The role of inflammatory response in the development of atherosclerosis, myocardial infarction, and remodeling

Monica Botros , Kahtan Fadah , Debabrata Mukherjee

Vessel Plus ›› 2024, Vol. 8 ›› Issue (1) : 31

PDF
Vessel Plus ›› 2024, Vol. 8 ›› Issue (1) :31 DOI: 10.20517/2574-1209.2024.14
Review

The role of inflammatory response in the development of atherosclerosis, myocardial infarction, and remodeling

Author information +
History +
PDF

Abstract

Inflammation is an intrinsic part of the body’s immune response, significantly influencing a myriad of physiological and pathological processes. There is now clinical and experimental evidence suggesting that inflammation accelerates atherosclerosis and its associated complications. The presence of macrophages, T and B cells inside the atherosclerotic plaque fueled this concept and steered subsequent research endeavors toward understanding the pathophysiology of atherosclerosis including plaque formation and destabilization leading to plaque rupture resulting in myocardial injury and remodeling. Understanding the mechanism behind atherosclerosis will aid in developing appropriate treatment interventions. Shifting research and drug development from a singular focus on cholesterol-lowering agents to include adjunctive anti-inflammatory therapies is crucial. Targeting a root cause, i.e., inflammation, will help decrease the incidence and progression of atherosclerosis and improve patient outcomes. In this review, we aim to discuss the current understanding of the intricate role of inflammation in the pathogenesis of atherosclerosis, myocardial infarction, and cardiac remodeling. This synthesis will encompass an exploration of the various inflammatory cells involved, the intricate network of chemokines orchestrating inflammatory responses, and the pathways that underpin these cardiovascular conditions. Furthermore, we will explore promising diagnostic and therapeutic strategies aimed at addressing inflammation in cardiovascular diseases. These include interventions such as colchicine, monoclonal antibodies, and nanoparticles designed to deliver and accumulate drugs at the molecular level within cells.

Keywords

Atherosclerosis / myocardial infarction / inflammation / cardiac remodeling / atheroma / nanoparticles

Cite this article

Download citation ▾
Monica Botros, Kahtan Fadah, Debabrata Mukherjee. The role of inflammatory response in the development of atherosclerosis, myocardial infarction, and remodeling. Vessel Plus, 2024, 8(1): 31 DOI:10.20517/2574-1209.2024.14

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rodriguez T,Mikhailidis DP.Carotid artery pathology in inflammatory diseases.Am J Med Sci2022;363:209-17

[2]

Kong P,Huang XF,Guo RJ.Inflammation and atherosclerosis: signaling pathways and therapeutic intervention.Signal Transduct Target Ther2022;7:131 PMCID:PMC9033871

[3]

Pedro-Botet J,Benaiges D.Arteriosclerosis e inflamación. Nuevos enfoques terapéuticos. Atherosclerosis and inflammation. New therapeutic approaches.Med Clin2020;155:256-62

[4]

Muller WA.How endothelial cells regulate transmigration of leukocytes in the inflammatory response.Am J Pathol2014;184:886-96 PMCID:PMC3969991

[5]

Cybulsky MI,Robbins CS.Macrophages and dendritic cells: partners in atherogenesis.Circ Res2016;118:637-52

[6]

Bentzon JF,Virmani R.Mechanisms of plaque formation and rupture.Circ Res2014;114:1852-66

[7]

Newby AC.Metalloproteinase production from macrophages - a perfect storm leading to atherosclerotic plaque rupture and myocardial infarction.Exp Physiol2016;101:1327-37

[8]

Franck G,Sausen G.Flow perturbation mediates neutrophil recruitment and potentiates endothelial injury via TLR2 in mice: implications for superficial erosion.Circ Res2017;121:31-42 PMCID:PMC5488735

[9]

Quillard T,Franck G,Sukhova G.TLR2 and neutrophils potentiate endothelial stress, apoptosis and detachment: implications for superficial erosion.Eur Heart J2015;36:1394-404 PMCID:PMC4458287

[10]

Mouton AJ,Rivera Gonzalez OJ.Mapping macrophage polarization over the myocardial infarction time continuum.Basic Res Cardiol2018;113:26 PMCID:PMC5986831

[11]

Frangogiannis NG.Inflammation in cardiac injury, repair and regeneration.Curr Opin Cardiol2015;30:240-5 PMCID:PMC4401066

[12]

Higashi Y.Roles of oxidative stress and inflammation in vascular endothelial dysfunction-related disease.Antioxidants2022;11:1958 PMCID:PMC9598825

[13]

Libby P,Rocha VZ.Inflammation in atherosclerosis: transition from theory to practice.Circ J2010;74:213-20

[14]

Lavin Plaza B,Andia ME.Sustained focal vascular inflammation accelerates atherosclerosis in remote arteries.Arterioscler Thromb Vasc Biol2020;40:2159-70 PMCID:PMC7447189

[15]

Montarello NJ,Wong DTL,Psaltis PJ.Inflammation in coronary atherosclerosis and its therapeutic implications.Cardiovasc Drugs Ther2022;36:347-62

[16]

Gimbrone MA Jr.Endothelial cell dysfunction and the pathobiology of atherosclerosis.Circ Res2016;118:620-36 PMCID:PMC4762052

[17]

Ruparelia N.Inflammation and atherosclerosis: what is on the horizon?.Heart2020;106:80-5

[18]

Gusev E.Atherosclerosis and inflammation: insights from the theory of general pathological processes.Int J Mol Sci2023;24:7910 PMCID:PMC10178362

[19]

