Echocardiographic cardiac views classification using whale optimization and weighted support vector machine

Bernabe Canqui-Flores , Romel P. Melgarejo-Bolivar , Alfredo Tumi-Figueroa , S. Thirukumaran , G. Meena Devi , Sudhakar Sengan

Vessel Plus ›› 2024, Vol. 8 ›› Issue (1) : 29

PDF
Vessel Plus ›› 2024, Vol. 8 ›› Issue (1) :29 DOI: 10.20517/2574-1209.2023.140
Original Article

Echocardiographic cardiac views classification using whale optimization and weighted support vector machine

Author information +
History +
PDF

Abstract

Aim: A significant medical diagnostic tool for monitoring cardiovascular health and function is 2D electrocardiograms. For computerized echocardiogram (echo) analysis, recognizing how this device performs is essential. This paper primarily focuses on detecting the transducer's viewpoint in cardiac echo videos using spatiotemporal data. It distinguishes between different viewpoints by monitoring the heart's function and rate throughout the cycle of heartbeats. Computer-aided diagnosis (CAD) examination sizes are the first steps toward computerized classification of cardiac imaging tests. Since clinical analysis frequently starts with automatic classification, the current view can enhance the detection of Cardiac Vascular Disease (CVD).

Methods: This research article uses a Machine Learning (ML) algorithm called the Integrated Metaheuristic Technique (IMT), which is the Whale Optimization Algorithm with Weighted Support Vector Machine (WOA-WSVM).

Results: The parameters in the classification are optimized with the assistance of WOA, and the echo is classified using WSVM. The WOA-WSVM classifies the images effectively and achieves an accuracy of 98.4%.

Conclusion: The numerical analysis states that the WOA-WSVM technique outperforms the existing state-of-the-art algorithms.

Keywords

Cardiac vascular disease / cardiac view / machine learning / classification / image processing / accuracy

Cite this article

Download citation ▾
Bernabe Canqui-Flores, Romel P. Melgarejo-Bolivar, Alfredo Tumi-Figueroa, S. Thirukumaran, G. Meena Devi, Sudhakar Sengan. Echocardiographic cardiac views classification using whale optimization and weighted support vector machine. Vessel Plus, 2024, 8(1): 29 DOI:10.20517/2574-1209.2023.140

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Galea N,Marchitelli L.How to perform a cardio-thoracic magnetic resonance imaging in COVID-19: comprehensive assessment of heart, pulmonary arteries, and lung parenchyma.Eur Heart J Cardiovasc Imaging2021;22:728-31 PMCID:PMC7799188

[2]

Rischard J,Moulin T.Assessment of heart rhythm disorders using the AliveCor heart monitor: beyond the detection of atrial fibrillation.JACC Clin Electrophysiol2020;6:1313-5

[3]

Pollard JD,Lutz KJ.Electrocardiogram machine learning for detection of cardiovascular disease in African Americans: the jackson heart study.Eur Heart J Digit Health2021;2:137-51 PMCID:PMC8139412

[4]

Kaisti M,Leppänen J.Clinical assessment of a non-invasive wearable MEMS pressure sensor array for monitoring of arterial pulse waveform, heart rate and detection of atrial fibrillation.NPJ Digit Med2019;2:39 PMCID:PMC6550190

[5]

Hagendorff A,Helfen A.Echocardiographic assessment of mitral regurgitation: discussion of practical and methodologic aspects of severity quantification to improve diagnostic conclusiveness.Clin Res Cardiol2021;110:1704-33 PMCID:PMC8563569

[6]

Sandino CM,Vasanawala SS.Accelerating cardiac cine MRI using a deep learning-based ESPIRiT reconstruction.Magn Reson Med2021;85:152-67 PMCID:PMC7722220

[7]

Kusunose K,Haga A.A deep learning approach for assessment of regional wall motion abnormality from echocardiographic images.JACC Cardiovasc Imaging2020;13:374-81

[8]

Litjens G,Wolterink JM.State-of-the-Art deep learning in cardiovascular image analysis.JACC Cardiovasc Imaging2019;12:1549-65

[9]

Chen TM,Shih ESC,Hwang MJ.Detection and classification of cardiac arrhythmias by a challenge-best deep learning neural network model.iScience2020;23:100886 PMCID:PMC7031313

[10]

Alotaibi FS.Implementation of machine learning model to predict heart failure disease.Int J Adv Comput Sci Appl2019;10:261-8

