Exploitation of KATP channels for cardiac surgery

AlleaBelle Bradshaw , Jennifer S. Lawton

Vessel Plus ›› 2023, Vol. 7 ›› Issue (1) : 35

PDF
Vessel Plus ›› 2023, Vol. 7 ›› Issue (1) :35 DOI: 10.20517/2574-1209.2023.121
Review

Exploitation of KATP channels for cardiac surgery

Author information +
History +
PDF

Abstract

The many ways in which ATP-sensitive potassium (KATP) channels can be exploited for human benefit have expanded over recent decades. Especially since the early 2000s, research has improved our understanding of the components and mechanisms of KATP channels. They have the potential to have a prominent role in cardiac surgery. Pharmacologic and non-pharmacologic activation of KATP channels has been shown to be both cardioprotective and neuroprotective in early basic science and clinical studies. However, many questions remain unanswered and require further study, necessitating further basic science work and large human clinical trials. This review discusses the history and recent progress in the research relating to the use of KATP channels for cardiac surgery.

Keywords

KATP channels / cardioprotection / neuroprotection / cardiac surgery / diazoxide

Cite this article

Download citation ▾
AlleaBelle Bradshaw, Jennifer S. Lawton. Exploitation of KATP channels for cardiac surgery. Vessel Plus, 2023, 7(1): 35 DOI:10.20517/2574-1209.2023.121

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Noma A.ATP-regulated K+ channels in cardiac muscle.Nature1983;305:147-8

[2]

Aziz Q,Gomes J.The ATP-sensitive potassium channel subunit, Kir6.1, in vascular smooth muscle plays a major role in blood pressure control vascular biology.Vasc Biol2014;64:523-9

[3]

Li A,Zhang H.Hypotension due to Kir6.1 gain-of-function in vascular smooth muscle.J Am Heart Assoc2013;2:e000365 PMCID:PMC3828800

[4]

Davis MJ,Nichols CG.KATP channels in lymphatic function.Am J Physiol Cell Physiol2022;323:C1018-35 PMCID:PMC9550566

[5]

Davis MJ,Kim HJ,Remedi M.Lymphatic contractile dysfunction in mouse models of Cantú Syndrome with KATP channel gain-of-function.Function2023;4:zqad017 PMCID:PMC10194823

[6]

Alberici LC,Paim BA.Mitochondrial ATP-sensitive K+ channels as redox signals to liver mitochondria in response to hypertriglyceridemia.Free Radic Biol Med2009;47:1432-9

[7]

Zhou M,Akashi H.Localization of ATP-sensitive K+ channel subunits in rat liver.World J Exp Med2019;9:14-31 PMCID:PMC6955576

[8]

McTaggart JS,Ashcroft FM.The role of the KATP channel in glucose homeostasis in health and disease: more than meets the islet.J Physiol2010;588:3201-9 PMCID:PMC2976015

[9]

Bennett K,Hussain K.Pancreatic β-cell KATP channels: hypoglycaemia and hyperglycaemia.Rev Endocr Metab Disord2010;11:157-63

[10]

Olson TM.Human KATP channelopathies: diseases of metabolic homeostasis.Pflugers Arch2010;460:295-306 PMCID:PMC2883927

[11]

Nichols CG.Adenosine triphosphate-sensitive potassium currents in heart disease and cardioprotection.Card Electrophysiol Clin2016;8:323-35 PMCID:PMC4894346

[12]

Nichols CG.Personalized therapeutics for KATP-dependent pathologies.Annu Rev Pharmacol Toxicol2023;63:541-63 PMCID:PMC9868118

[13]

Brar PC,Cossen K.Management and appropriate use of diazoxide in infants and children with hyperinsulinism.J Clin Endocrinol Metab2020;105:3750-61

[14]

Lang V.The molecular mechanisms and pharmacotherapy of ATP-sensitive potassium channel gene mutations underlying neonatal diabetes.Pharmacogen Pers Med2010;3:145-61 PMCID:PMC3513215

