Challenges of mitochondrial DNA editing in mammalian cells: focus on treatment of cardiovascular disease

Victoria A. Khotina , Mariam Bagheri Ekta , Mirza S. Baig , Wei-Kai Wu , Andrey V. Grechko , Vasily N. Sukhorukov

Vessel Plus ›› 2022, Vol. 6 ›› Issue (1) : 65

PDF
Vessel Plus ›› 2022, Vol. 6 ›› Issue (1) :65 DOI: 10.20517/2574-1209.2022.28
Review

Challenges of mitochondrial DNA editing in mammalian cells: focus on treatment of cardiovascular disease

Author information +
History +
PDF

Abstract

Atherosclerosis is the major cause of occurrence and development of cardiovascular disease. Mutations in mitochondrial DNA (mtDNA) can lead to the development of several pathologies. Over the last few years, there has been increasing evidence that mitochondrial dysfunction caused by mtDNA mutations is associated with atherogenesis and other diseases of the cardiovascular system. Several therapeutic approaches have been developed for the improvement of mitochondrial function, and they are mainly associated with the cellular and tissue antioxidant defense system. However, these approaches are not targeted at mtDNA mutations, which trigger the pathogenesis of disease. Gene-editing technologies could be a promising approach for the treatment of cardiovascular disease caused by mtDNA mutations. To date, such technologies have shown considerable success in mitochondrial gene editing in cell and animal models. Gene-editing technologies allow the determination of the role of mitochondrial genome mutations in the development and complication of various chronic diseases. Nevertheless, further investigation and optimization in this field is required for future human trials. This review highlights the progress and existing challenges of modern technologies and approaches to mitochondrial gene editing.

Keywords

Cardiovascular disease / atherosclerosis / mitochondrial DNA mutation / gene editing / mito-CRISPR/Cas9 / mitoTALEN / mtZFN / ddCBE

Cite this article

Download citation ▾
Victoria A. Khotina, Mariam Bagheri Ekta, Mirza S. Baig, Wei-Kai Wu, Andrey V. Grechko, Vasily N. Sukhorukov. Challenges of mitochondrial DNA editing in mammalian cells: focus on treatment of cardiovascular disease. Vessel Plus, 2022, 6(1): 65 DOI:10.20517/2574-1209.2022.28

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

López-Gallardo E,Emperador S.Mitochondrial DNA pathogenic mutations in multiple symmetric lipomatosis.Clin Genet2020;97:731-5.

[2]

Shanske S,Lu J.The G13513A mutation in the ND5 gene of mitochondrial DNA as a common cause of MELAS or Leigh syndrome: Evidence from 12 cases.Arch Neurol2008;65:368-72.

[3]

Bargiela D.Mitochondria in neuroinflammation - multiple sclerosis (MS), leber hereditary optic neuropathy (LHON) and LHON-MS.Neurosci Lett2019;710:132932.

[4]

Lorenz R,Betzler C,Borggräfe I.Homoplasmy of the mitochondrial DNA mutation m.616T>C leads to mitochondrial tubulointerstitial kidney disease and encephalopathia.Nephron2020;144:156-60.

[5]

Decoux-Poullot AG,Procaccio V.Clinical phenotype of mitochondrial diabetes due to rare mitochondrial DNA mutations.Ann Endocrinol2020;81:68-77.

[6]

Hu H,Xu X,Chen X.The alterations of mitochondrial DNA in coronary heart disease.Exp Mol Pathol2020;114:104412.

[7]

Sobenin IA,Postnov AY,Orekhov AN.Mitochondrial mutations are associated with atherosclerotic lesions in the human aorta.Clin Dev Immunol2012;2012:832464.

[8]

Man JJ,Jaffe IZ.Sex as a biological variable in atherosclerosis.Circ Res2020;126:1297-319.

[9]

Bäck M,Tabas I,Kovanen PT.Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities.Nat Rev Cardiol2019;16:389-406.

