PDF
Abstract
This review article discusses the utilisation of nanotechnology in the treatment of pulmonary diseases, including asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, pneumonia, lung infections, and lung cancer. It highlights the importance of early diagnosis and novel drug delivery systems for successful disease management. Specifically, nanoformulations administered via the pulmonary route have shown effectiveness in managing asthma and COPD, while targeted drug delivery is crucial for improving therapeutic outcomes and minimising systemic side effects in lung infections and cancer. The article also explores the role of nanotechnology in gene therapy for cystic fibrosis, showcasing the development of nonviral vectors. Overall, this review provides a comprehensive overview of the causes of pulmonary diseases and the advancements in nanoscience and nanotechnology for their treatment.
Keywords
Pulmonary diseases
/
nanoparticles
/
COPD
/
asthma
/
lung cancer
/
respiratory diseases
/
pulmonary administration
Cite this article
Download citation ▾
Rahit Kumar Dey, Bachaspati Jana, Debabrata Ghosh Dastidar.
Applications of nanotechnology in the treatment of pulmonary diseases.
Vessel Plus, 2023, 7(1): 17 DOI:10.20517/2574-1209.2023.06
| [1] |
Jadhav SP,Hussain S.Introduction to lung diseases. In: Dua K, Löbenberg R, Malheiros Luzo ÂC, et al. editors. Targeting cellular signalling pathways in lung diseases. Singapore: Springer; 2021. pp. 1-25.
|
| [2] |
Dastidar D, Saha S, Chowdhury M. Porous microspheres: synthesis, characterisation and applications in pharmaceutical & medical fields.Int J Pharm2018;548:34-48
|
| [3] |
Borges do Nascimento IJ,von Groote TC.Coronavirus disease (COVID-19) pandemic: an overview of systematic reviews.BMC Infect Dis2021;21:525 PMCID:PMC8177249
|
| [4] |
Lu X,Chen C.Right or left: the role of nanoparticles in pulmonary diseases.Int J Mol Sci2014;15:17577-600 PMCID:PMC4227179
|
| [5] |
Hashoul D.Sensors for detecting pulmonary diseases from exhaled breath.Eur Respir Rev2019;28:190011 PMCID:PMC9489036
|
| [6] |
Duan Y,Zhang Y.Advanced diagnostic and therapeutic strategies in nanotechnology for lung cancer.Front Oncol2022;12:1031000 PMCID:PMC9767962
|
| [7] |
Kanwal M,Cao Y.Familial risk for lung cancer.Oncol Lett2017;13:535-42 PMCID:PMC5351216
|
| [8] |
Molina JR,Cassivi SD,Adjei AA.Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship.Mayo Clin Proc2008;83:584-94 PMCID:PMC2718421
|
| [9] |
Risau W.Mechanisms of angiogenesis.Nature1997;386:671-4
|
| [10] |
Dastidar D, Ghosh D, Chakrabarti G. Tumour vasculature targeted anti-cancer therapy.Vessel Plus2020;4:14
|
| [11] |
Krock BL,Simon MC.Hypoxia-induced angiogenesis: good and evil.Genes Cancer2011;2:1117-33 PMCID:PMC3411127
|
| [12] |
Zimna A.Hypoxia-inducible factor-1 in physiological and pathophysiological angiogenesis: applications and therapies.Biomed Res Int2015;2015:549412 PMCID:PMC4471260
|
| [13] |
Śmiech M,Kono H,Taniguchi H.Emerging BRAF mutations in cancer progression and their possible effects on transcriptional networks.Genes2020;11:1342 PMCID:PMC7697059
|
| [14] |
Herceg Z.Genetic and epigenetic alterations as biomarkers for cancer detection, diagnosis and prognosis.Mol Oncol2007;1:26-41 PMCID:PMC5543860
|
| [15] |
Huang Y,Ji JL.Pharmacokinetic behaviors of intravenously administered siRNA in glandular tissues.Theranostics2016;6:1528-41 PMCID:PMC4955053
|
| [16] |
Dastidar DG,Datta S.Paclitaxel-encapsulated core-shell nanoparticle of cetyl alcohol for active targeted delivery through oral route.Nanomedicine2019;14:2121-50
|
| [17] |
Basu A.Cellular responses to cisplatin-induced DNA damage.J Nucleic Acids2010;2010:1-16 PMCID:PMC2929606
|
| [18] |
Oh ET,Kim SJ,Hong SS.Docetaxel induced-JNK2/PHD1 signaling pathway increases degradation of HIF-1α and causes cancer cell death under hypoxia.Sci Rep2016;6:27382 PMCID:PMC4893693
|
| [19] |
Niu G.Vascular endothelial growth factor as an anti-angiogenic target for cancer therapy.Curr Drug Targets2010;11:1000-17 PMCID:PMC3617502
|
| [20] |
Duggirala KB,Lee K.Chronicles of EGFR tyrosine kinase inhibitors: targeting EGFR C797S containing triple mutations.Biomol Ther2022;30:19-27 PMCID:PMC8724843
|
| [21] |
Suda K.Successes and limitations of targeted cancer therapy in lung cancer. 2014. pp. 62-77.
