Features of cholesterol metabolism in macrophages in immunoinflammatory diseases

Anastasia I. Bogatyreva , Taisiya V. Tolstik , Victoria A. Khotina , Andrey V. Grechko , Yumiko Oishi , Alexander M. Markin

Vessel Plus ›› 2023, Vol. 7 ›› Issue (1) : 4

PDF
Vessel Plus ›› 2023, Vol. 7 ›› Issue (1) :4 DOI: 10.20517/2574-1209.2022.24
Review

Features of cholesterol metabolism in macrophages in immunoinflammatory diseases

Author information +
History +
PDF

Abstract

Immune-inflammatory rheumatological diseases are a large group of pathological conditions that lead to chronic inflammation and organ damage. Many autoimmune diseases are associated with a high risk of cardiovascular complications, including atherosclerosis. Inflammation plays a significant role in the development and accelerated course of atherosclerotic lesions. Disorders of lipid metabolism are closely associated with the functions of cells of the immune system and can contribute to the development of these diseases. Cholesterol and lipids are involved in various cellular processes, including intercellular recognition, signal transmission and energy supply. The effect of cholesterol metabolism on the immune response is of great importance and is being actively investigated. Further study of the mechanism of cholesterol efflux from cells may be the key to understanding the relationship between immune-inflammatory and cardiovascular diseases. In this review, we have summarized data on cholesterol metabolism and its effect on the development of pathological conditions.

Keywords

Atherosclerosis / macrophage phenotypes / lipid metabolism / inflammation

Cite this article

Download citation ▾
Anastasia I. Bogatyreva, Taisiya V. Tolstik, Victoria A. Khotina, Andrey V. Grechko, Yumiko Oishi, Alexander M. Markin. Features of cholesterol metabolism in macrophages in immunoinflammatory diseases. Vessel Plus, 2023, 7(1): 4 DOI:10.20517/2574-1209.2022.24

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Simon TA,Ray N,Suissa S.Prevalence of co-existing autoimmune disease in rheumatoid arthritis: a cross-sectional study.Adv Ther2017;34:2481-90 PMCID:PMC5702376

[2]

Chen W,Zhou B.Lipid metabolism profiles in rheumatic diseases.Front Pharmacol2021;12:443 PMCID:PMC8064727

[3]

Rhoads JP,Rathmell JC.Fine tuning of immunometabolism for the treatment of rheumatic diseases.Nat Rev Rheumatol2017;13:313-20 PMCID:PMC5502208

[4]

Sobenin IA,Postnov AY,Orekhov AN.Mitochondrial mutations are associated with atherosclerotic lesions in the human aorta.Clin Dev Immunol2012;2012:832464 PMCID:PMC3446814

[5]

Cleeman JI.Executive summary of the third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III).JAMA2001;285:2486-97

[6]

Tselios K,Gladman DD.Dyslipidemia in systemic lupus erythematosus: just another comorbidity?.Semin Arthritis Rheum2016;45:604-10

[7]

Hedar AM,Roessler A.Autoimmune rheumatic diseases and vascular function: the concept of autoimmune atherosclerosis.J Clin Med2021;10:4427 PMCID:PMC8509415

[8]

Firestein GS.Immunopathogenesis of rheumatoid arthritis.Immunity2017;46:183-96 PMCID:PMC5385708

[9]

England BR,Anderson DR.Increased cardiovascular risk in rheumatoid arthritis: mechanisms and implications.BMJ2018;361:k1036 PMCID:PMC6889899

[10]

Sobenin IA,Postnov AY,Bobryshev YV.Association of mitochondrial genetic variation with carotid atherosclerosis.PLoS One2013;8:e68070 PMCID:PMC3706616

[11]

Schwartz DM,Kitakule MM,Mehta NN.T Cells in autoimmunity-associated cardiovascular diseases.Front Immunol2020;11:588776 PMCID:PMC7576936

[12]

Sobenin IA,Zhelankin AV.Quantitative assessment of heteroplasmy of mitochondrial genome: perspectives in diagnostics and methodological pitfalls.Biomed Res Int2014;2014:292017 PMCID:PMC4003915

[13]

Kiriakidou M.Systemic lupus erythematosus.Ann Intern Med2020;172:ITC81-96

[14]

Pan L,Wang JH,Yang SR.Immunological pathogenesis and treatment of systemic lupus erythematosus.World J Pediatr2020;16:19-30 PMCID:PMC7040062