[10]

Ito F,Ito T.Measurement and clinical significance of lipid peroxidation as a biomarker of oxidative stress: oxidative stress in diabetes, atherosclerosis, and chronic inflammation.Antioxidants2019;8:72.

[11]

Soldatov VO,Balamutova TI,Dovgan AP.Endothelial dysfunction: comparative evaluation of ultrasound dopplerography, laser dopplerflowmetry and direct monitoring of arterial pressure for conducting pharmacological tests in rats.Res Results Pharmacol2018;4:73-80.

[12]

Soldatov VO,Pokrovskaya TG.Ultrasonic dopplerography for the evaluation of endothelial function in the conduct of pharmacological vascular samples in an experiment.Int J Res Pharm Sci2018;9:735-40.

[13]

Puchenkova OA,Soldatov VO.Study of antiatherosclerotic and endothelioprotective activity of peptide agonists of EPOR/CD131 heteroreceptor.Farm Farmakol2020;8:100-11.

[14]

Glanz VY,Grechko AV,Orekhov AN.The role of mitochondria in cardiovascular diseases related to atherosclerosis.Front Biosci2020;12:102-12.

[15]

Sazonova MA,Ryzhkova AI.Role of mitochondrial genome mutations in pathogenesis of carotid atherosclerosis.Oxid Med Cell Longev2017;2017:6934394.

[16]

Mercer JR,Figg N.DNA Damage links mitochondrial dysfunction to atherosclerosis and the metabolic syndrome.Circ Res2010;107:1021-31.

[17]

Quan Y,Tian G,Liu X.Mitochondrial ROS-modulated mtDNA: a potential target for cardiac aging.Oxid Med Cell Longev2020;2020:9423593.

[18]

Arauna D,Espinosa-Parrilla Y,Alarcón M.Natural bioactive compounds as protectors of mitochondrial dysfunction in cardiovascular diseases and aging.Molecules2019;24:4259.

[19]

Kornfeld OS,Disatnik MH,Qvit N.Mitochondrial reactive oxygen species at the heart of the matter: new therapeutic approaches for cardiovascular diseases.Circ Res2015;116:1783-99.

[20]

Ortiz JM, Swerdlow RH. Mitochondrial dysfunction in Alzheimer’s disease: role in pathogenesis and novel therapeutic opportunities.Br J Pharmacol2019;176:3489-507.

[21]

Gutierrez-Mariscal FM,Limia-Perez L,Yubero-Serrano EM.Coenzyme Q10 supplementation for the reduction of oxidative stress: clinical implications in the treatment of chronic diseases.Int J Mol Sci2020;21:7870.

[22]

Sukhorukov VN,Khotina VA,Khasanova ZB.Approach to edit mitochondrial DNA mutations associated with atherosclerosis.Atherosclerosis2021;331:70-1.

[23]

Sukhorukov VN,Khotina VA. Elimination of atherosclerosis related mutation from mitochondrial cytb gene. In proceedings of the 19th international symposium atheroscler, Kyoto, Japan, 24-27 Oct 2021.

[24]

Sukhorukov VN,Khotina VA,Orekhova VA. Mitochondrial DNA CRISPR/Cas9 editing: an approach to establishing the role of mitochondrial mutations in atherogenesis. In proceedings of the 90th European atherosclerosis society congress (EAS2022), Milan, Italy, 22-25 May 2022.

[25]

Kastaniotis AJ,Kerätär JM.Mitochondrial fatty acid synthesis, fatty acids and mitochondrial physiology.Biochim Biophys Acta Mol Cell Biol Lipids2017;1862:39-48.

[26]

Song J,Becker T.Quality control of the mitochondrial proteome.Nat Rev Mol Cell Biol2021;22:54-70.

[27]

Abate M,Falco M.Mitochondria as playmakers of apoptosis, autophagy and senescence.Semin Cell Dev Biol2020;98:139-53.

[28]

Banoth B.Mitochondria in innate immune signaling.Transl Res2018;202:52-68.