|
| [22] |
Basak D,Darwiche Y.Comparison of anticancer drug toxicities: paradigm shift in adverse effect profile.Life2021;12:48 PMCID:PMC8777973
|
| [23] |
Shaikh AY.Chemotherapy-induced cardiotoxicity.Curr Heart Fail Rep2012;9:117-27
|
| [24] |
Wu Q,Nie Y,Fan D.Multi-drug resistance in cancer chemotherapeutics: mechanisms and lab approaches.Cancer Lett2014;347:159-66
|
| [25] |
Barenholz Y.Doxil®--the first FDA-approved nano-drug: lessons learned.J Control Release2012;160:117-34
|
| [26] |
Numico G,Granetto C.Single-agent pegylated liposomal doxorubicin (Caelix®) in chemotherapy pretreated non-small cell lung cancer patients: a pilot trial.Lung Cancer2002;35:59-64
|
| [27] |
Patlakas G,Tsantekidou-Pozova S.Triplet chemotherapy with docetaxel, gemcitabine and liposomal doxorubicin, supported with subcutaneous amifostine and hemopoietic growth factors, in advanced non-small cell lung cancer.Anticancer Res2005;25:1427-31
|
| [28] |
Xu C,Guo Z.Pulmonary delivery by exploiting doxorubicin and cisplatin co-loaded nanoparticles for metastatic lung cancer therapy.J Control Release2019;295:153-63
|
| [29] |
Meenach SA,Kauffman KJ,Bachelder EM.Synthesis, optimization, and characterization of camptothecin-loaded acetalated dextran porous microparticles for pulmonary delivery.Mol Pharm2012;9:290-8
|
| [30] |
Ormerod MG,Peacock JH.The role of apoptosis in cell killing by cisplatin: a flow cytometric study.Br J Cancer1994;69:93-100 PMCID:PMC1968755
|
| [31] |
Plummer R,Calvert H.A phase I clinical study of cisplatin-incorporated polymeric micelles (NC-6004) in patients with solid tumours.Br J Cancer2011;104:593-8 PMCID:PMC3049602
|
| [32] |
Volovat SR,Koralewski P.A multicenter, single-arm, basket design, phase II study of NC-6004 plus gemcitabine in patients with advanced unresectable lung, biliary tract, or bladder cancer.Oncotarget2020;11:3105-17
|
| [33] |
Han Y,Li L.PD-1/PD-L1 pathway: current researches in cancer.Am J Cancer Res2020;10:727-42
|
| [34] |
Liu B,Qiao G.Effects of gold nanoprism-assisted human PD-L1 siRNA on both gene down-regulation and photothermal therapy on lung cancer.Acta Biomater2019;99:307-19
|
| [35] |
Moro M,Milione M.Coated cationic lipid-nanoparticles entrapping miR-660 inhibit tumor growth in patient-derived xenografts lung cancer models.J Control Release2019;308:44-56
|
| [36] |
Kawashiri T,Mori K.Preclinical and clinical evidence of therapeutic agents for paclitaxel-induced peripheral neuropathy.Int J Mol Sci2021;22:8733 PMCID:PMC8396047
|
| [37] |
Yao Y,Liu L.Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance.Front Mol Biosci2020;7:193 PMCID:PMC7468194
|
| [38] |
Zhang XP,Li BZ.Active targeted Janus nanoparticles enable anti-angiogenic drug combining chemotherapy agent to prevent postoperative hepatocellular carcinoma recurrence.Biomaterials2022;281:121362
|
| [39] |
Liu J,Wei T.Dendrimeric nanosystem consistently circumvents heterogeneous drug response and resistance in pancreatic cancer.Exploration2021;1:21-34 PMCID:PMC10291567
|
| [40] |
Duman FD,Demirci G.Bypassing pro-survival and resistance mechanisms of autophagy in EGFR-positive lung cancer cells by targeted delivery of 5FU using theranostic Ag2S quantum dots.J Mater Chem B2019;7:7363-76
|
| [41] |
Chen H,Zhang M.Characterization of tumor-targeting Ag2S quantum dots for cancer imaging and therapy in vivo.Nanoscale2014;6:12580-90
|
| [42] |
Kumari P,Bhatt H,Biswas S.Development of chlorin e6-conjugated poly(ethylene glycol)-poly(d,l-lactide) nanoparticles for photodynamic therapy.Nanomedicine2019;14:819-34
|
| [43] |
Yang Y,Peng Y,Zhou W.A smart pH-sensitive delivery system for enhanced anticancer efficacy via paclitaxel endosomal escape.Front Pharmacol2019;10:10 PMCID:PMC6353802
