.Cells2020;9:2701 PMCID:PMC7766268

[29]

Al-Khafaji AB,Yazdani HO,Huang H.Superoxide induces neutrophil extracellular trap formation in a TLR-4 and NOX-dependent mechanism.Mol Med2016;22:621-31 PMCID:PMC5082303

[30]

Gupta A,Fatima S.Neutrophil extracellular traps promote NLRP3 inflammasome activation and glomerular endothelial dysfunction in diabetic kidney disease.Nutrients2022;14:2965

[31]

Lewko B.Hyperglycemia and mechanical stress: targeting the renal podocyte.J Cell Physiol2009;221:288-95

[32]

Thomas MC,Susztak K.Diabetic kidney disease.Nat Rev Dis Primers2015;1:15018

[33]

Shahzad K,Khawaja H.Podocyte-specific Nlrp3 inflammasome activation promotes diabetic kidney disease.Kidney Int2022;102:766-79

[34]

Nishad R,Kethavath S.Podocyte derived TNF-α mediates monocyte differentiation and contributes to glomerular injury.FASEB J2022;36:e22622

[35]

Anderberg RJ,Hudkins KL.Serum amyloid a and inflammation in diabetic kidney disease and podocytes.Lab Invest2015;95:697 PMCID:PMC5780641

[36]

Song C,Fu Z.IGFBP5 promotes diabetic kidney disease progression by enhancing PFKFB3-mediated endothelial glycolysis.Cell Death Dis2022;13:340 PMCID:PMC9007962

[37]

Zeng H,Zhan M.Suppression of PFKFB3-driven glycolysis restrains endothelial-to-mesenchymal transition and fibrotic response.Signal Transduct Target Ther2022;7:303 PMCID:PMC9433407

[38]

Fu Y,Zhang L,Hao L.Allograft inflammatory factor-1 enhances inflammation and oxidative stress via the NF-κB pathway in diabetic kidney disease.Biochem Biophys Res Commun2022;614:63-9

[39]

Panzer U,Zahner G.Monocyte chemoattractant protein-1 and osteopontin differentially regulate monocytes recruitment in experimental glomerulonephritis.Kidney Int2001;59:1762-9

[40]

Harindhanavudhi T,Mauer M.Podocyte structural parameters do not predict progression to diabetic nephropathy in normoalbuminuric type 1 diabetic patients.Am J Nephrol2015;41:277-83 PMCID:PMC4514533

[41]

Liu B,Shen J.USP25 ameliorates diabetic nephropathy by inhibiting TRAF6-mediated inflammatory responses.Int Immunopharm2023;124:110877

[42]

Sharma A,Mathew G,Ritchie RH.Oxidative stress and NLRP3-inflammasome activity as significant drivers of diabetic cardiovascular complications: therapeutic implications.Front Physiol2018;9:114 PMCID:PMC5826188

[43]

Kaiser N,Feener EP.Differential regulation of glucose transport and transporters by glucose in vascular endothelial and smooth muscle cells.Diabetes1993;42:80-9

[44]

Devaraj S,Jialal I.Evidence of increased inflammation and microcirculatory abnormalities in patients with type 1 diabetes and their role in microvascular complications.Diabetes2007;56:2790-6 PMCID:PMC2692935

[45]

Lafuente N,Azcutia V.The deleterious effect of high concentrations of D-glucose requires pro-inflammatory preconditioning.J Hypertens2008;26:478-85

[46]

Azcutia V,Romacho T.Inflammation determines the pro-adhesive properties of high extracellular d-glucose in human endothelial cells in vitro and rat microvessels in vivo.PLoS One2010;5:e10091 PMCID:PMC2851654

[47]

Peiró C,Azcutia V.Inflammation, glucose, and vascular cell damage: the role of the pentose phosphate pathway.Cardiovasc Diabetol2016;15:82 PMCID:PMC4888494

[48]

Takiyama Y.Hypoxia in diabetic kidneys.Biomed Res Int2014;2014:837421 PMCID:PMC4094876

[49]

Advani A.The endothelium in diabetic nephropathy.Semin Nephrol2012;32:199-207

[50]

Xu C,Yang S,Jiang H.Advances in understanding and treating diabetic kidney disease: focus on tubulointerstitial inflammation mechanisms.Front Endocrinol2023;14:1232790 PMCID:PMC10583558

[51]

Wu J,Cai M.GPR56 promotes diabetic kidney disease through eNOS regulation in glomerular endothelial cells.Diabetes2023;72:1652-63 PMCID:PMC10588296

[52]

Zhan M,Sun L.Disruption of renal tubular mitochondrial quality control by Myo-inositol oxygenase in diabetic kidney disease.J Am Soc Nephrol2015;26:1304-21 PMCID:PMC4446875

[53]

Rabbani N.Advanced glycation end products in the pathogenesis of chronic kidney disease.Kidney Int2018;93:803-13

[54]

Kumar SV,Mulay SR.Neutrophil extracellular trap-related extracellular histones cause vascular necrosis in severe GN.J Am Soc Nephrol2015;26:2399-413 PMCID:PMC4587690

[55]

Saffarzadeh M,Queisser MA.Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones.PLoS One2012;7:e32366 PMCID:PMC3289648

[56]

Lim BJ,Zou J.Tubulointerstitial fibrosis can sensitize the kidney to subsequent glomerular injury.Kidney Int2017;92:1395-403 PMCID:PMC5696028

[57]

Long YS,Kralik PM,Epstein PN.Impaired albumin uptake and processing promote albuminuria in OVE26 diabetic mice.J Diabetes Res2016;2016:8749417 PMCID:PMC5086391

[58]

Zeni L,Cancarini G.A more tubulocentric view of diabetic kidney disease.J Nephrol2017;30:701-17 PMCID:PMC5698396

[59]

Tang SC,Leung JC.Bradykinin and high glucose promote renal tubular inflammation.Nephrol Dial Transplant2010;25:698-710

[60]

Wu XQ,Wang YN,Yu XY.AGE/RAGE in diabetic kidney disease and ageing kidney.Free Radic Biol Med2021;171:260-71