[29]

Faas MM.Mitochondrial function in immune cells in health and disease.Biochim Biophys Acta Mol Basis Dis2020;1866:165845.

[30]

Riley JS.Mitochondrial DNA in inflammation and immunity.EMBO Rep2020;21:e49799.

[31]

Protasoni M.Mitochondrial structure and bioenergetics in normal and disease conditions.Int J Mol Sci2021;22:586.

[32]

Nicholls TJ.Separating and segregating the human mitochondrial genome.Trends Biochem Sci2018;43:869-81.

[33]

Nicholls TJ.In D-loop: 40 years of mitochondrial 7S DNA.Exp Gerontol2014;56:175-81.

[34]

Omasanggar R,Ang GY.Mitochondrial DNA mutations in malaysian female breast cancer patients.PLoS One2020;15:e0233461.

[35]

Rodrigues SC,Duarte FV.Mitochondrial microRNAs: a putative role in tissue regeneration.Biology2020;9:486.

[36]

Ott M,Brown A.Organization and regulation of mitochondrial protein synthesis.Annu Rev Biochem2016;85:77-101.

[37]

Kukat C,Wurm CA.Cross-strand binding of TFAM to a single mtDNA molecule forms the mitochondrial nucleoid.Proc Natl Acad Sci USA2015;112:11288-93.

[38]

Gustafsson CM,Larsson NG.Maintenance and expression of mammalian mitochondrial DNA.Annu Rev Biochem2016;85:133-60.

[39]

Markin AM,Zabudskaya XG.Disturbance of mitochondrial dynamics and mitochondrial therapies in atherosclerosis.Life2021;11:165.

[40]

Falkenberg M.Mitochondrial DNA replication in mammalian cells: overview of the pathway.Essays Biochem2018;62:287-96.

[41]

Fontana GA.Mechanisms of replication and repair in mitochondrial DNA deletion formation.Nucleic Acids Res2020;48:11244-58.

[42]

Yasukawa T.An overview of mammalian mitochondrial DNA replication mechanisms.J Biochem2018;164:183-93.

[43]

Mok BY,Zeng J.A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing.Nature2020;583:631-7.

[44]

Gu S,Cowan QT.Base editors: expanding the types of DNA damage products harnessed for genome editing.Gene Genome Ed2021;1:100005.

[45]

Kamenisch Y,Knoch J.Proteins of nucleotide and base excision repair pathways interact in mitochondria to protect from loss of subcutaneous fat, a hallmark of aging.J Exp Med2010;207:379-90.

[46]

Stein A,Sia EA.Members of the RAD52 epistasis group contribute to mitochondrial homologous recombination and double-strand break repair in saccharomyces cerevisiae.PLoS Genet2015;11:e1005664.

[47]

Chesner LN,Warner C.DNA-protein crosslinks are repaired via homologous recombination in mammalian mitochondria.DNA Repair2021;97:103026.

[48]

Mbantenkhu M,Nardozzi JD.Mgm101 is a Rad52-related protein required for mitochondrial DNA recombination.J Biol Chem2011;286:42360-70.

[49]

Yoo BC,Orozco EM.Cas9/gRNA-mediated genome editing of yeast mitochondria and Chlamydomonas chloroplasts.PeerJ2020;8:e8362.

[50]

Bian WP,Luo JJ,Xie SL.Knock-In strategy for editing human and zebrafish mitochondrial DNA using Mito-CRISPR/Cas9 system.ACS Synth Biol2019;8:621-32.

[51]

Dahal S,Raghavan SC.Homologous recombination-mediated repair of DNA double-strand breaks operates in mammalian mitochondria.Cell Mol Life Sci2018;75:1641-55.

[52]

Tadi SK,Dahal S,Choudhary B.Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions.Mol Biol Cell2016;27:223-35.

[53]

Reddy P,Suzuki K.Selective elimination of mitochondrial mutations in the germline by genome editing.Cell2015;161:459-69.