[15]

Kharade SV,Denton JS.The shifting landscape of KATP channelopathies and the need for “sharper” therapeutics.Future Med Chem2016;8:789-802 PMCID:PMC4976861

[16]

Saint-Martin C,de Lonlay P.KATP channel mutations in congenital hyperinsulinism.Semin Pediatr Surg2011;20:18-22

[17]

Gloyn AL,Antcliff JF.Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes.N Engl J Med2004;350:1838-49

[18]

Antzelevitch C.A gain-of-function I(K-ATP) mutation and its role in sudden cardiac death associated with J-wave syndromes.Heart Rhythm2010;7:1472-4 PMCID:PMC2946491

[19]

Levin MD,Uchida K,Singh GK.Electrophysiologic consequences of KATP gain of function in the heart: conduction abnormalities in Cantu syndrome.Heart Rhythm2015;12:2316-24 PMCID:PMC4624040

[20]

Baczkó I,Lang V,Light PE.Sarcolemmal KATP channel modulators and cardiac arrhythmias.Curr Med Chem2011;18:3640-61

[21]

Gao J,Matreyek KA,Nichols CG.Rapid characterization of the functional and pharmacological consequences of cantú syndrome KATP channel mutations in intact cells.J Pharmacol Exp Ther2023;386:298-309 PMCID:PMC10449099

[22]

Cooper PE,Lee SJ.Differential mechanisms of Cantú syndrome-associated gain of function mutations in the ABCC9 (SUR2) subunit of the KATP channel.J Gen Physiol2015;146:527-40 PMCID:PMC4664827

[23]

McClenaghan C.Kir6.1 and SUR2B in Cantú syndrome.Am J Physiol Cell Physiol2022;323:C920-35 PMCID:PMC9467476

[24]

Wrzosek A,Żochowska M.Mitochondrial potassium channels as druggable targets.Biomolecules2020;10:1200 PMCID:PMC7466137

[25]

Foster MN.KATP channels in the cardiovascular system.Physiol Rev2016;96:177-252 PMCID:PMC4698399

[26]

Garlid KD,Yarov-Yarovoy V.Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection.Circ Res1997;81:1072-82

[27]

Baumgartner WA.Neuroprotection in cardiac surgery.Ann Thorac Surg2005;79:S2254-6

[28]

Shake JG,Marban E.Pharmacologically induced preconditioning with diazoxide: a novel approach to brain protection.Ann Thorac Surg2001;72:1849-54

[29]

Caparrelli DJ,Bethea BT.Pharmacological preconditioning ameliorates neurological injury in a model of spinal cord ischemia.Ann Thorac Surg2002;74:838-45

[30]

O’Rourke B.Myocardial KATP channels in preconditioning.Circ Res2000;87:845-55

[31]

O’Rourke B.Evidence for mitochondrial K+ channels and their role in cardioprotection.Circ Res2004;94:420-32 PMCID:PMC2712129

[32]

Garlid KD.Opening mitochondrial KATP in the heart - what happens, and what does not happen.Basic Res Cardiol2000;95:275-9

[33]

Garlid KD,Xie ZJ,Paucek P.Mitochondrial potassium transport: the role of the mitochondrial ATP-sensitive K+ channel in cardiac function and cardioprotection.Biochim Biophys Acta2003;1606:1-21

[34]

Hu H,Seharaseyon J.Pharmacological and histochemical distinctions between molecularly defined sarcolemmal KATP channels and native cardiac mitochondrial KATP channels.Mol Pharmacol1999;55:1000-5

[35]

Gross GJ.Sarcolemmal versus mitochondrial ATP-sensitive K+ channels and myocardial preconditioning.Circ Res1999;84:973-9

[36]

Kulawiak B.Current challenges of mitochondrial potassium channel research.Front Physiol2022;13:907015 PMCID:PMC9193220

[37]

Tseng GN.Actions of pinacidil on membrane currents in canine ventricular myocytes and their modulation by intracellular ATP and cAMP.Pflugers Arch1990;415:414-24

[38]

Inagaki N,Clement JP.A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels.Neuron1996;16:1011-7

[39]

Seino S.ATP-sensitive potassium channels: a model of heteromultimeric potassium channel/receptor assemblies.Annu Rev Physiol1999;61:337-62.