|
| [44] |
Doroudian M,Goodarzi N,Donnelly SC.Smart nanotherapeutics and lung cancer.Pharmaceutics2021;13:1972 PMCID:PMC8619749
|
| [45] |
Chen Q,Zheng J.A review of cystic fibrosis: basic and clinical aspects.Animal Model Exp Med2021;4:220-32 PMCID:PMC8446696
|
| [46] |
Riordan JR,Kerem B.Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA.Science1989;245:1066-73
|
| [47] |
Alton EWFW,Ashby D.Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: a randomised, double-blind, placebo-controlled, phase 2b trial.Lancet Respir Med2015;3:684-91
|
| [48] |
Becker KA,Zhang Y.The role of sphingolipids and ceramide in pulmonary inflammation in cystic fibrosis.Open Respir Med J2010;4:39-47
|
| [49] |
Corvol H,Tabary O,Guillot L.Translating the genetics of cystic fibrosis to personalized medicine.Transl Res2016;168:40-9
|
| [50] |
Somaraju URR.Pancreatic enzyme replacement therapy for people with cystic fibrosis.Cochrane Database Syst Rev2020;8:CD008227 PMCID:PMC8094413
|
| [51] |
Yang C.Dornase alfa for cystic fibrosis.Cochrane Database Syst Rev2021;3:CD001127 PMCID:PMC8094421
|
| [52] |
Donaldson SH,Zeman KL,Tarran R.A controlled trial of long-term inhaled hypertonic saline in patients with cystic fibrosis.Surv Anesthesiol2007;51:7-8
|
| [53] |
Brodlie M,Roberts K.Targeted therapies to improve CFTR function in cystic fibrosis.Genome Med2015;7:101 PMCID:PMC4582929
|
| [54] |
van Gool K, Norman R, Delatycki MB, Hall J, Massie J. Understanding the costs of care for cystic fibrosis: an analysis by age and health state.Value Health2013;16:345-55
|
| [55] |
Naughton CA.Patient-centered communication.Pharmacy2018;6:18 PMCID:PMC5874557
|
| [56] |
Heffer RW,Rae WA.The effects of oral versus written instructions on parents’ recall and satisfaction after pediatric appointments.J Dev Behav Pediatr1997;18:377-82
|
| [57] |
Rafeeq MM.Cystic fibrosis: current therapeutic targets and future approaches.J Transl Med2017;15:84 PMCID:PMC5408469
|
| [58] |
Suk JS,Wang YY.The penetration of fresh undiluted sputum expectorated by cystic fibrosis patients by non-adhesive polymer nanoparticles.Biomaterials2009;30:2591-7 PMCID:PMC2661768
|
| [59] |
Craparo EF,Sardo C,Cavallaro G.Pegylated Polyaspartamide-polylactide-based nanoparticles penetrating cystic fibrosis artificial mucus.Biomacromolecules2016;17:767-77
|
| [60] |
Liu M,Shan W.Developments of mucus penetrating nanoparticles.Asian J Pharm Sci2015;10:275-82
|
| [61] |
Suk JS,Boylan NJ,Boyle MP.Rapid transport of muco-inert nanoparticles in cystic fibrosis sputum treated with N-acetyl cysteine.Nanomedicine2011;6:365-75 PMCID:PMC3102009
|
| [62] |
Suk JS,Trehan K.N-acetylcysteine enhances cystic fibrosis sputum penetration and airway gene transfer by highly compacted DNA nanoparticles.Mol Ther2011;19:1981-9 PMCID:PMC3222526
|
| [63] |
Moreno-Sastre M,Esquisabel A.Pulmonary delivery of tobramycin-loaded nanostructured lipid carriers for Pseudomonas aeruginosa infections associated with cystic fibrosis.Int J Pharm2016;498:263-73
|
| [64] |
Juntke J,Günday Türeli N.Testing of aerosolized ciprofloxacin nanocarriers on cystic fibrosis airway cells infected with P. aeruginosa biofilms.Drug Deliv Transl Res2021;11:1752-65 PMCID:PMC8236054
|
| [65] |
Robinson E,Slaughter K.Lipid nanoparticle-delivered chemically modified mRNA restores chloride secretion in cystic fibrosis.Mol Ther2018;26:2034-46 PMCID:PMC6094356
|
| [66] |
Koch G,Cool RH.Assessing pseudomonas virulence with nonmammalian host: galleria mellonella. In: Filloux A, Ramos J, editors. Pseudomonas methods and protocols. New York: Springer; 2014. pp. 681-8.