[15]

Kostopoulou M,Parodis I.Cardiovascular disease in systemic lupus erythematosus: recent data on epidemiology, risk factors and prevention.Curr Vasc Pharmacol2020;18:549-65

[16]

Samuelsson I,Gunnarsson I.Myocardial infarctions, subtypes and coronary atherosclerosis in SLE: a case-control study.Lupus Sci Med2021;8:e000515 PMCID:PMC8296778

[17]

Ryu H,Kim D,Chung Y.Cellular and molecular links between autoimmunity and lipid metabolism.Mol Cells2019;42:747-54 PMCID:PMC6883973

[18]

Kobiyama K.Atherosclerosis: a chronic inflammatory disease with an autoimmune component.Circ Res2018;123:1118-20

[19]

Sobenin IA.Atherogenesis, atherosclerosis and related diseases: unresolved issues.Vessel Plus2020;4:18

[20]

Summerhill VI,Yet SF,Orekhov AN.The atherogenic role of circulating modified lipids in atherosclerosis.Int J Mol Sci2019;20:3561 PMCID:PMC6678182

[21]

Nordestgaard BG.Triglyceride-rich lipoproteins and atherosclerotic cardiovascular disease: new insights from epidemiology, genetics, and biology.Circ Res2016;118:547-63

[22]

Tektonidou MG,Konstantonis G,Sfikakis PP.Subclinical atherosclerosis in systemic lupus erythematosus: comparable risk with diabetes mellitus and rheumatoid arthritis.Autoimmun Rev2017;16:308-12

[23]

Chistiakov DA,Orekhov AN.Strategies to deliver microRNAs as potential therapeutics in the treatment of cardiovascular pathology.Drug Deliv2012;19:392-405

[24]

Ouimet M,Fisher EA.HDL and reverse cholesterol transport.Circ Res2019;124:1505-18 PMCID:PMC6813799

[25]

Goldberg IJ,Abumrad NA.Deciphering the role of lipid droplets in cardiovascular disease: a report from the 2017 national heart, lung, and blood institute workshop.Circulation2018;138:305-15 PMCID:PMC6056021

[26]

Brown MS,Krieger M,Anderson RG.Reversible accumulation of cholesteryl esters in macrophages incubated with acetylated lipoproteins.J Cell Biol1979;82:597-613 PMCID:PMC2110476

[27]

Guo S,Yin H.Cholesterol homeostasis and liver X receptor (LXR) in atherosclerosis.Cardiovasc Hematol Disord Drug Targets2018;18:27-33

[28]

Yu XH.ABCA1, ABCG1, and cholesterol homeostasis.Adv Experimental Med Biol2022;1377:95-107

[29]

Allahverdian S,Boukais K,Bochaton-Piallat ML.Smooth muscle cell fate and plasticity in atherosclerosis.Cardiovasc Res2018;114:540-50 PMCID:PMC5852505

[30]

Chen W,Wang J.The ABCA1-efferocytosis axis: a new strategy to protect against atherosclerosis.Clin Chim Acta2021;518:1-8

[31]

Skarda L,Locher KP.Structure of the human cholesterol transporter ABCG1.J Mol Biol2021;433:167218

[32]

Wróblewska M.The origin and metabolism of a nascent pre-β high density lipoprotein involved in cellular cholesterol efflux.Acta Biochim Pol2011;58:275-85

[33]

Shen WJ,Kraemer FB.SR-B1: a unique multifunctional receptor for cholesterol influx and efflux.Annu Rev Physiol2018;80:95-116 PMCID:PMC6376870

[34]

Madison BB.Srebp2: a master regulator of sterol and fatty acid synthesis.J Lipid Res2016;57:333-5 PMCID:PMC4766982

[35]

Wang B.Liver X receptors in lipid signalling and membrane homeostasis.Nat Rev Endocrinol2018;14:452-63 PMCID:PMC6433546

[36]

Hua X,Wu J.SREBP-2, a second basic-helix-loop-helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatory element.Proc Natl Acad Sci USA1993;90:11603-7 PMCID:PMC48032

[37]

Kong M,Shao J,Xu Y.The chromatin remodeling protein BRG1 regulates SREBP maturation by activating SCAP transcription in hepatocytes.Front Cell Dev Biol2021;9:622866 PMCID:PMC7947303

[38]

Duan Y,Xu S,Meng X.Regulation of cholesterol homeostasis in health and diseases: from mechanisms to targeted therapeutics.Signal Transduct Target Ther2022;7:265 PMCID:PMC9344793