[40]

Shyng SL.Octameric stoichiometry of the KATP channel complex.J Gen Physiol1997;110:655-64 PMCID:PMC2229396

[41]

Sellitto AD,Al-Dadah AS.Diazoxide maintenance of myocyte volume and contractility during stress: evidence for a non-sarcolemmal KATP channel location.J Thorac Cardiovasc Surg2010;140:1153-9 PMCID:PMC3041172

[42]

Garlid KD.The mitochondrial KATP channel - fact or fiction?.J Mol Cell Cardiol2012;52:578-83 PMCID:PMC3617982

[43]

Hu X,Huang Y.Disruption of sarcolemmal ATP-sensitive potassium channel activity impairs the cardiac response to systolic overload.Circ Res2008;103:1009-17 PMCID:PMC2877276

[44]

Flagg TP,Masia R.Differential structure of atrial and ventricular KATP: atrial KATP channels require SUR1.Circ Res2008;103:1458-65 PMCID:PMC2768594

[45]

Paggio A,Campo A.Identification of an ATP-sensitive potassium channel in mitochondria.Nature2019;572:609-13 PMCID:PMC6726485

[46]

Garlid KD.Mitochondrial potassium transport: the K+ cycle.Biochim Biophys Acta2003;1606:23-41

[47]

Kravenska Y,Szabo I.Routes for potassium ions across mitochondrial membranes: a biophysical point of view with special focus on the ATP-sensitive K+ channel.Biomolecules2021;11:1172 PMCID:PMC8393992

[48]

Flagg TP,Koster JC.Muscle KATP channels: recent insights to energy sensing and myoprotection.Physiol Rev2010;90:799-829 PMCID:PMC3125986

[49]

Wlson WR.The acute hemodynamic effects of diazoxide in man.Circulation1963;28:89-93.

[50]

Rubin AA,Taylor RM. Pharmacology of diazoxide, an antihypertensive, nondiuretic benzothiadiazine. J Pharmacol Exp Ther 1962;136:344-52. Avaliable from: https://jpet.aspetjournals.org/content/136/3/344.short [Last accessed on 26 Dec 2023]

[51]

Diazoxide. Br Med J 1972;4:417-8.

[52]

Kumar GK,Rodriguez Robayo J.Side effects of diazoxide.JAMA1976;235:275-6

[53]

Komatsu Y,Takihata M.Safety and tolerability of diazoxide in Japanese patients with hyperinsulinemic hypoglycemia.Endocr J2016;63:311-4

[54]

Gray KD,Escobar C.Best Pharmaceuticals for Children Act-Pediatric Trials Network Steering CommitteePrevalence and safety of diazoxide in the neonatal intensive care unit.J Perinatol2018;38:1496-502 PMCID:PMC6224295

[55]

Brito PC,Antunes E,Gonçalves I.Hypoglycemia in a non-diabetic patient and the side effects of diazoxide use.Cureus2023;15:e36804 PMCID:PMC10134957

[56]

Quayle JM,Standen NB.ATP-sensitive and inwardly rectifying potassium channels in smooth muscle.Physiol Rev1997;77:1165-232

[57]

Aziz Q,Anderson N,Tsisanova E.Molecular and functional characterization of the endothelial ATP-sensitive potassium channel.J Biol Chem2017;292:17587-97 PMCID:PMC5663864

[58]

Wrzosek A,Żochowska M,Kulawiak B.Alternative targets for modulators of mitochondrial potassium channels.Molecules2022;27:299 PMCID:PMC8746388

[59]