[61]

Ishibashi Y,Takeuchi M.Metformin inhibits advanced glycation end products (AGEs)-induced renal tubular cell injury by suppressing reactive oxygen species generation via reducing receptor for AGEs (RAGE) expression.Horm Metab Res2012;44:891-5

[62]

Klessens CQF,Wolterbeek R.Macrophages in diabetic nephropathy in patients with type 2 diabetes.Nephrol Dial Transplant2017;32:1322-9

[63]

Nguyen D,Mu W,Atkins RC.Macrophage accumulation in human progressive diabetic nephropathy.Nephrology2006;11:226-31

[64]

Verzola D,Viazzi F.Enhanced myostatin expression and signalling promote tubulointerstitial inflammation in diabetic nephropathy.Sci Rep2020;10:6343 PMCID:PMC7156449

[65]

Kang HM,Choi P.Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development.Nat Med2015;21:37-46 PMCID:PMC4444078

[66]

Cai T,Fang Y.Sodium-glucose cotransporter 2 inhibition suppresses HIF-1α-mediated metabolic switch from lipid oxidation to glycolysis in kidney tubule cells of diabetic mice.Cell Death Dis2020;11:390 PMCID:PMC7242894

[67]

Feng L,Li Y.High glucose promotes CD36 expression by upregulating peroxisome proliferator-activated receptor γ levels to exacerbate lipid deposition in renal tubular cells.Biomed Res Int2017;2017:1414070 PMCID:PMC5405368

[68]

Sun H,Sun Z.Update on mechanisms of renal tubule injury caused by advanced glycation end products.Biomed Res Int2016;2016:5475120 PMCID:PMC4789391

[69]

Yang W,Yang S.Ectopic lipid accumulation: potential role in tubular injury and inflammation in diabetic kidney disease.Clin Sci2018;132:2407-22

[70]

Kono T,Tanabe H.Role of perirenal adiposity in renal dysfunction among CKD individuals with or without diabetes: a Japanese cross-sectional study.BMJ Open Diabetes Res Care2024;12:e003832 PMCID:PMC10936520

[71]

Xu S,Zheng Y.Para-perirenal fat thickness is associated with reduced glomerular filtration rate regardless of other obesity-related indicators in patients with type 2 diabetes mellitus.PLoS One2023;18:e0293464 PMCID:PMC10602252

[72]

Arnalich F,López-Maderuelo D.Enhanced acute-phase response and oxidative stress in older adults with type II diabetes.Horm Metab Res2000;32:407-12

[73]

Prabhakar S,Shi S,Tran R.Diabetic nephropathy is associated with oxidative stress and decreased renal nitric oxide production.J Am Soc Nephrol2007;18:2945-52

[74]

Jha JC,Dan C.A causal link between oxidative stress and inflammation in cardiovascular and renal complications of diabetes.Clin Sci2018;132:1811-36

[75]

Esposito K,Marfella R.Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress.Circulation2002;106:2067-72

[76]

Hojs R,Bevc S.Markers of inflammation and oxidative stress in the development and progression of renal disease in diabetic patients.Nephron2016;133:159-62

[77]

Winiarska A,Nabrdalik K,Stompór T.Inflammation and oxidative stress in diabetic kidney disease: the targets for SGLT2 inhibitors and GLP-1 receptor agonists.Int J Mol Sci2021;22:10822 PMCID:PMC8509708

[78]

Jha JC,Chow BS,Jandeleit-Dahm K.Diabetes and kidney disease: role of oxidative stress.Antioxid Redox Signal2016;25:657-84 PMCID:PMC5069735

[79]

Jha JC,Garzarella J.Independent of renox, NOX5 promotes renal inflammation and fibrosis in diabetes by activating ROS-sensitive pathways.Diabetes2022;71:1282-98

[80]

Forbes JM,Cooper ME. Role of oxidative stress in diabetic nephropathy. In: Prabhakar SS, editor. Advances in pathogenesis of diabetic nephropathy. New York: Nova Science Publishers, Inc.; 2012. pp.199-218.

[81]

Casalena GA,Gil R.The diabetic microenvironment causes mitochondrial oxidative stress in glomerular endothelial cells and pathological crosstalk with podocytes.Cell Commun Signal2020;18:105 PMCID:PMC7341607

[82]

Erekat NS.Programmed cell death in diabetic nephropathy: a review of apoptosis, autophagy, and necroptosis.Med Sci Monit2022;28:e937766 PMCID:PMC9462523

[83]

Wang H,Zheng B.Emerging role of ferroptosis in diabetic kidney disease: molecular mechanisms and therapeutic opportunities.Int J Biol Sci2023;19:2678-94 PMCID:PMC10266077

[84]

Park E.ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation.Cell Death Dis2019;10:822 PMCID:PMC6817894

[85]

Luo EF,Qin YH.Role of ferroptosis in the process of diabetes-induced endothelial dysfunction.World J Diabetes2021;12:124-37 PMCID:PMC7839168

[86]

Li S,Zhang J,Wu Z.Inhibition of ferroptosis by up-regulating Nrf2 delayed the progression of diabetic nephropathy.Free Radic Biol Med2021;162:435-49

[87]

Wang YH,Zhao MH.Glutathione peroxidase 4 is a predictor of diabetic kidney disease progression in type 2 diabetes mellitus.Oxid Med Cell Longev2022;2022:2948248 PMCID:PMC9581693

[88]

Zhou W,Hu Q,Lin H.The landscape of immune cell infiltration in the glomerulus of diabetic nephropathy: evidence based on bioinformatics.BMC Nephrol2022;23:303 PMCID:PMC9442983

[89]

Wang J,Chen S,Hu Y.Landscape of infiltrating immune cells and related genes in diabetic kidney disease.Clin Exp Nephrol2024;28:181-91

[90]

Rockey DC,Hill JA.Fibrosis - a common pathway to organ injury and failure.N Engl J Med2015;373:95-6

[91]

Huang R,Ma L.Kidney fibrosis: from mechanisms to therapeutic medicines.Signal Transduct Target Ther2023;8:129 PMCID:PMC10023808