|
| [67] |
Conte G,Baldassi D.Hybrid lipid/polymer nanoparticles to tackle the cystic fibrosis mucus barrier in siRNA delivery to the lungs: does PEGylation make the difference?.ACS Appl Mater Interfaces2022;14:7565-78
|
| [68] |
Guan S,Hedtfeld S.Self-assembled peptide-poloxamine nanoparticles enable in vitro and in vivo genome restoration for cystic fibrosis.Nat Nanotechnol2019;14:287-97
|
| [69] |
Leal J,Peng X.A combinatorial biomolecular strategy to identify peptides for improved transport across the sputum of cystic fibrosis patients and the underlying epithelia. bioRxiv 2019.
|
| [70] |
Oglesby IK,McElvaney NG.Regulation of cystic fibrosis transmembrane conductance regulator by microRNA-145, -223, and -494 is altered in ΔF508 cystic fibrosis airway epithelium.J Immunol2013;190:3354-62
|
| [71] |
Tarbox AK.Pulmonary embolism.Int J Crit Illn Inj Sci2013;3:69-72 PMCID:PMC3665123
|
| [72] |
Ouriel K,Greenberg RK.The anatomy of deep venous thrombosis of the lower extremity.J Vasc Surg2000;31:895-900
|
| [73] |
Mclachlin AD,Jory TA.Venous stasis in the lower extremities.Ann Surg1960;152:678-85 PMCID:PMC1613783
|
| [74] |
Stein PD,Musani MH.Silent pulmonary embolism in patients with deep venous thrombosis: a systematic review.Am J Med2010;123:426-31
|
| [75] |
Leidi A,Righini M,Grosgurin O.Risk stratification in patients with acute pulmonary embolism: current evidence and perspectives.J Clin Med2022;11:2533 PMCID:PMC9104204
|
| [76] |
Goldhaber SZ,De Rosa M.Acute pulmonary embolism: clinical outcomes in the International Cooperative Pulmonary Embolism Registry (ICOPER).Lancet1999;353:1386-9
|
| [77] |
Mullan CW,Geib M.Modern treatment trends and outcomes of pulmonary embolism with and without hemodynamic significance.Ann Thorac Surg2020;110:1534-40
|
| [78] |
Licha CR, McCurdy CM, Maldonado SM, Lee LS. Current management of acute pulmonary embolism.Ann Thorac Cardiovasc Surg2020;26:65-71 PMCID:PMC7184035
|
| [79] |
Carlon TA,Marinelli BS.Contemporary management of acute pulmonary embolism: evolution of catheter-based therapy.Radiographics2022;42:1861-80
|
| [80] |
Wang Y,Zhao X.Functionalized polymeric hybrid micelles as an efficient nanotheranostic agent for thrombus imaging and thrombolysis.Acta Biomater2021;122:278-90
|
| [81] |
Koudelka S,Mašek J.Liposomal nanocarriers for plasminogen activators.J Control Release2016;227:45-57
|
| [82] |
Nelson CE,Hanna A,Gupta MK.Balancing cationic and hydrophobic content of PEGylated siRNA polyplexes enhances endosome escape, stability, blood circulation time, and bioactivity in vivo.ACS Nano2013;7:8870-80 PMCID:PMC3857137
|
| [83] |
Piazza G,Jaff MR.A prospective, single-arm, multicenter trial of ultrasound-facilitated, catheter-directed, low-dose fibrinolysis for acute massive and submassive pulmonary embolism: the SEATTLE II study.JACC Cardiovasc Interv2015;8:1382-92
|
| [84] |
Niu Y,Li X.Protein-carbon dot nanohybrid-based early blood-brain barrier damage theranostics.ACS Appl Mater Interfaces2020;12:3445-52
|
| [85] |
Lee TY,Thanasekaran P.Carbon dot nanoparticles exert inhibitory effects on human platelets and reduce mortality in mice with acute pulmonary thromboembolism.Nanomaterials2020;10:1254 PMCID:PMC7407909
|
| [86] |