[54]

Wang B,Wang Y.CRISPR/Cas9-mediated mutagenesis at microhomologous regions of human mitochondrial genome.Sci China Life Sci2021;64:1463-72.

[55]

Wisnovsky S,Kelley SO.Mitochondrial DNA repair and replication proteins revealed by targeted chemical probes.Nat Chem Biol2016;12:567-73.

[56]

de Souza-Pinto NC,Hashiguchi K.Novel DNA mismatch-repair activity involving YB-1 in human mitochondria.DNA Repair2009;8:704-19.

[57]

Mustafa MF,Abdullah MA.Pathogenic mitochondria DNA mutations: current detection tools and interventions.Genes2020;11:192.

[58]

Myasoedova VA,Songia P.Sex-specific differences in age-related aortic valve calcium load: A systematic review and meta-analysis.Ageing Res Rev2020;61:101077.

[59]

Sazonova M,Demakova N.Mitochondrial genome sequencing in atherosclerosis: what’s next?.Curr Pharm Des2016;22:390-6.

[60]

Gonzalez-Freire M,Peterson CA.Associations of peripheral artery disease with calf skeletal muscle mitochondrial dna heteroplasmy.J Am Heart Assoc2020;9:e015197.

[61]

Heidari MM,Tayefi F,Khatami M.Novel point mutations in mitochondrial MT-CO2 gene may be risk factors for coronary artery disease.Appl Biochem Biotechnol2020;191:1326-39.

[62]

Qin Y,Jiang P.Mitochondrial tRNA variants in Chinese subjects with coronary heart disease.J Am Heart Assoc2014;3:e000437.

[63]

Matam K,Aggarwal S.Evidence for the presence of somatic mitochondrial DNA mutations in right atrial appendage tissues of coronary artery disease patients.Mol Genet Genomics2014;289:533-40.

[64]

Heidari MM,Sedighi F.Mutation analysis of the mitochondrial tRNA genes in Iranian coronary atherosclerosis patients.Iran J Public Health2017;46:1379-85.

[65]

Zhu Y,Xu C.Associations of mitochondrial DNA 3777-4679 region mutations with maternally inherited essential hypertensive subjects in China.BMC Med Genet2020;21:105.

[66]

Vecoli C,Pulignani S.Prognostic value of mitochondrial DNA4977 deletion and mitochondrial DNA copy number in patients with stable coronary artery disease.Atherosclerosis2018;276:91-7.

[67]

Sobenin IA,Khasanova ZB.Carotid atherosclerosis-related mutations of mitochondrial DNA do not explain the phenotype of metabolic syndrome.Vessel Plus2019;3:14.

[68]

Sobenin IA,Postnov AY,Orekhov AN.Changes of mitochondria in atherosclerosis: Possible determinant in the pathogenesis of the disease.Atherosclerosis2013;227:283-8.

[69]

Kirichenko TV,Voevoda MI.Data on association of mitochondrial heteroplasmy with carotid intima-media thickness in subjects from Russian and Kazakh populations.Data Brief2020;29:105136.

[70]

Sobenin IA,Kirichenko TV.Profiling of risk of subclinical atherosclerosis: Possible interplay of genetic and environmental factors as the update of conventional approach.Vessel Plus2019;3:15.

[71]

Kirichenko TV,Sinyov VV.Impact of mitochondrial dna mutations on carotid intima-media thickness in the Novosibirsk region.Life2020;10:160.

[72]

Sinyov VV,Ryzhkova AI.Potential use of buccal epithelium for genetic diagnosis of atherosclerosis using mtDNA mutations.Vessel Plus2017;1:145-50.

[73]

Sazonova MA,Sinyov VV.Mitochondrial mutations associated with cardiac angina.Vessel Plus2019;3:8.

[74]

Sazonova MA,Ryzhkova AI,Khasanova ZB.MtDNA mutations linked with left ventricular hypertrophy.Vessel Plus2019;3:5.