Wang J,Tryon R.Kir1.1 and SUR1 are not implicated as subunits of an adenosine triphosphate-sensitive potassium channel involved in diazoxide cardioprotection.JTCVS Open2023;15:231-41 PMCID:PMC10556815

[60]

Anastacio MM,Makepeace C.Cardioprotective mechanism of diazoxide involves the inhibition of succinate dehydrogenase.Ann Thorac Surg2013;95:2042-50 PMCID:PMC3745224

[61]

Prasad SM,Byrd GD.Role of the sarcolemmal adenosine triphosphate-sensitive potassium channel in hyperkalemic cardioplegia-induced myocyte swelling and reduced contractility.Ann Thorac Surg2006;81:148-53

[62]

Henn MC,Kanter EM.Adenosine triphosphate-sensitive potassium channel Kir subunits implicated in cardioprotection by diazoxide.J Am Heart Assoc2015;4:e002016 PMCID:PMC4599460

[63]

Henn MC,Zhang H.Diazoxide cardioprotection is independent of adenosine triphosphate-sensitive potassium channel Kir6.1 subunit in response to stress.J Am Coll Surg2015;221:319-25 PMCID:PMC4515177

[64]

Sellitto AD,Schuessler RB,Lawton JS.An open sarcolemmal adenosine triphosphate-sensitive potassium channel is necessary for detrimental myocyte swelling secondary to stress.Circulation2011;124:S70-4 PMCID:PMC3196625

[65]

Henn MC,Zhang H.Increased tolerance to stress in cardiac expressed gain-of-function of adenosine triphosphate-sensitive potassium channel subunit Kir6.1.J Surg Res2016;206:460-5 PMCID:PMC6927332

[66]

Wang J,Dong J. Abstract 17206: implication of potassium inward rectifying (Kir1.1) Channel component in cardioprotective mechanism of adenosine triphosphate-sensitive potassium channel opener diazoxide. Circulation 2019;140:A17206. Avaliable from: https://www.ahajournals.org/doi/abs/10.1161/circ.140.suppl_1.17206 [Last accessed on 18 Jan 2024].

[67]

Rotko D,Szewczyk A.Signaling pathways targeting mitochondrial potassium channels.Int J Biochem Cell Biol2020;125:105792

[68]

Auchampach JA,Gross GJ.Blockade of ischaemic preconditioning in dogs by the novel ATP dependent potassium channel antagonist sodium 5-hydroxydecanoate downloaded from.Cardiovasc Res1992;26:1054-62

[69]

Shigematsu S,Abe T,Sakata T.Pharmacological evidence for the persistent activation of ATP-sensitive K+ channels in early phase of reperfusion and its protective role against myocardial stunning.Circulation1995;92:2266-75

[70]

Galifianes M,Hearse DJ.Effects of potassium channel modulation during global ischaemia in isolated rat heart with and without cardioplegia.Cardiovasc Res1992;26:1063-8

[71]

Grover GJ,Parham CS.Nicorandil Improves postischemic contractile function independently of direct myocardial effects.J Cardiovasc Pharmacol1990;15:698-705

[72]

Pignac J,Dumont L.Cold cardioplegia and the K+ channel modulator aprikalim (RP 52891): improved cardioprotection in isolated ischemic rabbit hearts.Can J Physiol Pharmacol1994;72:126-32

[73]

Janjua MB,Anastacio MM,Nichols CG.Cardioprotective benefits of adenosine triphosphate-sensitive potassium channel opener diazoxide are lost with administration after the onset of stress in mouse and human myocytes.J Am Coll Surg2014;219:803-13 PMCID:PMC4197936

[74]

Tsuchida A,Miki T.Critical timing of mitochondrial K ATP channel opening for enhancement of myocardial tolerance against infarction.Basic Res Cardiol2001;96:446-53

[75]

Kleinbongard P,Skyschally A.Diazoxide is a powerful cardioprotectant but is not feasible in a realistic infarct scenario.Front Cardiovasc Med2023;10:1173462 PMCID:PMC10154575

[76]