Goel L,Zhang B.Nanodroplet-mediated catheter-directed sonothrombolysis of retracted blood clots.Microsyst Nanoeng2021;7:3 PMCID:PMC7787976
|
| [87] |
Xu J,Zhong Y.Phase transition nanoparticles as multimodality contrast agents for the detection of thrombi and for targeting thrombolysis: in vitro and in vivo experiments.ACS Appl Mater Interfaces2017;9:42525-35
|
| [88] |
Zhang D,Lan S.Near-infrared light activated thermosensitive ion channel to remotely control transgene system for thrombolysis therapy.Small2019;15:e1901176
|
| [89] |
Chang LH,Cheng TM.Thrombus-specific theranostic nanocomposite for codelivery of thrombolytic drug, algae-derived anticoagulant and NIR fluorescent contrast agent.Acta Biomater2021;134:686-701
|
| [90] |
Zhong Y,Xu J.Low-intensity focused ultrasound-responsive phase-transitional nanoparticles for thrombolysis without vascular damage: a synergistic nonpharmaceutical strategy.ACS Nano2019;13:3387-403
|
| [91] |
Wang X,Palasubramaniam J.Thrombus-targeted theranostic microbubbles: a new technology towards concurrent rapid ultrasound diagnosis and bleeding-free fibrinolytic treatment of thrombosis.Theranostics2016;6:726-38 PMCID:PMC4805666
|
| [92] |
Zhao Z,Zeng J.Recent advances in engineering iron oxide nanoparticles for effective magnetic resonance imaging.Bioact Mater2022;12:214-45 PMCID:PMC8897217
|
| [93] |
Zhao Y,Lv W.Dual targeted nanocarrier for brain ischemic stroke treatment.J Control Release2016;233:64-71
|
| [94] |
Bai S,Ahsan F.Cationic liposomes as carriers for aerosolized formulations of an anionic drug: safety and efficacy study.Eur J Pharm Sci2009;38:165-71 PMCID:PMC2749312
|
| [95] |
Bush A.Pathophysiological mechanisms of asthma.Front Pediatr2019;7:68 PMCID:PMC6434661
|
| [96] |
Gillissen A.Inflammation and infections in asthma.Clin Respir J2015;9:257-69 PMCID:PMC7162380
|
| [97] |
Fröhlich E,Wu S.Measurements of deposition, lung surface area and lung fluid for simulation of inhaled compounds.Front Pharmacol2016;7:181 PMCID:PMC4919356
|
| [98] |
Murphy DM.Recent advances in the pathophysiology of asthma.Chest2010;137:1417-26
|
| [99] |
Holgate ST.Treatment strategies for allergy and asthma.Nat Rev Immunol2008;8:218-30
|
| [100] |
Hammad H.Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma.Nat Rev Immunol2008;8:193-204
|
| [101] |
Lambrecht BN.The airway epithelium in asthma.Nat Med2012;18:684-92
|
| [102] |
Papi A,Canonica GW,Richeldi L.Treatment strategies for asthma: reshaping the concept of asthma management.Allergy Asthma Clin Immunol2020;16:75 PMCID:PMC7491342
|
| [103] |
Barnes PJ.Transcription factors and asthma.Eur Respir J1998;12:221-34
|
| [104] |
Palmqvist M,Lazer L,Larsson P.Inhaled dry-powder formoterol and salmeterol in asthmatic patients: onset of action, duration of effect and potency.Eur Respir J1997;10:2484-9
|
| [105] |
Donnelly JE,Thong YH.Parental perceptions and attitudes toward asthma and its treatment: a controlled study.Soc Sci Med1987;24:431-7
|
| [106] |
Ng ZY,Panneerselvam J.Assessing the potential of liposomes loaded with curcumin as a therapeutic intervention in asthma.Colloids Surf B Biointerfaces2018;172:51-9
|
| [107] |
Chen X,Wong BC.Liposomes prolong the therapeutic effect of anti-asthmatic medication via pulmonary delivery.Int J Nanomed2012;7:1139-48 PMCID:PMC3299201