[75]

Sazonova MA,Sinyov VV.New markers of atherosclerosis: a threshold level of heteroplasmy in mtDNA mutations.Vessel Plus2017;1:182-91.

[76]

Sazonova MA,Barinova VA.Mosaicism of mitochondrial genetic variation in atherosclerotic lesions of the human aorta.Biomed Res Int2015;2015:825468.

[77]

Sobenin IA,Ivanova MM.Mutation C3256T of mitochondrial genome in white blood cells: novel genetic marker of atherosclerosis and coronary heart disease.PLoS One2012;7:e46573.

[78]

Sazonova MA,Barinova VA.Dataset of mitochondrial genome variants associated with asymptomatic atherosclerosis.Data Brief2016;7:1570-5.

[79]

Orekhov AN,Sobenin IA,Ivanova EA.Mitochondrion as a selective target for the treatment of atherosclerosis: role of mitochondrial DNA mutations and defective mitophagy in the pathogenesis of atherosclerosis and chronic inflammation.Curr Neuropharmacol2020;18:1064-75.

[80]

Gammage PA,Simard ML.Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo.Nat Med2018;24:1691-5.

[81]

Gammage PA,Minczuk M.Engineered mtZFNs for manipulation of human mitochondrial DNA heteroplasmy.Methods Mol Biol2016;1351:145-62.

[82]

Yang Y,Kang X.Targeted elimination of mutant mitochondrial DNA in MELAS-iPSCs by mitoTALENs.Protein Cell2018;9:283-97.

[83]

Gammage PA,Van Haute L.Near-complete elimination of mutant mtDNA by iterative or dynamic dose-controlled treatment with mtZFNs.Nucleic Acids Res2016;44:7804-16.

[84]

Bacman SR,Pereira CV.MitoTALEN reduces mutant mtDNA load and restores tRNAAla levels in a mouse model of heteroplasmic mtDNA mutation.Nat Med2018;24:1696-700.

[85]

Hashimoto M,Peralta S.MitoTALEN: a general approach to reduce mutant mtDNA loads and restore oxidative phosphorylation function in mitochondrial diseases.Mol Ther2015;23:1592-9.

[86]

Yahata N,Omi M,Hata R.TALEN-mediated shift of mitochondrial DNA heteroplasmy in MELAS-iPSCs with m.13513G>A mutation.Sci Rep2017;7:15557.

[87]

Pereira CV,Arguello T.mitoTev-TALE: a monomeric DNA editing enzyme to reduce mutant mitochondrial DNA levels.EMBO Mol Med2018;10.

[88]

Zekonyte U,Smith J.Mitochondrial targeted meganuclease as a platform to eliminate mutant mtDNA in vivo.Nat Commun2021;12:3210.

[89]

Sazonova MA,Sinyov VV.Creation of cultures containing mutations linked with cardiovascular diseases using transfection and genome editing.Curr Pharm Des2019;25:693-9.

[90]

Hussain SRA,Khoo B,McLaughlin KJ.Adapting CRISPR/Cas9 system for targeting mitochondrial genome.Front Genet2021;12:627050.

[91]

Loutre R,Smirnova A,Tarassov I.Can mitochondrial DNA be CRISPRized: pro and contra.IUBMB Life2018;70:1233-9.

[92]

Wang H,Qi LS.CRISPR/Cas9 in genome editing and beyond.Annu Rev Biochem2016;85:227-64.

[93]

Antón Z,Ford HC,Szczelkun MD.Mitochondrial import, health and mtDNA copy number variability seen when using type II and type V CRISPR effectors.J Cell Sci2020;133:jcs248468.

[94]

Comte C,Heckel-Mager AM.Mitochondrial targeting of recombinant RNAs modulates the level of a heteroplasmic mutation in human mitochondrial DNA associated with Kearns Sayre Syndrome.Nucleic Acids Res2013;41:418-33.