[92]

Falke LL,Goldschmeding R,Nguyen TQ.Diverse origins of the myofibroblast - implications for kidney fibrosis.Nat Rev Nephrol2015;11:233-44

[93]

Bohle A,von Gise H.The consequences of tubulo-interstitial changes for renal function in glomerulopathies. A morphometric and cytological analysis.Pathol Res Pract1990;186:135-44

[94]

Wang D,Chen R.Senescent renal tubular epithelial cells activate fibroblasts by secreting Shh to promote the progression of diabetic kidney disease.Front Med2022;9:1018298 PMCID:PMC9905119

[95]

Navarro-González JF,Muros de Fuentes M.Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy.Nat Rev Nephrol2011;7:327-40

[96]

Liu C,Li L.A glimpse of inflammation and anti-inflammation therapy in diabetic kidney disease.Front Physiol2022;13:909569 PMCID:PMC9298824

[97]

Pérez-Morales RE,Valdivielso JM,Mora-Fernández C.Inflammation in diabetic kidney disease.Nephron2019;143:12-6

[98]

Mezzano S,Droguett A.NF-kappaB activation and overexpression of regulated genes in human diabetic nephropathy.Nephrol Dial Transplant2004;19:2505-12

[99]

Wang Y,Yuan S.TLR4/NF-κB signaling induces GSDMD-related pyroptosis in tubular cells in diabetic kidney disease.Front Endocrinol2019;10:603 PMCID:PMC6761221

[100]

Foresto-Neto O,Arias SCA.NF-κB system is chronically activated and promotes glomerular injury in experimental type 1 diabetic kidney disease.Front Physiol2020;11:84 PMCID:PMC7026681

[101]

Lu TC,Feng X.Knockdown of Stat3 activity in vivo prevents diabetic glomerulopathy.Kidney Int2009;76:63-71 PMCID:PMC2888596

[102]

Simon AR,Fanburg BL.Activation of the JAK-STAT pathway by reactive oxygen species.Am J Physiol1998;275:C1640-52

[103]

Marrero MB,Stern DM.Role of the JAK/STAT signaling pathway in diabetic nephropathy.Am J Physiol Renal Physiol2006;290:F762-8

[104]

Liu Y,Zhang J,Xu T.JAK/STAT signaling in diabetic kidney disease.Front Cell Dev Biol2023;11:1233259 PMCID:PMC10450957

[105]

Bao NN,Zhu D.Influence of overexpression of SOCS2 on cells of DN rat.Asian Pac J Trop Med2015;8:583-9

[106]

Chen D,Chen J.JAK/STAT pathway promotes the progression of diabetic kidney disease via autophagy in podocytes.Eur J Pharmacol2021;902:174121

[107]

Yu L,Zhang H.SOCS3 overexpression inhibits advanced glycation end product-induced EMT in proximal tubule epithelial cells.Exp Ther Med2017;13:3109-15 PMCID:PMC5450738

[108]

Berthier CC,Schin M.Enhanced expression of Janus kinase-signal transducer and activator of transcription pathway members in human diabetic nephropathy.Diabetes2009;58:469-77 PMCID:PMC2628622

[109]

Huang F,Guo F.FoxO1-mediated inhibition of STAT1 alleviates tubulointerstitial fibrosis and tubule apoptosis in diabetic kidney disease.EBioMedicine2019;48:491-504 PMCID:PMC6838438

[110]

Tuttle KR,Adler SG.JAK1/JAK2 inhibition by baricitinib in diabetic kidney disease: results from a phase 2 randomized controlled clinical trial.Nephrol Dial Transplant2018;33:1950-9 PMCID:PMC6212720

[111]

El-Kady MM,Guimei M,Shaker OG.Early renoprotective effect of ruxolitinib in a rat model of diabetic nephropathy.Pharmaceuticals2021;14:608 PMCID:PMC8308627

[112]

Zhang Y,Kang X.Signaling pathways involved in diabetic renal fibrosis.Front Cell Dev Biol2021;9:696542 PMCID:PMC8314387

[113]

Tian L,Xie Y.Kidney injury molecule-1 is elevated in nephropathy and mediates macrophage activation via the mapk signalling pathway.Cell Physiol Biochem2017;41:769-83

[114]

Wu J,Vlassara H,Zheng F.Oxidative stress-induced JNK activation contributes to proinflammatory phenotype of aging diabetic mesangial cells.Am J Physiol Renal Physiol2009;297:F1622-31 PMCID:PMC2801342

[115]

Ma FY,Tesch GH.A pathogenic role for c-Jun amino-terminal kinase signaling in renal fibrosis and tubular cell apoptosis.J Am Soc Nephrol2007;18:472-84

[116]

Chan ED.IFN-gamma + LPS induction of iNOS is modulated by ERK, JNK/SAPK, and p38(mapk) in a mouse macrophage cell line.Am J Physiol Cell Physiol2001;280:C441-50

[117]

Sakai N,Furuichi K.Involvement of extracellular signal-regulated kinase and p38 in human diabetic nephropathy.Am J Kidney Dis2005;45:54-65

[118]

Fujita H,Ishikura K,Awazu M.ERK and p38 mediate high-glucose-induced hypertrophy and TGF-beta expression in renal tubular cells.Am J Physiol Renal Physiol2004;286:F120-6

[119]

Woznowski MP,Königshausen E.Inhibition of p38 MAPK decreases hyperglycemia-induced nephrin endocytosis and attenuates albuminuria.J Mol Med2022;100:781-95 PMCID:PMC9110524

[120]

Kang SW,Lapage J.p38 MAPK and MAPK kinase 3/6 mRNA and activities are increased in early diabetic glomeruli.Kidney Int2001;60:543-52

[121]

Reddy MA,Kim YS.Interaction of MAPK and 12-lipoxygenase pathways in growth and matrix protein expression in mesangial cells.Am J Physiol Renal Physiol2002;283:F985-94

[122]

