Is artificial intelligence the new kid on the block? Sustainable applications in cardiology

Antonio Strangio , Isabella Leo , Jolanda Sabatino , Margarita Brida , Chiara Siracusa , Nicole Carabetta , Paolo Zaffino , Claudia Critelli , Alessandro Laschera , Maria Francesca Spadea , Daniele Torella , Pierre Sabouret , Salvatore De Rosa

Vessel Plus ›› 2024, Vol. 8 ›› Issue (1) : 12

PDF
Vessel Plus ›› 2024, Vol. 8 ›› Issue (1) :12 DOI: 10.20517/2574-1209.2023.123
Review

Is artificial intelligence the new kid on the block? Sustainable applications in cardiology

Author information +
History +
PDF

Abstract

Artificial intelligence (AI) is changing our clinical practice. This is particularly true in cardiology where the clinician is often required to handle a large amount of clinical, biological, and imaging data during decision making. In this context, AI can address the need for fast and accurate tools while reducing the burden on clinicians and improving the efficiency of healthcare systems. With this inevitable shift towards more automated and efficient systems, patients may benefit from a more accurate diagnosis and more tailored treatment. A multitude of clinical applications have already been made available and implemented in several fields of cardiology. The aim of this narrative review is to provide an overall picture of the most recent evidence in the literature about AI implementations, highlighting their potential impact on clinical practice.

Keywords

Artificial intelligence / machine learning / AI algorithm / personalized medicine

Cite this article

Download citation ▾
Antonio Strangio, Isabella Leo, Jolanda Sabatino, Margarita Brida, Chiara Siracusa, Nicole Carabetta, Paolo Zaffino, Claudia Critelli, Alessandro Laschera, Maria Francesca Spadea, Daniele Torella, Pierre Sabouret, Salvatore De Rosa. Is artificial intelligence the new kid on the block? Sustainable applications in cardiology. Vessel Plus, 2024, 8(1): 12 DOI:10.20517/2574-1209.2023.123

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bergami M,Bugiardini R,Manfrini O.Sex beyond cardiovascular risk factors and clinical biomarkers of cardiovascular disease.Rev Cardiovasc Med2022;23:19

[2]

Zhou SS,Wang JQ.miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges.Acta Pharmacol Sin2018;39:1073-84 PMCID:PMC6289363

[3]

Westerlund AM,Heinig M.Risk prediction of cardiovascular events by exploration of molecular data with explainable artificial intelligence.Int J Mol Sci2021;22:10291 PMCID:PMC8508897

[4]

Bivard A,Parsons M.Artificial intelligence for decision support in acute stroke - current roles and potential.Nat Rev Neurol2020;16:575-85

[5]

Reel PS,van Kralingen JC.Machine learning for classification of hypertension subtypes using multi-omics: a multi-centre, retrospective, data-driven study.EBioMedicine2022;84:104276 PMCID:PMC9520210

[6]

Poss AM,Cox JE.Machine learning reveals serum sphingolipids as cholesterol-independent biomarkers of coronary artery disease.J Clin Invest2020;130:1363-76 PMCID:PMC7269567

[7]

de Gonzalo-Calvo D,Bär C.Improved cardiovascular risk prediction in patients with end-stage renal disease on hemodialysis using machine learning modeling and circulating microribonucleic acids.Theranostics2020;10:8665-76 PMCID:PMC7392028

[8]

Schlant RC,DiMarco JP.Guidelines for electrocardiography. A report of the American college of cardiology/American heart association task force on assessment of diagnostic and therapeutic cardiovascular procedures (committee on electrocardiography).Circulation1992;85:1221-8

[9]

Hannun AY,Haghpanahi M.Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network.Nat Med2019;25:65-9 PMCID:PMC6784839

[10]

Shah AP.Errors in the computerized electrocardiogram interpretation of cardiac rhythm.J Electrocardiol2007;40:385-90

[11]

Guglin ME.Common errors in computer electrocardiogram interpretation.Int J Cardiol2006;106:232-7

[12]

Poon K,Kligfield P.Diagnostic performance of a computer-based ECG rhythm algorithm.J Electrocardiol2005;38:235-8

[13]

LeCun Y,Hinton G.Deep learning.Nature2015;521:436-44

[14]

Smith SW,Li J.A deep neural network for 12-lead electrocardiogram interpretation outperforms a conventional algorithm, and its physician overread, in the diagnosis of atrial fibrillation.Int J Cardiol Heart Vasc2019;25:100423 PMCID:PMC6737299

[15]

Liu CW,Hu YL.Left ventricular hypertrophy detection using electrocardiographic signal.Sci Rep2023;13:2556 PMCID:PMC9924839