[39]

Guo C,Jiang D.Cholesterol homeostatic regulator SCAP-SREBP2 integrates NLRP3 inflammasome activation and cholesterol biosynthetic signaling in macrophages.Immunity2018;49:842-856.e7

[40]

Brown MS,Goldstein JL.Retrospective on cholesterol homeostasis: the central role of scap.Annu Rev Biochem2018;87:783-807 PMCID:PMC5828883

[41]

He C,Weston TA.Macrophages release plasma membrane-derived particles rich in accessible cholesterol.Proc Natl Acad Sci USA2018;115:E8499-508 PMCID:PMC6130402

[42]

Hafiane A.ATP binding cassette A1 (ABCA1) mediates microparticle formation during high-density lipoprotein (HDL) biogenesis.Atherosclerosis2017;257:90-9

[43]

Ong DS,Leyva FJ,Addadi L.Extracellular cholesterol-rich microdomains generated by human macrophages and their potential function in reverse cholesterol transport.J Lipid Res2010;51:2303-13 PMCID:PMC2903806

[44]

Jin X,Liu Y.Macrophages shed excess cholesterol in unique extracellular structures containing cholesterol microdomains.Arterioscler Thromb Vasc Biol2018;38:1504-18 PMCID:PMC6023747

[45]

He C,Weston TA.Macrophages release plasma membrane-derived particles rich in accessible cholesterol.Proc Natl Acad Sci USA2018;115:E8499-508 PMCID:PMC6130402

[46]

Hu X,He C.Release of cholesterol-rich particles from the macrophage plasma membrane during movement of filopodia and lamellipodia.Elife2019;8:e50231 PMCID:PMC6750930

[47]

He C,Song W.Cultured macrophages transfer surplus cholesterol into adjacent cells in the absence of serum or high-density lipoproteins.Proc Natl Acad Sci USA2020;117:10476-83

[48]

Dupont M,Lugo-Villarino G,Vérollet C.Tunneling nanotubes: intimate communication between myeloid cells.Front Immunol2018;9:43 PMCID:PMC5788888

[49]

Kentala H,Olkkonen VM.OSBP-related protein family: mediators of lipid transport and signaling at membrane contact sites.Int Rev Cell Mol Biol2016;321:299-340

[50]

Ouimet M,van Solingen C.miRNA targeting of oxysterol-binding protein-like 6 regulates cholesterol trafficking and efflux.Arterioscler Thromb Vasc Biol2016;36:942-51 PMCID:PMC4850101

[51]

Schulman IG.Liver X receptors link lipid metabolism and inflammation.FEBS Lett2017;591:2978-91 PMCID:PMC5638683

[52]

Endo-Umeda K,Thomas DG.Myeloid LXR (liver X receptor) deficiency induces inflammatory gene expression in foamy macrophages and accelerates atherosclerosis.Arterioscler Thromb Vasc Biol2022;42:719-31 PMCID:PMC9162499

[53]

Teupser D,Tennert C.Effect of macrophage overexpression of murine liver X receptor-alpha (LXR-alpha) on atherosclerosis in LDL-receptor deficient mice.Arterioscler Thromb Vasc Biol2008;28:2009-15

[54]

Savla SR,Bhatt LK.Liver X receptor: a potential target in the treatment of atherosclerosis.Expert Opin Ther Targets2022;26:645-58

[55]

Saliba-Gustafsson P,Gertow K.Subclinical atherosclerosis and its progression are modulated by PLIN2 through a feed-forward loop between LXR and autophagy.J Intern Med2019;286:660-75 PMCID:PMC6899829

[56]

Groh L,Joosten LAB,Riksen NP.Monocyte and macrophage immunometabolism in atherosclerosis.Semin Immunopathol2018;40:203-14 PMCID:PMC5809534

[57]

Bes C,Buğdaycı G,Soy M.Atherosclerosis assessment and rheumatoid arthritis.Z Rheumatol2018;77:330-4

[58]

Kraakman MJ,Kammoun HL.Is the risk of cardiovascular disease altered with anti-inflammatory therapies?.Clin Transl Immunology2016;5:e84 PMCID:PMC4910124

[59]

Hirose S,Ohtsuji M,Verbeek JS.Monocyte subsets involved in the development of systemic lupus erythematosus and rheumatoid arthritis.Int Immunol2019;31:687-96 PMCID:PMC6794944