[11]

Feeny AK,Madabhushi A.Artificial intelligence and machine learning in arrhythmias and cardiac electrophysiology.Circ Arrhythm Electrophysiol2020;13:e007952 PMCID:PMC7808396

[12]

Krittanawong C,Johnson KW.Integration of novel monitoring devices with machine learning technology for scalable cardiovascular management.Nat Rev Cardiol2021;18:75-91 PMCID:PMC7545156

[13]

Zhuang Z,Ding W.Cardiac VFM visualization and analysis based on YOLO deep learning model and modified 2D continuity equation.Comput Med Imaging Graph2020;82:101732

[14]

Smistad E,Salte IM.Real-time automatic ejection fraction and foreshortening detection using deep learning.IEEE Trans Ultrason Ferroelectr Freq Control2020;67:2595-604

[15]

Arafati A,Finn JP.Artificial intelligence in pediatric and adult congenital cardiac MRI: an unmet clinical need.Cardiovasc Diagn Ther2019;9:S310-25 PMCID:PMC6837938

[16]

Saba SS,Sampath Kumar P,Saba SR.Logistic regression machine learning algorithm on MRI brain image for fast and accurate diagnosis.Int J Sci Technol Res2020;9:7076-81Available from: http://www.ijstr.org/final-print/mar2020/Logistic-Regression-Machine-Learning-Algorithm-On-Mri-Brain-Image-For-Fast-And-Accurate-Diagnosis.pdf [Last accessed on 4 Jul 2024].

[17]

Sahu AK.Reversible image steganography using dual-layer LSB matching.Sens Imaging2020;21:1

[18]

Banchhor C.Integrating cuckoo search-grey wolf optimization and correlative naive bayes classifier with map reduce model for big data classification.Data Knowl Eng2020;127:101788

[19]

Gorla US,Kulandaivelu US,Panda SP.Lead finding from selected flavonoids with antiviral (SARS-CoV-2) potentials against COVID-19: an in-silico evaluation.Comb Chem High Throughput Screen2021;24:879-90

[20]

Niranjan A,P Deepa S.ERCRFS: ensemble of random committee and random forest using stackingC for phishing classification.Int J Emerg Trends Eng Res2020;8:79-86Available from: https://doi.org/10.30534/ijeter/2020/13812020 [Last accessed on 4 Jul 2024].

[21]

Mubarakali A,Mavaluru D.Design an attribute based health record protection algorithm for healthcare services in cloud environment.Multimed Tools Appl2020;79:3943-56

[22]

Doppala BP, Midhunchakkravarthy, Bhattacharyya D. Premature detection of cardiomegaly using hybrid machine learning technique.J Adv Res Dyn Control Syst2020;12:490-8Available from: https://www.jardcs.org/abstract.php?id=4619 [Last accessed on 4 Jul 2024].

[23]

Saikumar K.A novel implementation heart diagnosis system based on random forest machine learning technique.Int J Pharm Rese2020;12:3904-16

[24]

Elsheikh AH,Shanmugan S.Fine-tuned artificial intelligence model using pigeon optimizer for prediction of residual stresses during turning of inconel 718.J Mater Res Technol2021;15:3622-34

[25]

Ramesh KKD,Swapna K,Rajest SS.A review of medical image segmentation algorithms.EAI Endors Trans Pervas Health Technol2021;7:27

[26]

Kavitha T,Karthikeyan C.Deep learning based capsule neural network model for breast cancer diagnosis using mammogram images.Interdiscip Sci2022;14:113-29

[27]

Pareek PK,Kalidoss R.IntOPMICM: intelligent medical image size reduction model.J Healthc Eng2022;2022:5171016 PMCID:PMC8896923

[28]

Kumar EK,Kiran Kumar MT.3D sign language recognition with joint distance and angular coded color topographical descriptor on a 2 - stream CNN.Neurocomputing2020;372:40-54

[29]

Saikumar K,Babu BS.Heart disease detection based on feature fusion technique with augmented classification using deep learning technology.Treat Signal2022;39:31-42

[30]

Rao KS,Vardhan DV.Design and sensitivity analysis of capacitive MEMS pressure sensor for blood pressure measurement.Microsyst Technol2020;26:2371-9

[31]

Ahammad SH,Rahman MZU.A hybrid CNN-based segmentation and boosting classifier for real time sensor spinal cord injury data.IEEE Sensors J2020;20:10092-101

[32]

SaiSowmya B, Radha V, Kiran I, PavanKumar T. An efficient way of detecting change in tsunami disaster using CNN.J Adv Res Dyn Control Syst2020;12:1128-33Available from: https://www.jardcs.org/abstract.php?id=4369 [Last accessed on 4 Jul 2024].