[16]

Attia ZI,Lopez-Jimenez F.Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram.Nat Med2019;25:70-4

[17]

Attia ZI,Lopez-Jimenez F.An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction.Lancet2019;394:861-7

[18]

Raghunath S,Jing L.Prediction of mortality from 12-lead electrocardiogram voltage data using a deep neural network.Nat Med2020;26:886-91

[19]

Poungponsri S.An adaptive filtering approach for electrocardiogram (ECG) signal noise reduction using neural networks.Neurocomputing2013;117:206-13

[20]

Jadhav SM,Ghatol A.Artificial neural network based cardiac arrhythmia classification using ECG signal data. In: 2010 international conference on electronics and information engineering; 1-3 Aug 2010; Kyoto, Japan.

[21]

Acharya UR,Hagiwara Y.A deep convolutional neural network model to classify heartbeats.Comput Biol Med2017;89:389-96

[22]

Haseena HH,Paul JK.Fuzzy clustered probabilistic and multi layered feed forward neural networks for electrocardiogram arrhythmia classification.J Med Syst2011;35:179-88

[23]

Sayantan G,Kadambari KV.Classification of ECG beats using deep belief network and active learning.Med Biol Eng Comput2018;56:1887-98

[24]

Tateno K.Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of RR and deltaRR intervals.Med Biol Eng Comput2001;39:664-71

[25]

Dash S,Lu S.Automatic real time detection of atrial fibrillation.Ann Biomed Eng2009;37:1701-9

[26]

Huang C,Chen H,He F.A novel method for detection of the transition between atrial fibrillation and sinus rhythm.IEEE Trans Biomed Eng2011;58:1113-9

[27]

Babaeizadeh S,Helfenbein ED,Zhou SH.Improvements in atrial fibrillation detection for real-time monitoring.J Electrocardiol2009;42:522-6

[28]

Jiang K,Ye SM.High accuracy in automatic detection of atrial fibrillation for Holter monitoring.J Zhejiang Univ Sci B2012;13:751-6 PMCID:PMC3437373

[29]

Xia Y,Wang K.Detecting atrial fibrillation by deep convolutional neural networks.Comput Biol Med2018;93:84-92

[30]

Acharya UR,Oh SL.Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network.Future Gener Comput Syst2018;79:952-9

[31]

Sabut S,Mishra BSP.Detection of ventricular arrhythmia using hybrid time-frequency-based features and deep neural network.Phys Eng Sci Med2021;44:135-45

[32]

Chang KC,Wu MY.Usefulness of multi-labelling artificial intelligence in detecting rhythm disorders and acute ST-elevation myocardial infarction on 12-lead electrocardiogram.Eur Heart J Digit Health2021;2:299-310 PMCID:PMC9708016

[33]

Zheng J,Struppa D.A high precision machine learning-enabled system for predicting idiopathic ventricular arrhythmia origins.Front Cardiovasc Med2022;9:809027 PMCID:PMC8962834

[34]

Raghunath S,Ulloa-Cerna AE.Deep neural networks can predict new-onset atrial fibrillation from the 12-lead ECG and help identify those at risk of atrial fibrillation-related stroke.Circulation2021;143:1287-98 PMCID:PMC7996054

[35]

Hsu CY,Liu SH,Lavie CJ.Machine learning for electrocardiographic features to identify left atrial enlargement in young adults: CHIEF heart study.Front Cardiovasc Med2022;9:840585 PMCID:PMC8921457

[36]

Zhao X,Wu L.Deep learning assessment of left ventricular hypertrophy based on electrocardiogram.Front Cardiovasc Med2022;9:952089 PMCID:PMC9406285

[37]

Grogan M,Cohen-Shelly M.Artificial intelligence-enhanced electrocardiogram for the early detection of cardiac amyloidosis.Mayo Clin Proc2021;96:2768-78

[38]

Kwon JM,Jeon KH.Development and validation of deep-learning algorithm for electrocardiography-based heart failure identification.Korean Circ J2019;49:629-39 PMCID:PMC6597456

[39]

McDonagh TA,Maisel AS.Screening for asymptomatic left ventricular dysfunction using B-type natriuretic peptide.Congest Heart Fail2008;14:5-8

[40]

Dey M,Ullah MA.Temporal feature-based classification into myocardial infarction and other CVDs merging CNN and Bi-LSTM from ECG signal.IEEE Sensors J2021;21:21688-95

[41]

Jahmunah V,San TR.Automated detection of coronary artery disease, myocardial infarction and congestive heart failure using GaborCNN model with ECG signals.Comput Biol Med2021;134:104457

[42]

Yadav SS,Jadhav SM.Convolutional neural networks based diagnosis of myocardial infarction in electrocardiograms. In: 2021 international conference on computing, communication, and intelligent systems (ICCCIS); 19-20 Feb 2021; Greater Noida, India. pp. 581-6.