Tan SM,Østergaard JA.The complement pathway: new insights into immunometabolic signaling in diabetic kidney disease.Antioxid Redox Signal2022;37:781-801 PMCID:PMC9587781

[123]

Flyvbjerg A.The role of the complement system in diabetic nephropathy.Nat Rev Nephrol2017;13:311-8

[124]

Tang SCW.Innate immunity in diabetic kidney disease.Nat Rev Nephrol2020;16:206-22

[125]

Østergaard JA,Lajer M.Increased all-cause mortality in patients with type 1 diabetes and high-expression mannan-binding lectin genotypes: a 12-year follow-up study.Diabetes Care2015;38:1898-903

[126]

Tserga A,Palamaris K.Complement cascade proteins correlate with fibrosis and inflammation in early-stage type 1 diabetic kidney disease in the Ins2Akita mouse model.Int J Mol Sci2024;25:1387 PMCID:PMC10855735

[127]

Hovind P,Tarnow L.Mannose-binding lectin as a predictor of microalbuminuria in type 1 diabetes: an inception cohort study.Diabetes2005;54:1523-7

[128]

Kelly KJ,Zhang J.Renal C3 complement component: feed forward to diabetic kidney disease.Am J Nephrol2015;41:48-56 PMCID:PMC4351877

[129]

Uesugi N,Nangaku M.Possible mechanism for medial smooth muscle cell injury in diabetic nephropathy: glycoxidation-mediated local complement activation.Am J Kidney Dis2004;44:224-38

[130]

Gora IM,Ladyzynski P.NLRP3 inflammasome at the interface of inflammation, endothelial dysfunction, and type 2 diabetes.Cells2021;10:314 PMCID:PMC7913585

[131]

Swanson KV,Ting JP.The NLRP3 inflammasome: molecular activation and regulation to therapeutics.Nat Rev Immunol2019;19:477-89 PMCID:PMC7807242

[132]

Wu M,Zhang C.Inhibition of NLRP3 inflammasome ameliorates podocyte damage by suppressing lipid accumulation in diabetic nephropathy.Metabolism2021;118:154748

[133]

Jridi I,Pike-Overzet K.Inflammation and Wnt signaling: target for immunomodulatory therapy?.Front Cell Dev Biol2020;8:615131 PMCID:PMC7890028

[134]

Liu J,Xiao J.Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities.Signal Transduct Target Ther2022;7:3 PMCID:PMC8724284

[135]

Bose M,Prabhakar S.Wnt signaling and podocyte dysfunction in diabetic nephropathy.J Investig Med2017;65:1093-101

[136]

Baulida J,Herreros AG.Snail1: a transcriptional factor controlled at multiple levels.J Clin Med2019;8:757 PMCID:PMC6616578

[137]

Wang B,Ding X.WNT1-inducible signaling pathway protein 1 regulates kidney inflammation through the NF-κB pathway.Clin Sci2022;136:29-44 PMCID:PMC8734439

[138]

Li X,Dong Y.Wnt5a promotes renal tubular inflammation in diabetic nephropathy by binding to CD146 through noncanonical Wnt signaling.Cell Death Dis2021;12:92 PMCID:PMC7814016

[139]

Pereira C,Bachli EB,Schoedon G.Wnt5A/CaMKII signaling contributes to the inflammatory response of macrophages and is a target for the antiinflammatory action of activated protein C and interleukin-10.Arterioscler Thromb Vasc Biol2008;28:504-10

[140]

Li SS,Hua MR.Targeting the Wnt/β-catenin signaling pathway as a potential therapeutic strategy in renal tubulointerstitial fibrosis.Front Pharmacol2021;12:719880 PMCID:PMC8415231

[141]

Zhou L,Hao S.Multiple genes of the renin-angiotensin system are novel targets of Wnt/β-catenin signaling.J Am Soc Nephrol2015;26:107-20 PMCID:PMC4279741

[142]

Kuusniemi AM,Holmberg C,Rapola J.Kidneys with heavy proteinuria show fibrosis, inflammation, and oxidative stress, but no tubular phenotypic change.Kidney Int2005;68:121-32

[143]

Zhang H,Huang W.IKKα aggravates renal fibrogenesis by positively regulating the Wnt/β-catenin pathway.Immunology2023;168:120-34

[144]

You H,Andreadis ST.JNK is a novel regulator of intercellular adhesion.Tissue Barriers2013;1:e26845 PMCID:PMC3942331

[145]

Simon-Tillaux N.Snail and kidney fibrosis.Nephrol Dial Transplant2017;32:224-33

[146]

Cohen C,Croizer H.WNT-dependent interaction between inflammatory fibroblasts and FOLR2+ macrophages promotes fibrosis in chronic kidney disease.Nat Commun2024;15:743 PMCID:PMC10810789

[147]

Liang J,Zhang N.The phosphorylation of the Smad2/3 linker region by nemo-like kinase regulates TGF-β signaling.J Biol Chem2021;296:100512 PMCID:PMC8047224

[148]

Chung AC,Yang W,Li R.Smad7 suppresses renal fibrosis via altering expression of TGF-β/Smad3-regulated microRNAs.Mol Ther2013;21:388-98 PMCID:PMC3594008

[149]

Yu L,Huang Y.TGF-beta isoforms in renal fibrogenesis.Kidney Int2003;64:844-56

[150]

Murakami K,Hino S.Urinary transforming growth factor-beta in patients with glomerular diseases.Pediatr Nephrol1997;11:334-6

[151]

Kayhan M,Rodriguez DG.Intrinsic TGF-β signaling attenuates proximal tubule mitochondrial injury and inflammation in chronic kidney disease.Nat Commun2023;14:3236 PMCID:PMC10239443

[152]

Melo Z,Franco-acevedo A.Pharmacological blockade of TGF-beta reduces renal interstitial fibrosis in a chronic ischemia-reperfusion animal model.Drugs Drug Cand2023;2:137-47

[153]

Voelker J,Sheetz M.Anti-TGF-β1 antibody therapy in patients with diabetic nephropathy.J Am Soc Nephrol2017;28:953-62 PMCID:PMC5328150

[154]