Deja MA,Malinowski M.Diazoxide provides maximal KATP channels independent protection if present throughout hypoxia.Ann Thorac Surg2006;81:1408-16

[77]

Mizutani S,Sellitto AD,Damiano RJ Jr.Myocyte volume and function in response to osmotic stress: observations in the presence of an adenosine triphosphate-sensitive potassium channel opener.Circulation2005;112:I219-23

[78]

Breisblatt WM,Wolfe CJ.Acute myocardial dysfunction and recovery: a common occurrence after coronary bypass surgery.J Am Coll Cardiol1990;15:1261-9

[79]

Velez A,Lawton J.A novel, clinically useful definition of myocardial stunning after cardiac surgery.J Am Coll Cardiol2022;79:1042

[80]

Heyndrickx GR,Mcritchie RJ,Vatner SF.Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs.J Clin Invest1975;56:978-85 PMCID:PMC301954

[81]

Torregroza C,Feige K,Hollmann MW.Perioperative cardioprotection: general mechanisms and pharmacological approaches.Anesth Analg2020;131:1765-80

[82]

Mizutani S,Bloch JB.Hyperkalemic cardioplegia-induced myocyte swelling and contractile dysfunction: prevention by diazoxide.Ann Thorac Surg2006;81:154-9

[83]

Murry CE,Reimer KA.Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium.Circulation1986;74:1124-36.

[84]

Gross GJ.Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs.Circ Res1992;70:223-33.

[85]

Ishida T,Gute DC.Mechanisms of ischemic preconditioning.Shock1994;8:86-94

[86]

Wakahara N,Yaguchi Y.Difference in the cardioprotective mechanisms between ischemic preconditioning and pharmacological preconditioning by diazoxide in rat hearts.Circ J2004;68:156-62

[87]

Sutherland FJ,Baker KE.Mouse isolated perfused heart: characteristics and cautions.Clin Exp Pharmacol Physiol2003;30:67-78.

[88]

Motayagheni N.Modified Langendorff technique for mouse heart cannulation: improved heart quality and decreased risk of ischemia.MethodsX2017;4:508-12 PMCID:PMC5704101

[89]

Watanabe M.Langendorff perfusion method as an ex vivo model to evaluate heart function in rats. In: Ishikawa K, editor. Experimental models of cardiovascular diseases. New York: Springer; 2018. pp. 107-16.

[90]

Lawton JS,Damiano RJ.The adenosine-triphosphate-sensitive potassium-channel opener pinacidil is effective in blood cardioplegia.Ann Thorac Surg1998;66:768-73

[91]

Ledingham S,Hearse D.The St. Thomas’ Hospital cardioplegic solution: a comparison of the efficacy of two formulations.J Thorac Cardiovasc Surg1987;93:240-6

[92]

Lawton JS,Allen CT,Damiano RJ.Myocardial protection with potassium-channel openers is as effective as St. Thomas’ solution in the rabbit heart.Ann Thorac Surg1996;62:31-9

[93]

Lawton JS,Allen CT,Damiano RJ.Myocardial protection with pinacidil cardioplegia in the blood-perfused heart.Ann Thorac Surg1996;61:1680-8

[94]

Lawton JS,Allen CT.Myocardial protection in the acutely injured heart: hyperpolarizing versus depolarizing hypothermic cardioplegia.J Thorac Cardiovasc Surg1997;113:567-75

[95]

Garlid KD,Yarov-Yarovoy V,Schindler PA.The mitochondrial KATP channel as a receptor for potassium channel openers.J Biol Chem1996;271:8796-9

[96]

Andersson KE.Clinical pharmacology of potassium channel openers.Pharmacol Toxicol1992;70:244-54

[97]

Faivre JF.Effects of tolbutamide, glibenclamide and diazgxide upon action potentials recorded from rat ventricular muscle.Biochim Biophys Acta Bioenerg1989;984:1-5

[98]