[43]

Hasbullah S,Mandala S.Detection of myocardial infarction using hybrid models of convolutional neural network and recurrent neural network.BioMedInformatics2023;3:478-92.

[44]

Xiong P,Zhang J.Localization of myocardial infarction with multi-lead ECG based on DenseNet.Comput Meth Prog Bio2021;203:106024

[45]

Ibrahim L,Yang KW.Explainable prediction of acute myocardial infarction using machine learning and shapley values.IEEE Access2020;8:210410-7

[46]

Gustafsson S,Lampa E.Development and validation of deep learning ECG-based prediction of myocardial infarction in emergency department patients.Sci Rep2022;12:19615 PMCID:PMC9666471

[47]

Fiorina L,Gardella C.Evaluation of an ambulatory ECG analysis platform using deep neural networks in routine clinical practice.J Am Heart Assoc2022;11:e026196 PMCID:PMC9683671

[48]

Guo SL,Liu HW,Kong DF.The future of remote ECG monitoring systems.J Geriatr Cardiol2016;13:528-30 PMCID:PMC4987424

[49]

Abdou A.Horizons in single-lead ECG analysis from devices to data.Front Signal Process2022;2:866047

[50]

Mannhart D,Knecht S.Clinical validation of 5 direct-to-consumer wearable smart devices to detect atrial fibrillation: BASEL wearable study.JACC Clin Electrocardiol2023;9:232-42

[51]

Kim M,You SC.Artificial intelligence predicts clinically relevant atrial high-rate episodes in patients with cardiac implantable electronic devices.Sci Rep2022;12:37 PMCID:PMC8741914

[52]

Shakibfar S,Lund-Andersen C.Predicting electrical storms by remote monitoring of implantable cardioverter-defibrillator patients using machine learning.Europace2019;21:268-74

[53]

Cheng Y,Sarkar S,Cho YK.B-PO04-036 innovative artificial intelligence application reduces false pause alerts while maintaining perfect true pause alert sensitivity for insertable cardiac monitors.Heart Rhythm2021;18:S293-4

[54]

Radtke AP,Haddad TD,Colombowala IK.B-AB24-04 artificial intelligence enables dramatic reduction of false atrial fibrillation alerts from insertable cardiac monitors.Heart Rhythm2021;18:S47

[55]

McSharry PE,Tarassenko L.A dynamical model for generating synthetic electrocardiogram signals.IEEE Trans Biomed Eng2003;50:289-94

[56]

Li Z.ECG modeling with DFG. In: 2005 IEEE engineering in medicine and biology 27th annual conference 2005; 17-18 Jan 2006; Shanghai, China.

[57]

Sameni R,Jutten C.Multichannel ECG and noise modeling: application to maternal and fetal ECG signals.EURASIP J Adv Signal Process2007;2007:043407.

[58]

Clifford GD,Sameni R.An artificial vector model for generating abnormal electrocardiographic rhythms.Physiol Meas2010;31:595-609 PMCID:PMC2927500

[59]

Roonizi EK.Morphological modeling of cardiac signals based on signal decomposition.Comput Biol Med2013;43:1453-61

[60]

Wulan N,Sun P,Xia Y.Generating electrocardiogram signals by deep learning.Neurocomputing2020;404:122-36

[61]

Smith-Bindman R,Larson EB.Rising use of diagnostic medical imaging in a large integrated health system.Health Aff2008;27:1491-502 PMCID:PMC2765780

[62]

Lim LJ,Delling FN.Artificial intelligence in cardiovascular imaging.Methodist Debakey Cardiovasc J2020;16:138-45 PMCID:PMC7350824

[63]

Kusunose K,Haga A.A deep learning approach for assessment of regional wall motion abnormality from echocardiographic images.JACC Cardiovasc Imag2020;13:374-81

[64]

Madani A,Mofrad M.Fast and accurate view classification of echocardiograms using deep learning.NPJ Digit Med2018;1:6 PMCID:PMC6395045

[65]

Zhang J,Agrawal P.Fully automated echocardiogram interpretation in clinical practice.Circulation2018;138:1623-35 PMCID:PMC6200386

[66]

Tabassian M,Herbots L.Machine learning of the spatio-temporal characteristics of echocardiographic deformation curves for infarct classification.Int J Cardiovasc Imag2017;33:1159-67