Qi W,Zhang Y.High glucose induces macrophage inflammatory protein-3 alpha in renal proximal tubule cells via a transforming growth factor-beta 1 dependent mechanism.Nephrol Dial Transplant2007;22:3147-53

[155]

Levéen P,Ehinger M.Induced disruption of the transforming growth factor beta type II receptor gene in mice causes a lethal inflammatory disorder that is transplantable.Blood2002;100:560-8

[156]

Neelisetty S,Reynolds K.Renal fibrosis is not reduced by blocking transforming growth factor-β signaling in matrix-producing interstitial cells.Kidney Int2015;88:503-14 PMCID:PMC4556568

[157]

Jung SW.The role of inflammation in diabetic kidney disease.Korean J Intern Med2021;36:753-66 PMCID:PMC8273831

[158]

Kronenberg F.HDL in CKD-the devil is in the detail.J Am Soc Nephrol2018;29:1356-71 PMCID:PMC5967756

[159]

Li B,Chan LYY,Tang SCW.A global perspective on the crosstalk between saturated fatty acids and toll-like receptor 4 in the etiology of inflammation and insulin resistance.Prog Lipid Res2020;77:101020

[160]

Santana MFM,Pinto RS.Enrichment of apolipoprotein A-IV and apolipoprotein D in the HDL proteome is associated with HDL functions in diabetic kidney disease without dialysis.Lipids Health Dis2020;19:205 PMCID:PMC7488728

[161]

Sourris KC,Maxwell SS.Glucagon-like peptide-1 receptor signaling modifies the extent of diabetic kidney disease through dampening the receptor for advanced glycation end products-induced inflammation.Kidney Int2024;105:132-49

[162]

Klanke B,Hartner A,Veelken R.Blood pressure versus direct mineralocorticoid effects on kidney inflammation and fibrosis in DOCA-salt hypertension.Nephrol Dial Transplant2008;23:3456-63

[163]

Muthaian R,Parasuraman S.Hypertension influences the exponential progression of inflammation and oxidative stress in streptozotocin-induced diabetic kidney.J Pharmacol Pharmacother2016;7:159-64 PMCID:PMC5242028

[164]

Yang CC,Cheng YH,Cheng KH.Diabetes associated with hypertension exacerbated oxidative stress-mediated inflammation, apoptosis and autophagy leading to erectile dysfunction in rats.J Chin Med Assoc2022;85:346-57

[165]

Chen GY.Sterile inflammation: sensing and reacting to damage.Nat Rev Immunol2010;10:826-37 PMCID:PMC3114424

[166]

Roh JS.Damage-associated molecular patterns in inflammatory diseases.Immune Netw2018;18:e27 PMCID:PMC6117512

[167]

Ren L,White LR.Soluble fibronectin induces chemokine gene expression in renal tubular epithelial cells.Kidney Int2005;68:2111-20

[168]

Xie Q,Mao X.Matrix protein tenascin-C promotes kidney fibrosis via STAT3 activation in response to tubular injury.Cell Death Dis2022;13:1044 PMCID:PMC9755308

[169]

Liu T,Jin Q.Targeting HMGB1: a potential therapeutic strategy for chronic kidney disease.Int J Biol Sci2023;19:5020-35 PMCID:PMC10539693

[170]

Guarda NS,de Carvalho JAM,Comim FV.High serum uric acid is associated with tubular damage and kidney inflammation in patients with type 2 diabetes.Dis Markers2019;2019:6025804 PMCID:PMC6487123

[171]

Jung SW,Kim YG,Moon JY.Uric acid and inflammation in kidney disease.Am J Physiol Renal Physiol2020;318:F1327-40

[172]

Lin M,Wu HJ.Toll-like receptor 4 promotes tubular inflammation in diabetic nephropathy.J Am Soc Nephrol2012;23:86-102 PMCID:PMC3269929

[173]

Mudaliar H,Komala MG,Wu H.The role of toll-like receptor proteins (TLR) 2 and 4 in mediating inflammation in proximal tubules.Am J Physiol Renal Physiol2013;305:F143-54

[174]

Kaur H,Jialal I.Hyperglycemia induces toll like receptor 4 expression and activity in mouse mesangial cells: relevance to diabetic nephropathy.Am J Physiol Renal Physiol2012;303:F1145-50 PMCID:PMC3469679

[175]

Verzola D,D'Amato E.Enhanced glomerular toll-like receptor 4 expression and signaling in patients with type 2 diabetic nephropathy and microalbuminuria.Kidney Int2014;86:1229-43

[176]

Devaraj S,Kasinath BS,Afify A.Knockout of toll-like receptor-2 attenuates both the proinflammatory state of diabetes and incipient diabetic nephropathy.Arterioscler Thromb Vasc Biol2011;31:1796-804 PMCID:PMC3148786

[177]

Kim SM,Kim DJ.Inflammasome-independent role of NLRP3 mediates mitochondrial regulation in renal injury.Front Immunol2018;9:2563 PMCID:PMC6240646

[178]

Tanji N,Fu C.Expression of advanced glycation end products and their cellular receptor RAGE in diabetic nephropathy and nondiabetic renal disease.J Am Soc Nephrol2000;11:1656-66

[179]

Sanajou D,Argani H.AGE-RAGE axis blockade in diabetic nephropathy: current status and future directions.Eur J Pharmacol2018;833:158-64

[180]

Hansen TK,Tarnow L.Mannose-binding lectin and mortality in type 2 diabetes.Arch Intern Med2006;166:2007-13

[181]

Hansen TK,Saraheimo M.Association between mannose-binding lectin, high-sensitivity C-reactive protein and the progression of diabetic nephropathy in type 1 diabetes.Diabetologia2010;53:1517-24

[182]

Gedebjerg A,Kjaergaard AD.Mannose-binding lectin and risk of cardiovascular events and mortality in type 2 diabetes: a danish cohort study.Diabetes Care2020;43:2190-8

[183]

Zhou ZF,Zhao Q.Roles of pattern recognition receptors in diabetic nephropathy.J Zhejiang Univ Sci B2020;21:192-203 PMCID:PMC7086007