Lascano EC,Del Valle HF.Ischemic shortening of action potential duration as a result of KATP channel opening attenuates myocardial stunning by reducing calcium influx.Mol Cell Biochem2002;236:53-61

[99]

Inoue I,Kishi K.ATP-sensitive K+ channel in the mitochondrial inner membrane.Nature1991;352:244-7

[100]

Rousou AJ,Federman M,Mccully JD.Opening of mitochondrial KATP channels enhances cardioprotection through the modulation of mitochondrial matrix volume, calcium accumulation, and respiration.Am J Physiol Heart Circ Physiol2004;287:1967-76

[101]

Nakai Y,Mieno S.Mitochondrial ATP-sensitive potassium channel plays a dominant role in ischemic preconditioning of rabbit heart.Eur Surg Res2001;33:57-63

[102]

Coetzee WA.Multiplicity of effectors of the cardioprotective agent, diazoxide.Pharmacol Ther2013;140:167-75 PMCID:PMC3795896

[103]

Anastacio MM,Makepeace CM.Relationship between mitochondrial matrix volume and cellular volume in response to stress and the role of ATP-sensitive potassium channel.Circulation2013;128:S130-5 PMCID:PMC3848320

[104]

Murata M,O’Rourke B.Mitochondrial ATP-sensitive potassium channels attenuate matrix Ca2+ overload during simulated ischemia and reperfusion: possible mechanism of cardioprotection.Circ Res2001;89:891-8

[105]

Steenbergen C,Jennings RB.Volume regulation and plasma membrane injury in aerobic, anaerobic, and ischemic myocardium in vitro. Effects of osmotic cell swelling on plasma membrane integrity.Circ Res1985;57:864-75.

[106]

Al-Dadah AS,Schuessler RB,Lawton JS.Maintenance of myocyte volume homeostasis during stress by diazoxide is cardioprotective.Ann Thorac Surg2007;84:857-62

[107]

Maffit SK,Al-Dadah AS,Damiano RJ Jr.Diazoxide maintains human myocyte volume homeostasis during stress.J Am Heart Assoc2012;1:e000778 PMCID:PMC3487366

[108]

Zhang HX,Kurata HT,Lawton JS.HMR 1098 is not an SUR isotype specific inhibitor of heterologous or sarcolemmal KATP channels.J Mol Cell Cardiol2011;50:552-60

[109]

Suzuki M,Sato T.Cardioprotective effect of diazoxide is mediated by activation of sarcolemmal but not mitochondrial ATP-sensitive potassium channels in mice.Circulation2003;107:682-5

[110]

Wojtovich AP.The endogenous mitochondrial complex II inhibitor malonate regulates mitochondrial ATP sensitive potassium channels: implications for ischemic preconditioning.Biochim Biophys Acta2008;1777:882-9 PMCID:PMC2507763

[111]

Ardehali H,Ko Y,Marbá E.Multiprotein complex containing succinate dehydrogenase confers mitochondrial ATP-sensitive K+ channel activity.Proc Natl Acad Sci2004;101:11880-5. PMCID:PMC511068

[112]

Krenz M,Wimpee H.Opening of ATP-sensitive potassium channels causes generation of free radicals in vascular smooth muscle cells.Basic Res Cardiol2002;97:365-73

[113]

Zeng WZ,Murali Krishna U,Huang CL.Structural determinants and specificities for ROMK1-phosphoinositide interaction.Am J Physiol-Renal2002;282:826-34.