[33]

Sengan S,Ramesh R,Dhanapal R.The optimization of reconfigured real-time datasets for improving classification performance of machine learning algorithms.Math Eng Sci Aerosp2021;12:43-54Available from: http://nonlinearstudies.com/index.php/mesa/article/view/2497 [Last accessed on 4 Jul 2024].

[34]

Rachapudi V.Improved convolutional neural network based histopathological image classification.Evol Intel2021;14:1337-43

[35]

Routray S,Sharma SK,Palai G.A new image denoising framework using bilateral filtering based non-subsampled shearlet transform.Optik2020;216:164903

[36]

Abi B,Acero MA.DUNE CollaborationNeutrino interaction classification with a convolutional neural network in the DUNE far detector.Phys Rev D2020;102:092003

[37]

Reddy AVN,Mallick PK.An image classification framework exploring the capabilities of extreme learning machines and artificial bee colony.Neural Comput Appl2020;32:3079-99

[38]

Mandhala VN,Vamsi B.Object detection using machine learning for visually impaired people.Int J Curr Res Rev2020;12:157-67Available from: https://ijcrr.com/uploads/3009_pdf.pdf [Last accessed on 4 Jul 2024].

[39]

Bhimavarapu U.Skin lesion analysis for melanoma detection using the novel deep learning model fuzzy GC-SCNN.Healthcare2022;10:962 PMCID:PMC9141659

[40]

Rani S,Kumar S,Alharbi AH.Efficient 3D AlexNet architecture for object recognition using syntactic patterns from medical images.Comput Intell Neurosci2022;2022:7882924 PMCID:PMC9142332

[41]

Sudha GS, Praveena M, Rani GS, Harish TNSK, Charisma A, Asish A. Classification and detection of diabetic retinopathy using deep learning.Int J Sci Technol Res2020;9:3186-92Available from: https://www.ijstr.org/final-print/apr2020/Classification-And-Detection-Of-Diabetic-Retinopathy-Using-Deep-Learning.pdf [Last accessed on 4 Jul 2024].

[42]

Srihari D,Kumar EK.A four-stream ConvNet based on spatial and depth flow for human action classification using RGB-D data.Multimed Tools Appl2020;79:11723-46

[43]

Praveen SP,Anuradha CH,Sarala P.A robust framework for handling health care information based on machine learning and big data engineering techniques.Int J Healthc Manag2022;

[44]

Nurmaini S,Sapitri AI.Deep learning-based computer-aided fetal echocardiography: application to heart standard view segmentation for congenital heart defects detection.Sensors2021;21:8007 PMCID:PMC8659935

[45]

Østvik A,Aase SA,Lovstakken L.Real-time standard view classification in transthoracic echocardiography using convolutional neural networks.Ultrasound Med Biol2019;45:374-84

[46]

Prabu S,Sujatha M,Rajkumar S.Grid search for predicting coronary heart disease by tuning hyper-parameters.Comput Syst Sci Eng2022;43:737-49

[47]

Saikumar K,Hasane Ahammad SK,Sai Pranitha G.CAB for heart diagnosis with RFO artificial intelligence algorithm.Int J Res Pharm Sci2020;11:1199-205Available from: https://ijrps.com/home/article/view/762 [Last accessed on 4 Jul 2024].

[48]

Pande SD.Linear bezier curve geometrical feature descriptor for image recognition.Recent Adv Comput Sci Commun2020;13:930-41

[49]

Hazarika BB.1-norm random vector functional link networks for classification problems.Complex Intell Syst2022;8:3505-21

[50]

Doppala BP,Janarthanan M.A reliable machine intelligence model for accurate identification of cardiovascular diseases using ensemble techniques.J Healthc Eng2022;2022:2585235 PMCID:PMC8923755

[51]

Priyanka Chandra C, Thirupathi Rao N, Debnath B, Tai-hoon K. Segmentation of natural images with K-means and hierarchical algorithm based on mixture of pearson distributions.J Sci Indust Res2021;80:707-15

[52]

Krishna PR.EapGAFS: microarray dataset for ensemble classification for diseases prediction.Int J Recent Innov Trends Comput Commun2022;10:1-15