[184]

Donate-Correa J,Sánchez-Quintana F.Inflammatory cytokines in diabetic kidney disease: pathophysiologic and therapeutic implications.Front Med2020;7:628289 PMCID:PMC7862763

[185]

Araújo LS,da Silva CA.Renal expression of cytokines and chemokines in diabetic nephropathy.BMC Nephrol2020;21:308 PMCID:PMC7389446

[186]

Moriwaki Y,Shibutani Y.Elevated levels of interleukin-18 and tumor necrosis factor-alpha in serum of patients with type 2 diabetes mellitus: relationship with diabetic nephropathy.Metabolism2003;52:605-8

[187]

Kader Mahmoud RA,Hegazy AS.Increased serum levels of interleukin-18 in patients with diabetic nephropathy.Ital J Biochem2004;53:73-81

[188]

Wong CK,Tong PC.Aberrant activation profile of cytokines and mitogen-activated protein kinases in type 2 diabetic patients with nephropathy.Clin Exp Immunol2007;149:123-31 PMCID:PMC1942021

[189]

Kado S,Nagata N.Circulating levels of interleukin-6, its soluble receptor and interleukin-6/interleukin-6 receptor complexes in patients with type 2 diabetes mellitus.Acta Diabetol1999;36:67-72

[190]

Shikano M,Yoshikawa H.Usefulness of a highly sensitive urinary and serum IL-6 assay in patients with diabetic nephropathy.Nephron2000;85:81-5

[191]

Milas O,Vlad A.Pro-inflammatory cytokines are associated with podocyte damage and proximal tubular dysfunction in the early stage of diabetic kidney disease in type 2 diabetes mellitus patients.J Diabetes Complications2020;34:107479

[192]

Vesey DA,Cuttle L,Gobe G.Interleukin-1beta stimulates human renal fibroblast proliferation and matrix protein production by means of a transforming growth factor-beta-dependent mechanism.J Lab Clin Med2002;140:342-50

[193]

Navarro JF.The role of TNF-alpha in diabetic nephropathy: pathogenic and therapeutic implications.Cytokine Growth Factor Rev2006;17:441-50

[194]

Min D,Bonner J,Yue DK.Mesangial cell-derived factors alter monocyte activation and function through inflammatory pathways: possible pathogenic role in diabetic nephropathy.Am J Physiol Renal Physiol2009;297:F1229-37

[195]

Fang Y,Pang B.Exploring the relations of NLR, hsCRP and MCP-1 with type 2 diabetic kidney disease: a cross-sectional study.Sci Rep2024;14:3211 PMCID:PMC10853504

[196]

Siddiqui K,Al-Rubeaan K.Association of urinary monocyte chemoattractant protein-1 (MCP-1) and kidney injury molecule-1 (KIM-1) with risk factors of diabetic kidney disease in type 2 diabetes patients.Int Urol Nephrol2019;51:1379-86

[197]

Kikuchi Y,Hemmi N.Fractalkine and its receptor, CX3CR1, upregulation in streptozotocin-induced diabetic kidneys.Nephron Exp Nephrol2004;97:e17-25

[198]

Shimizu K,Sakai N.Fractalkine and its receptor, CX3CR1, promote hypertensive interstitial fibrosis in the kidney.Hypertens Res2011;34:747-52

[199]

Song KH,Park JH,Ha H.Fractalkine and its receptor mediate extracellular matrix accumulation in diabetic nephropathy in mice.Diabetologia2013;56:1661-9 PMCID:PMC4737593

[200]

Seron D,Haskard DO.Expression of VCAM-1 in the normal and diseased kidney.Nephrol Dial Transplant1991;6:917-22

[201]

Sugimoto H,Hirata K.Increased expression of intercellular adhesion molecule-1 (ICAM-1) in diabetic rat glomeruli: glomerular hyperfiltration is a potential mechanism of ICAM-1 upregulation.Diabetes1997;46:2075-81

[202]

Chen Q,Gong W.MRTF-A mediated FN and ICAM-1 expression in AGEs-induced rat glomerular mesangial cells via activating STAT5.Mol Cell Endocrinol2018;460:123-33

[203]

Ina K,Okeda T.Vascular cell adhesion molecule-1 expression in the renal interstitium of diabetic KKAy mice.Diabetes Res Clin Pract1999;44:1-8

[204]

Rubio-Guerra AF,Lozano Nuevo JJ.Correlation between circulating adhesion molecule levels and albuminuria in type-2 diabetic hypertensive patients.Kidney Blood Press Res2009;32:106-9

[205]

Opal SM.Anti-inflammatory cytokines.Chest2000;117:1162-72

[206]

Peruchetti DB,Silva-Aguiar RP.IL-4 receptor α chain protects the kidney against tubule-interstitial injury induced by albumin overload.Front Physiol2020;11:172 PMCID:PMC7056741

[207]

Novianti Y.Exploring interleukin-10 levels in diabetes patients with and without oral diseases: a systematic review.J Inflamm Res2024;17:541-52 PMCID:PMC10838512

[208]

Huang J,Tai N.IL-10 deficiency accelerates type 1 diabetes development via modulation of innate and adaptive immune cells and gut microbiota in BDC2.5 NOD mice.Front Immunol2021;12:702955 PMCID:PMC8362616

[209]

Barry JC,Durrer C.Hyporesponsiveness to the anti-inflammatory action of interleukin-10 in type 2 diabetes.Sci Rep2016;6:21244 PMCID:PMC4756700

[210]

Jin Y,Xie J,He JC.Interleukin-10 deficiency aggravates kidney inflammation and fibrosis in the unilateral ureteral obstruction mouse model.Lab Invest2013;93:801-11

[211]

Naing C,Basavaraj AK.An association between IL-10 promoter polymorphisms and diabetic nephropathy: a meta-analysis of case-control studies.J Diabetes Metab Disord2018;17:333-43 PMCID:PMC6405406

[212]

Fan X,Liu LC.Interleukin-10 attenuates renal injury after myocardial infarction in diabetes.J Investig Med2022;70:1233-42