[67]

Sengupta PP,Bansal M.Cognitive machine-learning algorithm for cardiac imaging: a pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy.Circ Cardiovasc Imag2016;9:e004330 PMCID:PMC5321667

[68]

Heitzinger G,Koschatko S.A streamlined, machine learning-derived approach to risk-stratification in heart failure patients with secondary tricuspid regurgitation.Eur Heart J Cardiovasc Imag2023;24:588-97 PMCID:PMC10125224

[69]

Lei J,Bhatta L.Ventricular geometry-regularized QRSd predicts cardiac resynchronization therapy response: machine learning from crosstalk between electrocardiography and echocardiography.Int J Cardiovasc Imag2019;35:1221-9

[70]

Fotaki A,Chiribiri A,Pushparajah K.Artificial intelligence in cardiac MRI: is clinical adoption forthcoming?.Front Cardiovasc Med2021;8:818765 PMCID:PMC8785419

[71]

Chen C,Davies RH.Improving the generalizability of convolutional neural network-based segmentation on CMR images.Front Cardiovasc Med2020;7:105 PMCID:PMC7344224

[72]

He Y,Wu Y.Automatic left ventricle segmentation from cardiac magnetic resonance images using a capsule network.J Xray Sci Technol2020;28:541-53

[73]

Bhuva AN,Lau C.A multicenter, scan-rescan, human and machine learning CMR study to test generalizability and precision in imaging biomarker analysis.Circ Cardiovasc Imag2019;12:e009214

[74]

Augusto JB,Bhuva AN.Diagnosis and risk stratification in hypertrophic cardiomyopathy using machine learning wall thickness measurement: a comparison with human test-retest performance.Lancet Digit Health2021;3:e20-8

[75]

Eichhorn C,Bucciarelli-Ducci C,Kwong RY.Multiparametric cardiovascular magnetic resonance approach in diagnosing, monitoring, and prognostication of myocarditis.JACC Cardiovasc Imag2022;15:1325-38

[76]

Fahmy AS,Neisius U.Automated cardiac MR scar quantification in hypertrophic cardiomyopathy using deep convolutional neural networks.JACC Cardiovasc Imag2018;11:1917-8 PMCID:PMC6286195

[77]

Fahmy AS,Nezafat M,Nezafat R.Automated analysis of cardiovascular magnetic resonance myocardial native T1 mapping images using fully convolutional neural networks.J Cardiovasc Magn Reson2019;21:7 PMCID:PMC6330747

[78]

Neisius U,Nakamori S,Manning WJ.Radiomic analysis of myocardial native T1 imaging discriminates between hypertensive heart disease and hypertrophic cardiomyopathy.JACC Cardiovasc Imag2019;12:1946-54 PMCID:PMC7032053

[79]

Wang J,Liu W.Radiomic analysis of native T1 mapping images discriminates between MYH7 and MYBPC3-related hypertrophic cardiomyopathy.J Magn Reson Imag2020;52:1714-21

[80]

Xue H,Davies RH.Automated in-line artificial intelligence measured global longitudinal shortening and mitral annular plane systolic excursion: reproducibility and prognostic significance.J Am Heart Assoc2022;11:e023849 PMCID:PMC9245823

[81]

Coenen A,Kruk M.Diagnostic accuracy of a machine-learning approach to coronary computed tomographic angiography-based fractional flow reserve: result from the MACHINE consortium.Circ Cardiovasc Imag2018;11:e007217

[82]

Kang D,Slomka PJ.Structured learning algorithm for detection of nonobstructive and obstructive coronary plaque lesions from computed tomography angiography.J Med Imag2015;2:014003 PMCID:PMC4478984

[83]

Liao S,Zeng M.Fast and low-dose medical imaging generation empowered by hybrid deep-learning and iterative reconstruction.Cell Rep Med2023;4:101119 PMCID:PMC10394257

[84]

Motwani M,Berman DS.Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis.Eur Heart J2017;38:500-7 PMCID:PMC5897836

[85]

van Rosendael AR,Kolli KK.Maximization of the usage of coronary CTA derived plaque information using a machine learning based algorithm to improve risk stratification; insights from the CONFIRM registry.J Cardiovasc Comput Tomogr2018;12:204-9

[86]

Li T,Qi W,Qi J.Motion correction of respiratory-gated PET images using deep learning based image registration framework.Phys Med Biol2020;65:155003 PMCID:PMC7446936

[87]