[53]

Rani S,Kumar S.Three dimensional objects recognition & pattern recognition technique; related challenges: a review.Multimed Tools Appl2022;81:17303-46

[54]

Saikumar K.A machine intelligence technique for predicting cardiovascular disease (CVD) using radiology dataset.Int J Syst Assur Eng Manag2024;15:135-51

[55]

Nyemeesha V.Implementation of noise and hair removals from dermoscopy images using hybrid Gaussian filter.Netw Model Anal Health Inform Bioinfor2021;10:49

[56]

Tripathy R,Das P.Cellular cholesterol prediction of mammalian ATP-binding cassette (ABC) proteins based on fuzzy c-means with support vector machine algorithms.J Intell Fuzzy Syst2020;39:1611-8

[57]

Vijayalakshmi A,Chandrasekhar Yadav GVP,Parvez M M.Machine learning based automatic defect detection in non-stationary thermal wave imaging.ARPN J Eng Appl Sci2020;15:172-8Available from: https://www.arpnjournals.org/jeas/research_papers/rp_2020/jeas_0120_8082.pdf [Last accessed on 4 Jul 2024].

[58]

Brahmane AV.Rider chaotic biography optimization-driven deep stacked auto-encoder for big data classification using spark architecture: rider chaotic biography optimization.Int J Web Serv Res2021;18:42-62

[59]

Inthiyaz S,Sai Krishna A,Govardhan D.YOLO (you only look once) making object detection work in medical imaging on convolution detection system.Int J Pharm Res2020;12:312-26

[60]

Swathi K.XGBoost classifier with hyperband optimization for cancer prediction based on geneselection by using machine learning techniques.Revue Intell Artif2022;36:665-70

[61]

Gowroju S,Kumar S.Review on secure traditional and machine learning algorithms for age prediction using IRIS image.Multimed Tools Appl2022;81:35503-31

[62]

Dakshina Murthy AS, Karthikeyan T, Omkar Lakshmi Jagan B. Clinical model machine learning for gait observation cardiovascular disease diagnosis.Int J Pharm Res2024;16:3373-8Available from: http://www.ijpronline.com/ViewArticleDetail.aspx?ID=18315 [Last accessed on 4 Jul 2024].

[63]

Katragadda T,Prakash KB.Heart disease diagnosis using ANN, RNN and CNN.Int J Adv Sci Technol2020;29:2232-9Available from: http://sersc.org/journals/index.php/IJAST/article/view/8427 [Last accessed on 4 Jul 2024].

[64]

Siva Kumar P, Anbazhaghan N, Razia S, Sivani M, Pravalika S, Harshini AS. Prediction of cardiovascular disease using classification techniques with high accuracy.J Adv Res Dyn Control Syst2020;12:1134-9Available from: https://www.jardcs.org/abstract.php?id=4370 [Last accessed on 4 Jul 2024].

[65]

Velliangiri S,Joseph S IT.Multiclass recognition of AD neurological diseases using a bag of deep reduced features coupled with gradient descent optimized twin support vector machine classifier for early diagnosis.Concurr Comput2022;34:e7099

[66]

Noi PT, Kappas M. Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery.Sensors2017;18:18 PMCID:PMC5796274

[67]

Tzotsos A.Support vector machine classification for object-based image analysis. In: Blaschke T, Lang S, Hay GJ, editors. Object-based image analysis. Berlin Heidelberg: Springer; 2008. pp. 663-77.

[68]

Ghezelbash R,Carranza EJM.Performance evaluation of RBF- and SVM-based machine learning algorithms for predictive mineral prospectivity modeling: integration of S-A multifractal model and mineralization controls.Earth Sci Inform2019;12:277-93

[69]

Zhou F,Xing Y. Deep semantic dictionary learning for multi-label image classification. In: the thirty-fifth AAAI conference on artificial intelligence (AAAI-21). Available from: https://cdn.aaai.org/ojs/16472/16472-13-19966-1-2-20210518.pdf [Last accessed on 4 Jul 2024].

[70]

ECHO. 2022. Available from: https://www.kaggle.com/c/echo2022 [Last accessed on 4 Jul 2024]

[71]

EchoNet-dynamic. Available from: https://stanfordaimi.azurewebsites.net/datasets/834e1cd1-92f7-4268-9daa-d359198b310a [Last accessed on 4 Jul 2024]

PDF

55

Accesses

0

Citation

Detail

Sections
Recommended

/