[114]

Forbes RA,Murphy E.Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism.Circ Res2001;88:802-9

[115]

Carroll R,Yellon DM.Mitochondrial KATP channel opening protects a human atrial-derived cell line by a mechanism involving free radical generation.Cardiovasc Res2001;51:691-700

[116]

Oldenburg O,Krieg T.P1075 opens mitochondrial KATP channels and generates reactive oxygen species resulting in cardioprotection of rabbit hearts.J Mol Cell Cardiol2003;35:1035-42

[117]

Garlid AO,Jacobs JP.Mitochondrial reactive oxygen species: which ROS signals cardioprotection?.J Physiol Heart Circ Physiol2013;305:960-8 PMCID:PMC3798754

[118]

Dröse S,Hanley PJ.K+-independent actions of diazoxide question the role of inner membrane KATP channels in mitochondrial cytoprotective signaling.J Biol Chem2006;281:23733-9

[119]

Hanley PJ,Löffler M,Daut J.KATP channel-independent targets of diazoxide and 5-hydroxydecanoate in the heart.J Physiol2002;542:735-41 PMCID:PMC2290447

[120]

Dzeja PP,Ozcan C.Targeting nucleotide-requiring enzymes: implications for diazoxide-induced cardioprotection.Am J Physiol Heart Circ Physiol2003;284:1048-56

[121]

Ockaili RA,Kukreja RC.Chemical preconditioning with 3-nitropropionic acid in hearts: role of mitochondrial KATP channel.J Physiol Heart Circ Physiol2001;280:2406-11

[122]

Busija DW,Rajapakse NC.Effects of ATP-sensitive potassium channel activators diazoxide and BMS-191095 on membrane potential and reactive oxygen species production in isolated piglet mitochondria.Brain Res Bull2005;66:85-90

[123]

Chouchani ET,Gaude E.Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS.Nature2014;515:431-5

[124]

Anastacio MM,Keith AD,Nichols CG.Inhibition of succinate dehydrogenase by diazoxide is independent of the ATP-sensitive potassium channel subunit sulfonylurea type 1 receptor.J Am Coll Surg2013;216:1144-9 PMCID:PMC3660462

[125]

Eaton M,Schaefer S.Ischemic preconditioning and diazoxide limit mitochondrial Ca2+ overload during ischemia/reperfusion: role of reactive oxygen species.Exp Clin Cardiol2005;10:96-103 PMCID:PMC2716229

[126]

Ahmad T,Velez AK.Cardioprotective mechanisms of mitochondria-targeted S-nitrosating agent and adenosine triphosphate-sensitive potassium channel opener are mutually exclusive.JTCVS Open2021;8:338-54 PMCID:PMC9390287

[127]

Uchiyama Y,Okada T.Integrated pharmacological preconditioning in combination with adenosine, a mitochondrial KATP channel opener and a nitric oxide donor.J Thorac Cardiovasc Surg2003;126:148-59

[128]

Kim MY,Yoon IS.Diazoxide acts more as a PKC-epsilon activator, and indirectly activates the mitochondrial KATP channel conferring cardioprotection against hypoxic injury.Br J Pharmacol2006;149:1059-70 PMCID:PMC2014640

[129]

Akao M,O’rourke B.Mitochondrial ATP-sensitive potassium channels inhibit apoptosis induced by oxidative stress in cardiac cells.Circ Res2001;88:1267-75.

[130]

Yonemochi H,Anan F.Diazoxide-induced cardioprotection via DeltaPsim loss depending on timing of application.Life Sci2006;79:1906-12

[131]

Mccully JD,Cowan DB,Parker RA.Diazoxide amelioration of myocardial injury and mitochondrial damage during cardiac surgery.Ann Thorac Surg2002;74:2138-46 PMCID:PMC3668433

[132]

Maslov LN,Naryzhnaya NV.KATP channels are regulators of programmed cell death and targets for the creation of novel drugs against ischemia/reperfusion cardiac injury.Fundam Clin Pharmacol2023;37:1020-49

[133]

Davies JE,Killingsworth CR.Multiple treatment approach to limit cardiac ischemia-reperfusion injury.Ann Thorac Surg2005;80:1408-16

[134]

Makepeace CM,Kanter EM,Nichols CG.Superior diastolic function with KATP channel opener diazoxide in a novel mouse Langendorff model.J Surg Res2018;227:186-93 PMCID:PMC6314810

[135]

Suarez-Pierre A,Zhou X.Diazoxide preserves myocardial function in a swine model of hypothermic cardioplegic arrest and prolonged global ischemia.J Thorac Cardiovasc Surg2022;163:e385-400