Nakajima K,Nakata T.Diagnostic accuracy of an artificial neural network compared with statistical quantitation of myocardial perfusion images: a Japanese multicenter study.Eur J Nucl Med Mol Imag2017;44:2280-9 PMCID:PMC5680364

[88]

Arsanjani R,Dey D.Improved accuracy of myocardial perfusion SPECT for detection of coronary artery disease by machine learning in a large population.J Nucl Cardiol2013;20:553-62 PMCID:PMC3732038

[89]

Betancur J,Motlagh M.Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: a multicenter study.JACC Cardiovasc Imag2018;11:1654-63 PMCID:PMC6135711

[90]

Betancur J,Motwani M.Prognostic value of combined clinical and myocardial perfusion imaging data using machine learning.JACC Cardiovasc Imag2018;11:1000-9 PMCID:PMC5902657

[91]

Arsanjani R,Khachatryan T.Prediction of revascularization after myocardial perfusion SPECT by machine learning in a large population.J Nucl Cardiol2015;22:877-84 PMCID:PMC4859156

[92]

Virani SS,Benjamin EJ.Heart disease and stroke statistics-2020 update: a report from the american heart association.Circulation2020;141:e139-596

[93]

Maragna R,Guglielmo M.Artificial intelligence based multimodality imaging: a new frontier in coronary artery disease management.Front Cardiovasc Med2021;8:736223 PMCID:PMC8493089

[94]

Acharya UR,Adam M.Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: a comparative study.Inf Sci2017;377:17-29

[95]

Han C.ML-ResNet: a novel network to detect and locate myocardial infarction using 12 leads ECG.Comput Meth Prog Bio2020;185:105138

[96]

Lih OS,San TR.Comprehensive electrocardiographic diagnosis based on deep learning.Artif Intell Med2020;103:101789

[97]

McCarthy CP,Michelhaugh SA.Derivation and external validation of a high-sensitivity cardiac troponin-based proteomic model to predict the presence of obstructive coronary artery disease.J Am Heart Assoc2020;9:e017221 PMCID:PMC7660799

[98]

Sabatino J,Leo I.Non-invasive myocardial work is reduced during transient acute coronary occlusion.PLoS One2020;15:e0244397 PMCID:PMC7769261

[99]

Sabatino J,Leo I.Prediction of significant coronary artery disease through advanced echocardiography: role of non-invasive myocardial work.Front Cardiovasc Med2021;8:719603 PMCID:PMC8421730

[100]

Raghavendra U,Gudigar A.Automated diagnosis and assessment of cardiac structural alteration in hypertension ultrasound images.Contrast Media Mol Imag2022;2022:5616939 PMCID:PMC9168207

[101]

Vidya KS,Acharya UR,Tan RS.Computer-aided diagnosis of myocardial infarction using ultrasound images with DWT, GLCM and HOS methods: a comparative study.Comput Biol Med2015;62:86-93

[102]

Glessgen CG,Vallée JP.Artificial intelligence-based opportunistic detection of coronary artery stenosis on aortic computed tomography angiography in emergency department patients with acute chest pain.Eur Heart J Open2023;3:oead088 PMCID:PMC10516619

[103]

Knott KD,Augusto JB.The prognostic significance of quantitative myocardial perfusion: an artificial intelligence-based approach using perfusion mapping.Circulation2020;141:1282-91 PMCID:PMC7176346

[104]

Farooq V,Steyerberg EW.Anatomical and clinical characteristics to guide decision making between coronary artery bypass surgery and percutaneous coronary intervention for individual patients: development and validation of SYNTAX score II.Lancet2013;381:639-50

[105]

De Rosa S,De Velli G.Reliability of instantaneous wave-free ratio (iFR) for the evaluation of left main coronary artery lesions.J Clin Med2019;8:1143 PMCID:PMC6724021

[106]

De Rosa S, Polimeni A, Petraco R, Davies JE, Indolfi C. Diagnostic performance of the instantaneous wave-free ratio: comparison with fractional flow reserve.Circ Cardiovasc Interv2018;11:e004613

[107]

SCOT-HEART InvestigatorsCoronary CT angiography and 5-year risk of myocardial infarction.N Engl J Med2018;379:924-33

[108]

Douglas PS,Pontone G.1-year outcomes of FFRCT-guided care in patients with suspected coronary disease: the PLATFORM study.J Am Coll Cardiol2016;68:435-45

[109]

Tesche C.Machine learning and deep neural networks applications in coronary flow assessment: the case of computed tomography fractional flow reserve.J Thorac Imag2020;35:S66-71

[110]

Celeng C,Maurovich-Horvat P.Anatomical and functional computed tomography for diagnosing hemodynamically significant coronary artery disease: a meta-analysis.JACC Cardiovasc Imag2019;12:1316-25