|
| [108] |
Konduri KS,Düzgünes N.Efficacy of liposomal budesonide in experimental asthma.J Allergy Clin Immunol2003;111:321-7
|
| [109] |
Wang W,Xie Q.Enhanced bioavailability and efficiency of curcumin for the treatment of asthma by its formulation in solid lipid nanoparticles.Int J Nanomed2012;7:3667-77 PMCID:PMC3414206
|
| [110] |
Lv C,Cui H,Wang M.Solid lipid nanoparticle delivery of rhynchophylline enhanced the efficiency of allergic asthma treatment via the upregulation of suppressor of cytokine signaling 1 by repressing the p38 signaling pathway.Bioengineered2021;12:8635-49 PMCID:PMC8806963
|
| [111] |
Dhayanandamoorthy Y,Kandregula CAB.Aerosolized hyaluronic acid decorated, ferulic acid loaded chitosan nanoparticle: a promising asthma control strategy.Int J Pharm2020;591:119958
|
| [112] |
Cherk Yong DO,Wadhwa R.Preparation, characterization and in-vitro efficacy of quercetin loaded liquid crystalline nanoparticles for the treatment of asthma.J Drug Deliv Sci Technol2019;54:101297
|
| [113] |
Ramelli SC,McLendon JM.Nanoparticle delivery of anti-inflammatory LNA oligonucleotides prevents airway inflammation in a HDM model of asthma.Mol Ther Nucleic Acids2020;19:1000-14 PMCID:PMC7013130
|
| [114] |
Paleos CM,Sideratou Z.Molecular engineering of dendritic polymers and their application as drug and gene delivery systems.Mol Pharm2007;4:169-88
|
| [115] |
Inapagolla R,Kurtoglu YE.In vivo efficacy of dendrimer-methylprednisolone conjugate formulation for the treatment of lung inflammation.Int J Pharm2010;399:140-7
|
| [116] |
Cao M,Wang Z,Li XM.Development of an orally bioavailable isoliquiritigenin self-nanoemulsifying drug delivery system to effectively treat ovalbumin-induced asthma.Int J Nanomed2020;15:8945-61 PMCID:PMC7671486
|
| [117] |
Casula L,Pini E.Pulmonary delivery of curcumin and beclomethasone dipropionate in a multicomponent nanosuspension for the treatment of bronchial asthma.Pharmaceutics2021;13:1300 PMCID:PMC8401312
|
| [118] |
Chawla R,Mishra M,Singh R.Intranasal micellar curcumin for the treatment of chronic asthma.J Drug Deliv Sci Technol2022;67:102922
|
| [119] |
Choi M,Kim S,Lee M.Targeted delivery of Chil3/Chil4 siRNA to alveolar macrophages using ternary complexes composed of HMG and oligoarginine micelles.Nanoscale2020;12:933-43
|
| [120] |
Onoue S,Aoki Y.Self-assembled micellar formulation of chafuroside A with improved anti-inflammatory effects in experimental asthma/COPD-model rats.Eur J Pharm Sci2012;45:184-9
|
| [121] |
Dastidar DG,Ghosh S.Current therapeutic strategies and possible effective drug delivery strategies against COVID-19.Curr Drug Deliv2023;20:1441-64
|
| [122] |
Cardot-Leccia N,Dellamonica J,Passeron T.Pericyte alteration sheds light on micro-vasculopathy in COVID-19 infection.Intensive Care Med2020;46:1777-8 PMCID:PMC7291173
|
| [123] |
Ballout RA,Bukrinsky MI.The lysosome: a potential juncture between SARS-CoV-2 infectivity and Niemann-Pick disease type C, with therapeutic implications.FASEB J2020;34:7253-64 PMCID:PMC7383733
|
| [124] |
Li X,Peng Y,Lu S.Molecular immune pathogenesis and diagnosis of COVID-19.J Pharm Anal2020;10:102-8 PMCID:PMC7104082
|
| [125] |