[136]

Velez AK,Giuliano K.ATP - sensitive potassium channel opener diazoxide reduces myocardial stunning in a porcine regional with subsequent global ischemia model.J Am Heart Assoc2022;11:e026304 PMCID:PMC9851454

[137]

Wang X,Kuukasjärvi P.Novel pharmacological preconditioning with diazoxide attenuates myocardial stunning in coronary artery bypass grafting.Eur J Cardiothorac Surg2003;24:967-73

[138]

Deja MA,Gołba KS.Diazoxide protects myocardial mitochondria, metabolism, and function during cardiac surgery: a double-blind randomized feasibility study of diazoxide-supplemented cardioplegia.J Thorac Cardiovasc Surg2009;137:997-1004

[139]

Ziganshin BA.Deep hypothermic circulatory arrest.Ann Cardiothorac Surg2013;2:303-15 PMCID:PMC3741856

[140]

Wang X,Zhu J,Sun L.Aortic arch surgery with hypothermic circulatory arrest and unilateral antegrade cerebral perfusion: perioperative outcomes.J Thorac Cardiovasc Surg2020;159:374-87.e4

[141]

Bergeron EJ,Aftab M,Reece TB.Neuroprotection strategies in aortic surgery.Cardiol Clin2017;35:453-65

[142]

Giuliano K,Velez AK.Ketamine mitigates neurobehavioral deficits in a canine model of hypothermic circulatory arrest.Semin Thorac Cardiovasc Surg2023;35:251-8 PMCID:PMC9253200

[143]

Honrath B,Culmsee C.Small conductance Ca2+-activated K+ channels in the plasma membrane, mitochondria and the ER: pharmacology and implications in neuronal diseases.Neurochem Int2017;109:13-23

[144]

Debska G,Kicinska A,Elger CE.Potassium channel openers depolarize hippocampal mitochondria.Brain Res2001;892:42-50

[145]

De Arriba S, Franke H, Pissarek M, Nieber K, Illes P. Neuroprotection by ATP-dependent potassium channels in rat neocortical brain slices during hypoxia.Neurosci Lett1999;273:13-6

[146]

Domoki F,Veltkamp R,Busija DW.Mitochondrial Potassium channel opener diazoxide preserves neuronal-vascular function after cerebral ischemia in newborn pigs.Stroke1999;30:2713-9.

[147]

Barreiro CJ,Fitton TP.Noninvasive assessment of brain injury in a canine model of hypothermic circulatory arrest using magnetic resonance spectroscopy.Ann Thorac Surg2006;81:1593-8

[148]

Teshima Y,Li RA.Mitochondrial ATP-sensitive potassium channel activation protects cerebellar granule neurons from apoptosis induced by oxidative stress.Stroke2003;34:1796-802

[149]

Fatemi A,Johnston MV.Hypoxic-ischemic encephalopathy in the term infant.Clin Perinatol2009;36:835-58, vii PMCID:PMC2849741

[150]

Yamanaka K,Aftab M.Pretreatment with diazoxide attenuates spinal cord ischemia-reperfusion injury through signaling transducer and activator of transcription 3 pathway.Ann Thorac Surg2019;107:733-9

[151]

Yamanaka K,Aftab M.Synergistic reduction of apoptosis with diazoxide and erythropoietin in spinal cord ischemic injury.Ann Thorac Surg2018;106:1751-8

[152]

Yamanaka K,Aftab M.Synergetic induction of NGF with diazoxide and erythropoietin attenuates spinal cord ischemic injury.J Surg Res2019;233:124-31

[153]

Ikeno Y,Roda GF.Direct and indirect activation of the adenosine triphosphate-sensitive potassium channel to induce spinal cord ischemic metabolic tolerance.J Thorac Cardiovasc Surg2023;165:e90-9

PDF

33

Accesses

0

Citation

Detail

Sections
Recommended

/