[111]

Qiao HY,Schoepf UJ.Impact of machine learning-based coronary computed tomography angiography fractional flow reserve on treatment decisions and clinical outcomes in patients with suspected coronary artery disease.Eur Radiol2020;30:5841-51

[112]

Curzen N,Stuart B.Fractional flow reserve derived from computed tomography coronary angiography in the assessment and management of stable chest pain: the FORECAST randomized trial.Eur Heart J2021;42:3844-52 PMCID:PMC8648068

[113]

Yang J,Wang X.On-site computed tomography-derived fractional flow reserve to guide management of patients with stable coronary artery disease: the TARGET randomized trial.Circulation2023;147:1369-81

[114]

Kumamaru KK,Otsuka Y.Diagnostic accuracy of 3D deep-learning-based fully automated estimation of patient-level minimum fractional flow reserve from coronary computed tomography angiography.Eur Heart J Cardiovasc Imag2020;21:437-45

[115]

Min HS,Kang SJ.Detection of optical coherence tomography-defined thin-cap fibroatheroma in the coronary artery using deep learning.EuroIntervention2020;16:404-12

[116]

Cho H,Min HS.Intravascular ultrasound-based deep learning for plaque characterization in coronary artery disease.Atherosclerosis2021;324:69-75

[117]

Cook CM,Howard JP.Algorithmic versus expert human interpretation of instantaneous wave-free ratio coronary pressure-wire pull back data.JACC Cardiovasc Interv2019;12:1315-24 PMCID:PMC6645043

[118]

Miyoshi T,Kawakami H.Automated interpretation of the coronary angioscopy with deep convolutional neural networks.Open Heart2020;7:e001177 PMCID:PMC7228653

[119]

Serruys PW,Modolo R.The SYNTAX score on its way out or … towards artificial intelligence: part I.EuroIntervention2020;16:44-59

[120]

Serruys PW,Modolo R.The SYNTAX score on its way out or … towards artificial intelligence: part II.EuroIntervention2020;16:60-75

[121]

Conrad N,Tran J.Temporal trends and patterns in heart failure incidence: a population-based study of 4 million individuals.Lancet2018;391:572-80 PMCID:PMC5814791

[122]

2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the global burden of disease study 2017.Lancet2018;392:1789-858

[123]

Roger VL.Epidemiology of heart failure.Circ Res2013;113:646-59 PMCID:PMC3806290

[124]

Mosterd A.Clinical epidemiology of heart failure.Heart2007;93:1137-46 PMCID:PMC1955040

[125]

Smeets M,Mamouris P.Burden of heart failure in Flemish general practices: a registry-based study in the Intego database.BMJ Open2019;9:e022972 PMCID:PMC6326340

[126]

Gerber Y,Redfield MM.A contemporary appraisal of the heart failure epidemic in Olmsted County, Minnesota, 2000 to 2010.JAMA Intern Med2015;175:996-1004 PMCID:PMC4451405

[127]

Boccuto F,Torella D,Guzzi PH.Will artificial intelligence provide answers to current gaps and needs in chronic heart failure?.Appl Sci2023;13:7663

[128]

Lindholm D,Leeper NJ.Bioimpedance and new-onset heart failure: a longitudinal study of >500,000 individuals from the general population.J Am Heart Assoc2018;7:e008970 PMCID:PMC6064899

[129]

Yang G,Pan Q.A heart failure diagnosis model based on support vector machine. In 2010 3rd international conference on biomedical engineering and informatics; 16-18 Oct 2010; Yantai, China.

[130]

Gharehchopogh SF.Neural network application in diagnosis of patient: a case study. In International Conference on Computer Networks and Information Technology; 11-13 Jul 2011; Abbottabad, Pakistan.

[131]

Aljaaf AJ,Hussain AJ,Fergus P.Predicting the likelihood of heart failure with a multi level risk assessment using decision tree. In: 2015 third international conference on technological advances in electrical, electronics and computer engineering (TAEECE); 29 April 2015-01 May 2015; Beirut, Lebanon.