Alonso-Herranz L,Bentzon JF.Mechanisms of fibrous cap formation in atherosclerosis.Front Cardiovasc Med2023;10:1254114 PMCID:PMC10475556

[20]

Fernández-Ruiz I.Neutrophil-driven SMC death destabilizes atherosclerotic plaques.Nat Rev Cardiol2019;16:455

[21]

Virmani R,Burke AP,Schwartz SM.Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions.Arterioscler Thromb Vasc Biol2000;20:1262-75

[22]

Degryse B,Scaffidi P.The high mobility group (HMG) boxes of the nuclear protein HMG1 induce chemotaxis and cytoskeleton reorganization in rat smooth muscle cells.J Cell Biol2001;152:1197-206 PMCID:PMC2199202

[23]

Martinet W,De Meyer GR.Necrotic cell death in atherosclerosis.Basic Res Cardiol2011;106:749-60

[24]

Oyama J,Liu X.Reduced myocardial ischemia-reperfusion injury in toll-like receptor 4-deficient mice.Circulation2004;109:784-9

[25]

Falk E,Bentzon JF,Virmani R.Update on acute coronary syndromes: the pathologists' view.Eur Heart J2013;34:719-28

[26]

Mehta LS,DeVon HA.Acute myocardial infarction in women: a scientific statement from the american heart association.Circulation2016;133:916-47

[27]

Swirski FK.Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure.Science2013;339:161-6 PMCID:PMC3891792

[28]

Sager HB,Hulsmans M.Targeting interleukin-1β reduces leukocyte production after acute myocardial infarction.Circulation2015;132:1880-90 PMCID:PMC4651795

[29]

Frantz S,Schulz-Menger J,Bauersachs J.Left ventricular remodelling post-myocardial infarction: pathophysiology, imaging, and novel therapies.Eur Heart J2022;43:2549-61 PMCID:PMC9336586

[30]

Algoet M,Himmelreich U.Myocardial ischemia-reperfusion injury and the influence of inflammation.Trends Cardiovasc Med2023;33:357-66

[31]

Frangogiannis NG.The inflammatory response in myocardial injury, repair, and remodelling.Nat Rev Cardiol2014;11:255-65 PMCID:PMC4407144

[32]

Arslan F,Pasterkamp G.Innate immune signaling in cardiac ischemia.Nat Rev Cardiol2011;8:292-300

[33]

Fullerton JN,Gilroy DW.Pathways mediating resolution of inflammation: when enough is too much.J Pathol2013;231:8-20

[34]

Maruyama K.The pathogenesis of cardiac fibrosis: a review of recent progress.Int J Mol Sci2022;23:2617 PMCID:PMC8910720

[35]

Talman V.Cardiac fibrosis in myocardial infarction-from repair and remodeling to regeneration.Cell Tissue Res2016;365:563-81 PMCID:PMC5010608

[36]

Wu L,Wu X.Targeting oxidative stress and inflammation to prevent ischemia-reperfusion injury.Front Mol Neurosci2020;13:28 PMCID:PMC7066113

[37]

Paul TK.Is colchicine beneficial for the prevention of cardiovascular events after myocardial infarction?.Angiology2021;72:501-2

[38]

Fujisue K,Kurokawa H.Colchicine improves survival, left ventricular remodeling, and chronic cardiac function after acute myocardial infarction.Circ J2017;81:1174-82

[39]

Li YW,Yang Y.Colchicine inhibits NETs and alleviates cardiac remodeling after acute myocardial infarction.Cardiovasc Drugs Ther2024;38:31-41

[40]

Virani SS,Arnold SV.2023 AHA/ACC/ACCP/ASPC/NLA/PCNA guideline for the management of patients with chronic coronary disease: a report of the American heart association/American college of cardiology joint committee on clinical practice guidelines.Circulation2023;148:e9-119

[41]

Virani SS,Arnold SV.Correction to: 2023 AHA/ACC/ACCP/ASPC/NLA/PCNA guideline for the management of patients with chronic coronary disease: a report of the American heart association/American college of cardiology joint committee on clinical practice guidelines.Circulation2023;148:e148

[42]

Cataliotti A,Bellavia D.Long-term cardiac pro-B-type natriuretic peptide gene delivery prevents the development of hypertensive heart disease in spontaneously hypertensive rats.Circulation2011;123:1297-305 PMCID:PMC3081597

[43]

González A,Beaumont J,Díez J.New targets to treat the structural remodeling of the myocardium.J Am Coll Cardiol2011;58:1833-43

[44]

Heinen A,Panjwani P.IGF1 treatment improves cardiac remodeling after infarction by targeting myeloid cells.Mol Ther2019;27:46-58 PMCID:PMC6319026

[45]

Lin L,Yan J.Advances of nanoparticle-mediated diagnostic and theranostic strategies for atherosclerosis.Front Bioeng Biotechnol2023;11:1268428 PMCID:PMC10666776

[46]

Wu Y,Liu Y,Zhang R.Recent advances in the development of theranostic nanoparticles for cardiovascular diseases.Nanotheranostics2021;5:499-514 PMCID:PMC8342263

[47]

Boada C,Tsao C.Rapamycin-loaded biomimetic nanoparticles reverse vascular inflammation.Circ Res2020;126:25-37

[48]

Boada C,Tsao C.Correction to: Rapamycin-loaded biomimetic nanoparticles reverse vascular inflammation.Circ Res2020;127:e77

[49]

Niu J,Rogers LM,Kolattukudy PE.Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy.Cardiovasc Res2007;73:549-59 PMCID:PMC1855085

PDF

92

Accesses

0

Citation

Detail

Sections
Recommended

/