[60]

Cook AD,Robinson MJ,Sleeman MA.Granulocyte macrophage colony-stimulating factor receptor α expression and its targeting in antigen-induced arthritis and inflammation.Arthritis Res Ther2016;18:287 PMCID:PMC5134062

[61]

Murphy AJ,Tolani S.ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice.J Clin Invest2011;121:4138-49 PMCID:PMC3195472

[62]

Quevedo-Abeledo JC,Tejera-Segura B.Differences in capacity of high-density lipoprotein cholesterol efflux between patients with systemic lupus erythematosus and rheumatoid arthritis.Arthritis Care Res2021;73:1590-6

[63]

Ormseth MJ,Yamamoto S.Net cholesterol efflux capacity of HDL enriched serum and coronary atherosclerosis in rheumatoid arthritis.IJC Metab Endocr2016;13:6-11 PMCID:PMC5325720

[64]

Xie B,Liu Y,Liu C.A meta-analysis of HDL cholesterol efflux capacity and concentration in patients with rheumatoid arthritis.Lipids Health Dis2021;20:18 PMCID:PMC7897392

[65]

Nowak B,Łuczak A,Wiland P.Disease activity, oxidized-LDL fraction and anti-oxidized LDL antibodies influence cardiovascular risk in rheumatoid arthritis.Adv Clin Exp Med2016;25:43-50

[66]

Westerterp M,Tattersall IW.Deficiency of ATP-binding cassette transporters A1 and G1 in endothelial cells accelerates atherosclerosis in mice.Arterioscler Thromb Vasc Biol2016;36:1328-37 PMCID:PMC4919153

[67]

Hannawi S,Al Salmi I.Cardiovascular disease and subclinical atherosclerosis in rheumatoid arthritis.Hypertens Res2020;43:982-4

[68]

Dragoljevic D,Nagareddy PR.Defective cholesterol metabolism in haematopoietic stem cells promotes monocyte-driven atherosclerosis in rheumatoid arthritis.Eur Heart J2018;39:2158-67

[69]

Charles-Schoeman C,Grijalva V.Cholesterol efflux by high density lipoproteins is impaired in patients with active rheumatoid arthritis.Ann Rheum Dis2012;71:1157-62 PMCID:PMC3428121

[70]

Aratani Y.Myeloperoxidase: its role for host defense, inflammation, and neutrophil function.Arch Biochem Biophys2018;640:47-52

[71]

Frangie C.Role of myeloperoxidase in inflammation and atherosclerosis (Review).Biomed Rep2022;16:53 PMCID:PMC9112398

[72]

Ndrepepa G.Myeloperoxidase - a bridge linking inflammation and oxidative stress with cardiovascular disease.Clin Chim Acta2019;493:36-51

[73]

Zheng L,Brennan ML.Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease.J Clin Invest2004;114:529-41 PMCID:PMC503769

[74]

Steiner G.Lipid profiles in patients with rheumatoid arthritis: mechanisms and the impact of treatment.Semin Arthritis Rheum2009;38:372-81

[75]

MacLeod C,Nixon M.Glucocorticoids: fuelling the Fire of atherosclerosis or therapeutic extinguishers?.Int J Mol Sci2021;22:7622

[76]

Liu T,Zhang S.Systemic lupus erythematosus aggravates atherosclerosis by promoting IgG deposition and inflammatory cell imbalance.Lupus2020;29:273-82 PMCID:PMC7057353

[77]

Lerang K,Steinar Thelle D.Mortality and years of potential life loss in systemic lupus erythematosus: a population-based cohort study.Lupus2014;23:1546-52

[78]

Chiesa ST.High-density lipoprotein function and dysfunction in health and disease.Cardiovasc Drugs Ther2019;33:207-19 PMCID:PMC6509080

[79]

Wang Y,He J.Role of dyslipidemia in accelerating inflammation, autoimmunity, and atherosclerosis in systemic lupus erythematosus and other autoimmune diseases.Discov Med2020;30:49-56

[80]

Kim SY,Morin EE,Kaplan MJ.High-density lipoprotein in lupus: disease biomarkers and potential therapeutic strategy.Arthritis Rheumatol2020;72:20-30 PMCID:PMC6935404

[81]

Aguilar-Ballester M,Vinué Á,González-Navarro H.Impact of cholesterol metabolism in immune cell function and atherosclerosis.Nutrients2020;12:2021 PMCID:PMC7400846