[132]

Zheng Y,Qin J.Computer-assisted diagnosis for chronic heart failure by the analysis of their cardiac reserve and heart sound characteristics.Comput Meth Prog Bio2015;122:372-83

[133]

Gharehbaghi A,Babic A.An artificial intelligent-based model for detecting systolic pathological patterns of phonocardiogram based on time-growing neural network.Appl Soft Comput2019;83:105615

[134]

Segar MW,Patel KV.Machine learning to predict the risk of incident heart failure hospitalization among patients with diabetes: the WATCH-DM risk score.Diabetes Care2019;42:2298-306

[135]

Segar MW,Patel KV.Development and validation of machine learning-based race-specific models to predict 10-year risk of heart failure: a multicohort analysis.Circulation2021;143:2370-83 PMCID:PMC9976274

[136]

Morrill J,Kelly J.A machine learning methodology for identification and triage of heart failure exacerbations.J Cardiovasc Transl Res2022;15:103-15 PMCID:PMC8397870

[137]

Shah SJ,Selvaraj S.Phenomapping for novel classification of heart failure with preserved ejection fraction.Circulation2015;131:269-79 PMCID:PMC4302027

[138]

Kao DP,Anand IS.Characterization of subgroups of heart failure patients with preserved ejection fraction with possible implications for prognosis and treatment response.Eur J Heart Fail2015;17:925-35 PMCID:PMC4654630

[139]

Gu J,Lin H,Wang CQ.Characteristics, prognosis and treatment response in distinct phenogroups of heart failure with preserved ejection fraction.Int J Cardiol2021;323:148-54

[140]

Segar MW,Ayers C.Phenomapping of patients with heart failure with preserved ejection fraction using machine learning-based unsupervised cluster analysis.Eur J Heart Fail2020;22:148-58

[141]

Hedman ÅK,Sharma A.Identification of novel pheno-groups in heart failure with preserved ejection fraction using machine learning.Heart2020;106:342-9

[142]

Schrub F,Bidaut A.Heart failure with preserved ejection fraction: a clustering approach to a heterogenous syndrome.Arch Cardiovasc Dis2020;113:381-90

[143]

Gevaert AB,Mamas MA.Clinical phenogroups are more effective than left ventricular ejection fraction categories in stratifying heart failure outcomes.ESC Heart Fail2021;8:2741-54 PMCID:PMC8318507

[144]

Kwon JM,Jeon KH.Artificial intelligence algorithm for predicting mortality of patients with acute heart failure.PLoS One2019;14:e0219302 PMCID:PMC6613702

[145]

Peng S,Liu X.Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: a retrospective cohort study based on medical information mart for intensive care database-IV and eICU databases.Front Cardiovasc Med2022;9:994359 PMCID:PMC9597462

[146]

Li J,Hu Y,Mao Y.Predicting mortality in intensive care unit patients with heart failure using an interpretable machine learning model: retrospective cohort study.J Med Internet Res2022;24:e38082 PMCID:PMC9399880

[147]

Yang B,Lu X.A Novel composite indicator of predicting mortality risk for heart failure patients with diabetes admitted to intensive care unit based on machine learning.Front Endocrinol2022;13:917838 PMCID:PMC9277005

[148]

Karwath A,Gill SK.Redefining β-blocker response in heart failure patients with sinus rhythm and atrial fibrillation: a machine learning cluster analysis.Lancet2021;398:1427-35 PMCID:PMC8542730

[149]

Cikes M,Claggett B.Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy.Eur J Heart Fail2019;21:74-85

[150]

Zheng Y,Georgescu B.Robust object detection using marginal space learning and ranking-based multi-detector aggregation: application to left ventricle detection in 2D MRI images. In: 2009 IEEE conference on computer vision and pattern recognition; 20-25 Jun 2009; Miami, FL, USA.

[151]

Lu X,Georgescu B. Automatic view planning for cardiac MRI acquisition. In: Fichtinger G, Martel A, Peters T, editors. Medical image computing and computer-assisted intervention - MICCAI 2011. Berlin, Heidelberg: Springer; 2011. pp. 479-86.

[152]

Avendi MR,Jafarkhani H.A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI.Med Image Anal2016;30:108-19.

[153]

Orwat S,Diller GP.A new approach to modelling in adult congenital heart disease: artificial intelligence.Rev Esp Cardiol2021;74:573-5

[154]

Hyun CM,Lee SM.Deep learning for undersampled MRI reconstruction.Phys Med Biol2018;63:135007.