[95]

Sazonova MA,Ryzhkova AI.Cybrid models of pathological cell processes in different diseases.Oxid Med Cell Longev2018;2018:4647214.

[96]

Poursaleh A,Beigee FS,Najafi M.Isolation of intimal endothelial cells from the human thoracic aorta: study protocol.Med J Islam Repub Iran2019;33:51.

[97]

Patel JJ,Siow RCM.Isolation, culture, and characterization of vascular smooth muscle cells. In: Methods in molecular biology. Humana Press Inc. 2016; pp. 91-105.

[98]

Orekhov AN.Cell composition of the subendothelial aortic intima and the role of alpha-smooth muscle actin expressing pericyte-like cells and smooth muscle cells in the development of atherosclerosis. In: Muscle cell and tissue. IntechOpen; 2015.

[99]

Lee H,Baek G.Mitochondrial DNA editing in mice with DddA-TALE fusion deaminases.Nat Commun2021;12:1190.

[100]

Guo J,Chen X.Precision modeling of mitochondrial diseases in zebrafish via DdCBE-mediated mtDNA base editing.Cell Discov2021;7:78.

[101]

Gammage PA,Minczuk M.Mitochondrial genome engineering: the revolution may not Be CRISPR-Ized.Trends Genet2018;34:101-10.

[102]

Shepherd DL,Pinti MV.Exploring the mitochondrial microRNA import pathway through Polynucleotide Phosphorylase (PNPase).J Mol Cell Cardiol2017;110:15-25.

[103]

Chacinska A,Mehnert CS.Distinct forms of mitochondrial TOM-TIM supercomplexes define signal-dependent states of preprotein sorting.Mol Cell Biol2010;30:307-18.

[104]

Bacman SR,Minczuk M.Manipulation of mitochondrial genes and mtDNA heteroplasmy. In: Pon LA, Schon EA, editors. Methods in cell biology. Mitochondria, 3rd Ed. Academic Press; 2020. pp. 441-87.

[105]

Zakirov FH,Grechko AV,Poznyak AV.Lipid-based gene delivery to macrophage mitochondria for atherosclerosis therapy.Pharmacol Res Perspect2020;8:e00584.

[106]

Katayama T,Takada S.A mitochondrial delivery system using liposome-based nanocarriers that target myoblast cells.Mitochondrion2019;49:66-72.

[107]

Yamada Y,Kamiya H.MITO-Porter: A liposome-based carrier system for delivery of macromolecules into mitochondria via membrane fusion.Biochim Biophys Acta2008;1778:423-32.

[108]

Ishikawa T,Munechika R,Yamada Y.Mitochondrial transgene expression via an artificial mitochondrial DNA vector in cells from a patient with a mitochondrial disease.J Control Release2018;274:109-17.

[109]

Sinha S,Shim EY.Risky business: Microhomology-mediated end joining.Mutat Res2016;788:17-24.

[110]

Murugan K,Severin AJ.CRISPR-Cas12a has widespread off-target and dsDNA-nicking effects.J Biol Chem2020;295:5538-53.

[111]

Mok BY,Raguram A,Mootha VK.CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA.Nat Biotechnol2022;40:1378-87.

[112]

Xiang G,An C,Wang H.Temperature effect on CRISPR-Cas9 mediated genome editing.J Genet Genomics2017;44:199-205.

[113]

Chrétien D,Ha HH.Mitochondria are physiologically maintained at close to 50 °C.PLoS Biol2018;16:e2003992.

[114]

Mougiakos I,Bosma EF.Characterizing a thermostable Cas9 for bacterial genome editing and silencing.Nat Commun2017;8:1647.

[115]

Loutre R,Jeandard D,Entelis N.Anti-replicative recombinant 5S rRNA molecules can modulate the mtDNA heteroplasmy in a glucose-dependent manner.PLoS One2018;13:e0199258.

PDF

31

Accesses

0

Citation

Detail

Sections
Recommended

/