[213]

Widjaja AA,Shekeran SG.Targeting endogenous kidney regeneration using anti-IL11 therapy in acute and chronic models of kidney disease.Nat Commun2022;13:7497 PMCID:PMC9723120

[214]

Widjaja AA.The pathobiology of IL-11 in kidney disease: from epithelial cell to fibroblast and back again.Am J Pathol2023;193:1910-3

[215]

Prasad R,Lakshmi P,Apoorva SM.Interleukin-11 - its role in the vicious cycle of inflammation, periodontitis and diabetes: a clinicobiochemical cross-sectional study.J Indian Soc Periodontol2015;19:159-63 PMCID:PMC4439624

[216]

Stanya KJ,Liu S.Direct control of hepatic glucose production by interleukin-13 in mice.J Clin Invest2013;123:261-71 PMCID:PMC3533296

[217]

Martínez-Reyes CP,Torres-Castro I.Serum levels of interleukin-13 increase in subjects with insulin resistance but do not correlate with markers of low-grade systemic inflammation.J Diabetes Res2018;2018:7209872 PMCID:PMC5841096

[218]

Gu L,Liu X,Lei Z.The relationship between interleukin-4 levels and cardiovascular events in patients with chronic kidney disease.Risk Manag Healthc Policy2020;13:2371-7 PMCID:PMC7646470

[219]

Liu C,Ding J.Group 2 innate lymphoid cells participate in renal fibrosis in diabetic kidney disease partly via TGF-β1 signal pathway.J Diabetes Res2019;2019:8512028 PMCID:PMC6636594

[220]

Ortiz-Muñoz G,Lopez-Franco O.Suppressors of cytokine signaling abrogate diabetic nephropathy.J Am Soc Nephrol2010;21:763-72 PMCID:PMC2865742

[221]

Serhan CN,Van Dyke TE.Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators.Nat Rev Immunol2008;8:349-61 PMCID:PMC2744593

[222]

Panigrahy D,Serhan CN.Resolution of inflammation: an organizing principle in biology and medicine.Pharmacol Ther2021;227:107879

[223]

Wang S,Shen C.The protective effects of lipoxin A4 on type 2 diabetes mellitus: a Chinese prospective cohort study.Front Endocrinol2023;14:1109747 PMCID:PMC9892446

[224]

Brennan EP,McClelland A.Lipoxins regulate the early growth response-1 network and reverse diabetic kidney disease.J Am Soc Nephrol2018;29:1437-48 PMCID:PMC5967780

[225]

Qu X,Yao J,Nikolic-Paterson DJ.Resolvins E1 and D1 inhibit interstitial fibrosis in the obstructed kidney via inhibition of local fibroblast proliferation.J Pathol2012;228:506-19

[226]

Tang S,Long Y.Maresin 1 mitigates high glucose-induced mouse glomerular mesangial cell injury by inhibiting inflammation and fibrosis.Mediators Inflamm2017;2017:2438247 PMCID:PMC5274668

[227]

Bathina S,Rhenghachar P.Resolvin D1 ameliorates nicotinamide-streptozotocin-induced type 2 diabetes mellitus by its anti-inflammatory action and modulating PI3K/Akt/mTOR pathway in the brain.Arch Med Res2020;51:492-503

[228]

Duffield JS,Vaidya VS.Resolvin D series and protectin D1 mitigate acute kidney injury.J Immunol2006;177:5902-11

[229]

Brennan E,Cooper ME.Pro-resolving lipid mediators: regulators of inflammation, metabolism and kidney function.Nat Rev Nephrol2021;17:725-39 PMCID:PMC8287849

[230]

Vartak T,Brennan E.Therapeutic potential of pro-resolving mediators in diabetic kidney disease.Adv Drug Deliv Rev2021;178:113965

[231]

Hofherr A,Gan LM,Hansen PBL.Targeting inflammation for the treatment of diabetic kidney disease: a five-compartment mechanistic model.BMC Nephrol2022;23:208 PMCID:PMC9190142

[232]

Rayego-Mateos S,Fernandez-Fernandez B.Targeting inflammation to treat diabetic kidney disease: the road to 2030.Kidney Int2023;103:282-96

[233]

Zhong M,Li N.Identification of diagnostic markers related to oxidative stress and inflammatory response in diabetic kidney disease by machine learning algorithms: evidence from human transcriptomic data and mouse experiments.Front Endocrinol2023;14:1134325 PMCID:PMC10028207

[234]

Navarro-González JF,Muros de Fuentes M.Effect of pentoxifylline on renal function and urinary albumin excretion in patients with diabetic kidney disease: the PREDIAN trial.J Am Soc Nephrol2015;26:220-9 PMCID:PMC4279740

[235]

Niewczas MA,Skupien J.Circulating TNF receptors 1 and 2 predict ESRD in type 2 diabetes.J Am Soc Nephrol2012;23:507-15 PMCID:PMC3294310

[236]

Gohda T,Ficociello LH.Circulating TNF receptors 1 and 2 predict stage 3 CKD in type 1 diabetes.J Am Soc Nephrol2012;23:516-24 PMCID:PMC3294299

[237]

Agarwal R,Laska DA,Breyer MD.A prospective study of multiple protein biomarkers to predict progression in diabetic chronic kidney disease.Nephrol Dial Transplant2014;29:2293-302

[238]

Tam FW,Meeran K,Pusey CD.Urinary monocyte chemoattractant protein-1 (MCP-1) and connective tissue growth factor (CCN2) as prognostic markers for progression of diabetic nephropathy.Cytokine2009;47:37-42

[239]

Verhave JC,Goupil R.Clinical value of inflammatory urinary biomarkers in overt diabetic nephropathy: a prospective study.Diabetes Res Clin Pract2013;101:333-40

[240]

Ruiz-Ortega M,Lorenzo O.Angiotensin II regulates the synthesis of proinflammatory cytokines and chemokines in the kidney.Kidney Int Suppl2002;62:S12-22

[241]