[155]

Pace DF,Geva T,Moghari MH.Interactive whole-heart segmentation in congenital heart disease. In: Navab N, Hornegger J, Wells WM, Frangi AF, editors. Medical Image computing and computer-assisted intervention - MICCAI 2015. Cham: Springer International Publishing; 2015. pp. 80-8. PMCID:PMC4753059

[156]

Arafati A,Finn JP.Artificial intelligence in pediatric and adult congenital cardiac MRI: an unmet clinical need.Cardiovasc Diagn Ther2019;9:S310-25 PMCID:PMC6837938

[157]

Diller GP,Radke R.Utility of deep learning networks for the generation of artificial cardiac magnetic resonance images in congenital heart disease.BMC Med Imag2020;20:113 PMCID:PMC7542728

[158]

Pace DF,Brosch T.Iterative segmentation from limited training data: applications to congenital heart disease. In: Stoyanov D, Taylor Z, Carneiro G, et al. editors. Deep learning in medical image analysis and multimodal learning for clinical decision support. Cham: Springer International Publishing; 2018. pp. 334-42. PMCID:PMC6545481

[159]

Wesołowski S,Hernandez EJ.An explainable artificial intelligence approach for predicting cardiovascular outcomes using electronic health records.PLOS Digit Health2022;1:e0000004 PMCID:PMC8975108

[160]

Diller GP,Babu-Narayan SV.Machine learning algorithms estimating prognosis and guiding therapy in adult congenital heart disease: data from a single tertiary centre including 10019 patients.Eur Heart J2019;40:1069-77 PMCID:PMC6441851

[161]

Diller GP,Vahle J.Prediction of prognosis in patients with tetralogy of Fallot based on deep learning imaging analysis.Heart2020;106:1007-14

[162]

Davies R.Deep learning in congenital heart disease imaging: hope but not haste.Heart2020;106:960-1

[163]

Diller GP,Babu-Narayan S.Denoising and artefact removal for transthoracic echocardiographic imaging in congenital heart disease: utility of diagnosis specific deep learning algorithms.Int J Cardiovasc Imag2019;35:2189-96

[164]

Chessa M,Farooqi K.Three-dimensional printing, holograms, computational modelling, and artificial intelligence for adult congenital heart disease care: an exciting future.Eur Heart J2022;43:2672-84

[165]

Lu XH,Fuh SC.Recurrent disease progression networks for modelling risk trajectory of heart failure.PLoS One2021;16:e0245177 PMCID:PMC7787457

[166]

Ishikita A,Hanneman K.Machine learning for prediction of adverse cardiovascular events in adults with repaired tetralogy of fallot using clinical and cardiovascular magnetic resonance imaging variables.Circ Cardiovasc Imag2023;16:e015205 PMCID:PMC10281184

[167]

Chang Junior J,Caneo LF.Improving preoperative risk-of-death prediction in surgery congenital heart defects using artificial intelligence model: a pilot study.PLoS One2020;15:e0238199 PMCID:PMC7473591

[168]

Bogani R,Arnaboldi L.Garbage in, toxic data out: a proposal for ethical artificial intelligence sustainability impact statements.AI Ethics2022;1-8 PMCID:PMC9582385

[169]

Liyanage H,Jonnagaddala J.Artificial intelligence in primary health care: perceptions, issues, and challenges.Yearb Med Inform2019;28:41-6 PMCID:PMC6697547

[170]

Kim DW,Kim KW,Park SH.Design characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: results from recently published papers.Korean J Radiol2019;20:405-10 PMCID:PMC6389801

[171]

Tsopra R,Luchinat C.A framework for validating AI in precision medicine: considerations from the European ITFoC consortium.BMC Med Inform Decis Mak2021;21:274 PMCID:PMC8487519

[172]

Ghasemi M,Soleimanian E.A comparative study of black-box and white-box data-driven methods to predict landfill leachate permeability.Environ Monit Assess2023;195:862

[173]

Mey O.Explainable AI algorithms for vibration data-based fault detection: use case-adadpted methods and critical evaluation.Sensors2022;22:9037 PMCID:PMC9736871

[174]

Noseworthy PA,Brewer LC.Assessing and mitigating bias in medical artificial intelligence: the effects of race and ethnicity on a deep learning model for ECG analysis.Circ Arrhythm Electrocardiol2020;13:e007988 PMCID:PMC7158877

[175]

De Rosa S, Brida M, Grapsa J, Dos Subira L, Bäck M, Chieffo A. Women in cardiology.Eur Heart J Open2023;3:oead122 PMCID:PMC10724110

[176]

Abrams C.Google’s effort to prevent blindness shows AI challenges.Wall Street J2019;1:26Available from: https://www.wsj.com/articles/googles-effort-to-prevent-blindness-hits-roadblock-11548504004 [Last accessed on 25 Apr 2024].

[177]

Hardesty L. Study finds gender and skin-type bias in commercial artificial-intelligence systems. 2018. Available from: https://news.mit.edu/2018/study-finds-gender-skin-type-bias-artificial-intelligence-systems-0212 [Last accessed on 5 Mar 2024].

PDF

44

Accesses

0

Citation

Detail

Sections
Recommended

/