Patel TK,Barvaliya M,Bhalla HL.Efficacy and safety of lopinavir-ritonavir in COVID-19: a systematic review of randomized controlled trials.J Infect Public Health2021;14:740-8 PMCID:PMC8056786
|
| [126] |
Zapatero-Belinchón FJ,Lasswitz L.Fluvastatin mitigates SARS-CoV-2 infection in human lung cells.iScience2021;24:103469. PMCID:PMC8599137
|
| [127] |
Ghosh D,Roy K.Computational prediction of the molecular mechanism of statin group of drugs against SARS-CoV-2 pathogenesis.Sci Rep2022;12:6241 PMCID:PMC9009757
|
| [128] |
Yang CJ,Chang HL.Remdesivir use in the coronavirus disease 2019 pandemic: a mini-review.J Microbiol Immunol Infect2021;54:27-36 PMCID:PMC7534785
|
| [129] |
Ferner RE.Chloroquine and hydroxychloroquine in covid-19.BMJ2020;369:m1432
|
| [130] |
Lin C,Chen H.Pulmonary delivery of triptolide-loaded liposomes decorated with anti-carbonic anhydrase IX antibody for lung cancer therapy.Sci Rep2017;7:1097 PMCID:PMC5430522
|
| [131] |
Muppidi K,Betageri G.PEGylated liposome encapsulation increases the lung tissue concentration of vancomycin.Antimicrob Agents Chemother2011;55:4537-42 PMCID:PMC3186981
|
| [132] |
Schoenmaker L,Kulkarni JA.mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability.Int J Pharm2021;601:120586 PMCID:PMC8032477
|
| [133] |
Charelli LE,de Jesus Sousa-Batista A,Balbino TA.Polymeric nanoparticles as therapeutic agents against coronavirus disease.J Nanopart Res2022;24:12 PMCID:PMC8747451
|
| [134] |
Rai M,Gade A.Silver nanoparticles as a new generation of antimicrobials.Biotechnol Adv2009;27:76-83
|
| [135] |
Li Z,Ho W.Lipid-polymer hybrid “particle-in-particle” nanostructure gene delivery platform explored for lyophilizable DNA and mRNA COVID-19 Vaccines.Adv Funct Mater2022;32:2204462 PMCID:PMC9349454
|
| [136] |
Abdel-Bar HM,Fayed MAA.Lipid polymer hybrid nanocarriers as a combinatory platform for different anti-SARS-CoV-2 drugs supported by computational studies.RSC Adv2021;11:28876-91 PMCID:PMC9038182
|
| [137] |
Wilson B.Lipid nanoparticles in the development of mRNA vaccines for COVID-19.J Drug Deliv Sci Technol2022;74:103553 PMCID:PMC9238147
|
| [138] |
Beniwal A.Rosuvastatin calcium-loaded solid lipid nanoparticles (SLN) using design of experiment approach for oral delivery.Int J Chem Life Sci2017;6:2029Available from: https://www.researchgate.net/publication/320731140_Rosuvastatin_calcium-loaded_Solid_Lipid_Nanoparticles_SLN_using_design_of_experiment_approach_for_oral_delivery [Last accessed on 1 June 2023]
|
| [139] |
Zhang Y,Udugama BN.Surveilling and tracking COVID-19 patients using a portable quantum dot smartphone device.Nano Lett2021;21:5209-16
|
| [140] |
Pang J,Aondio G.Efficacy and tolerability of bevacizumab in patients with severe Covid-19.Nat Commun2021;12:814 PMCID:PMC7864918
|
| [141] |
Salman BI,El Deeb S.Fabrication of novel quantum dots for the estimation of COVID-19 antiviral drug using green chemistry: application to real human plasma.RSC Adv2022;12:16624-31 PMCID:PMC9169903
|
| [142] |
Gordon.D. Monovalent recombinant COVID19 vaccine. ID NCT04453852. 2020; Available from: https://clinicaltrials.gov/ [Last accessed on 28 July 2023]
|
| [143] |
Polack FP,Kitchin N.C4591001 Clinical Trial GroupSafety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine.N Engl J Med2020;383:2603-15 PMCID:PMC7745181
|