Zhou Y,Han JY.Metformin regulates inflammation and fibrosis in diabetic kidney disease through TNC/TLR4/NF-κB/miR-155-5p inflammatory loop.World J Diabetes2021;12:19-46 PMCID:PMC7807255

[242]

Lee CT,Hsieh CF.SGLT2 inhibitor canagliflozin alleviates high glucose-induced inflammatory toxicity in BV-2 microglia.Biomedicines2023;12:36 PMCID:PMC10813070

[243]

Cai A,Yang X.Dapagliflozin alleviates renal inflammation and protects against diabetic kidney diseases, both dependent and independent of blood glucose levels.Front Immunol2023;14:1205834 PMCID:PMC10665888

[244]

Gohari S,Mahjani M.The effect of sodium-glucose co-transporter-2 (SGLT2) inhibitors on blood interleukin-6 concentration: a systematic review and meta-analysis of randomized controlled trials.BMC Endocr Disord2023;23:257 PMCID:PMC10668472

[245]

Packer M.Critical reanalysis of the mechanisms underlying the cardiorenal benefits of SGLT2 inhibitors and reaffirmation of the nutrient deprivation signaling/autophagy hypothesis.Circulation2022;146:1383-405 PMCID:PMC9624240

[246]

Tuttle KR.Digging deep into cells to find mechanisms of kidney protection by SGLT2 inhibitors.J Clin Invest2023;133:e167700 PMCID:PMC9974093

[247]

Sheng W,Zhang H.Empagliflozin attenuates inflammation levels in autoimmune myocarditis through the STAT3 pathway and macrophage phenotype transformation.Mol Immunol2024;167:43-52

[248]

von Scholten BJ,Rosenlund S.Effects of liraglutide on cardiovascular risk biomarkers in patients with type 2 diabetes and albuminuria: a sub-analysis of a randomized, placebo-controlled, double-blind, crossover trial.Diabetes Obes Metab2017;19:901-5

[249]

Kodera R,Kataoka HU.Glucagon-like peptide-1 receptor agonist ameliorates renal injury through its anti-inflammatory action without lowering blood glucose level in a rat model of type 1 diabetes.Diabetologia2011;54:965-78

[250]

Bakris GL,Anker SD.Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes.N Engl J Med2020;383:2219-29

[251]

Epstein M,Clase CM,Pecoits-Filho R.Aldosterone, mineralocorticoid receptor activation, and CKD: a review of evolving treatment paradigms.Am J Kidney Dis2022;80:658-66

[252]

Lv R,Che L,Wang Y.Cardiovascular-renal protective effect and molecular mechanism of finerenone in type 2 diabetic mellitus.Front Endocrinol2023;14:1125693 PMCID:PMC9968798

[253]

Said E,Eldosoky M.Nifuroxazide, a STAT3 inhibitor, mitigates inflammatory burden and protects against diabetes-induced nephropathy in rats.Chem Biol Interact2018;281:111-20

[254]

Pang M,Gong R.A novel STAT3 inhibitor, S3I-201, attenuates renal interstitial fibroblast activation and interstitial fibrosis in obstructive nephropathy.Kidney Int2010;78:257-68

[255]

Edwards LJ,Kyttaris V.Signal transducer and activator of transcription (STAT) 3 inhibition delays the onset of lupus nephritis in MRL/lpr mice.Clin Immunol2015;158:221-30 PMCID:PMC4465043

[256]

Yokota T,Suico MA.STAT3 inhibition attenuates the progressive phenotypes of alport syndrome mouse model.Nephrol Dial Transplant2018;33:214-23

[257]

Hong DS,Supko JG.A phase I first-in-human trial of bardoxolone methyl in patients with advanced solid tumors and lymphomas.Clin Cancer Res2012;18:3396-406 PMCID:PMC4494099

[258]

Pergola PE,Toto RD.Bardoxolone methyl and kidney function in CKD with type 2 diabetes.N Engl J Med2011;365:327-36

[259]

de Zeeuw D,Audhya P.Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease.N Engl J Med2013;369:2492-503 PMCID:PMC4496027

[260]

Chin MP,Block GA.Bardoxolone methyl improves kidney function in patients with chronic kidney disease stage 4 and type 2 diabetes: post-hoc analyses from bardoxolone methyl evaluation in patients with chronic kidney disease and type 2 diabetes study.Am J Nephrol2018;47:40-7 PMCID:PMC5841134

[261]

Avula UMR,Hassanein M.Bardoxolone for CKD: the paradox of confusion and dogma.Kidney3602022;3:1955-60 PMCID:PMC9717645

[262]

Nangaku M,Takama H,Hase H.Randomized clinical trial on the effect of bardoxolone methyl on GFR in diabetic kidney disease patients (TSUBAKI study).Kidney Int Rep2020;5:879-90 PMCID:PMC7271944

[263]

Nangaku M,Ichikawa T.Randomized, double-blind, placebo-controlled phase 3 study of bardoxolone methyl in patients with diabetic kidney disease: design and baseline characteristics of the AYAME study.Nephrol Dial Transplant2023;38:1204-16 PMCID:PMC10157761

[264]

Sharma K,Mathew AV.Pirfenidone for diabetic nephropathy.J Am Soc Nephrol2011;22:1144-51 PMCID:PMC3103734

[265]

Gale JD,Blumenthal S.Effect of PF-04634817, an Oral CCR2/5 chemokine receptor antagonist, on albuminuria in adults with overt diabetic nephropathy.Kidney Int Rep2018;3:1316-27 PMCID:PMC6224665

[266]

de Zeeuw D,Henkel E.The effect of CCR2 inhibitor CCX140-B on residual albuminuria in patients with type 2 diabetes and nephropathy: a randomised trial.Lancet Diabetes Endocrinol2015;3:687-96

[267]

de Zeeuw D,Bakris G.Efficacy of a novel inhibitor of vascular adhesion protein-1 in reducing albuminuria in patients with diabetic kidney disease (ALBUM): a randomised, placebo-controlled, phase 2 trial.Lancet Diabetes Endocrinol2018;6:925-33

PDF

74

Accesses

0

Citation

Detail

Sections
Recommended

/