[82]

Szabó MZ,Kiss E.Dyslipidemia in systemic lupus erythematosus.Immunol Res2017;65:543-50

[83]

Shridas P.Role of serum amyloid A in atherosclerosis.Curr Opin Lipidol2019;30:320-5 PMCID:PMC7249237

[84]

Jin Z,Tian R.Myeloperoxidase targets apolipoprotein A-I for site-specific tyrosine chlorination in atherosclerotic lesions and generates dysfunctional high-density lipoprotein.Chem Res Toxicol2021;34:1672-80

[85]

Witkowski A,Boatz JC.Methionine oxidized apolipoprotein A-I at the crossroads of HDL biogenesis and amyloid formation.FASEB J2018;32:3149-65 PMCID:PMC6137716

[86]

Xepapadaki E,Kalogeropoulou C,Kypreos KE.Τhe antioxidant function of HDL in atherosclerosis.Angiology2020;71:112-21

[87]

De Nardo D,Kono H.High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3.Nat Immunol2014;15:152-60 PMCID:PMC4009731

[88]

Yin K,Zhou ZG.Apolipoprotein A-I inhibits CD40 proinflammatory signaling via ATP-binding cassette transporter A1-mediated modulation of lipid raft in macrophages.J Atheroscler Thromb2012;19:823-36

[89]

Parra S,Ferré R.Complement system and small HDL particles are associated with subclinical atherosclerosis in SLE patients.Atherosclerosis2012;225:224-30

[90]

Skaggs BJ,Sahakian L,McMahon M.Dysfunctional, pro-inflammatory HDL directly upregulates monocyte PDGFRβ, chemotaxis and TNFα production.Clin Immunol2010;137:147-56 PMCID:PMC2941543

[91]

Markin A,Sukhorukov V.The role of physical activity in the development of atherosclerotic lesions of the vascular wall.Clin Exp Morphol2019;8:25-31

[92]

Smith CK,Vivekanandan-Giri A.Lupus high-density lipoprotein induces proinflammatory responses in macrophages by binding lectin-like oxidised low-density lipoprotein receptor 1 and failing to promote activating transcription factor 3 activity.Ann Rheum Dis2017;76:602-11 PMCID:PMC6109980

[93]

Nicholls SJ.HDL and cardiovascular disease.Pathology2019;51:142-7

[94]

Lewis MJ,Fossati-Jimack L.Distinct roles for complement in glomerulonephritis and atherosclerosis revealed in mice with a combination of lupus and hyperlipidemia.Arthritis Rheum2012;64:2707-18 PMCID:PMC3607248

[95]

Robinson G,Ciurtin C.Lipid metabolism in autoimmune rheumatic disease: implications for modern and conventional therapies.J Clin Invest2022;132:e148552 PMCID:PMC8759788

[96]

Dennis EA.Eicosanoid storm in infection and inflammation.Nat Rev Immunol2015;15:511-23 PMCID:PMC4606863

[97]

Howie D,Necula AS,Waldmann H.The role of lipid metabolism in T lymphocyte differentiation and survival.Front Immunol2017;8:1949 PMCID:PMC5770376

[98]

Zhornitsky S,Metz LM,Rangachari M.Cholesterol and markers of cholesterol turnover in multiple sclerosis: relationship with disease outcomes.Mult Scler Relat Disord2016;5:53-65

[99]

Sun W,Cai J.Lipid metabolism: immune regulation and therapeutic prospectives in systemic lupus erythematosus.Front Immunol2022;13:1154 PMCID:PMC8971568

[100]

Shih CM,Chu CK,Huang CY.The roles of lipoprotein in psoriasis.Int J Mol Sci2020;21:859 PMCID:PMC7036823

[101]

Nowowiejska J,Flisiak I.Aberrations in lipid expression and metabolism in psoriasis.Int J Mol Sci2021;22:6561 PMCID:PMC8234564

[102]

Masson W,Molinero G.Psoriasis and cardiovascular risk: a comprehensive review.Adv Ther2020;37:2017-33 PMCID:PMC7467489

[103]

Ramezani M,Sadeghi M.Evaluation of serum lipid, lipoprotein, and apolipoprotein levels in psoriatic patients: a systematic review and meta-analysis of case-control studies.Postepy Dermatol Alergol2019;36:692-702 PMCID:PMC6986295

[104]

Miller IM,Ellervik C.Quantifying cardiovascular disease risk factors in patients with psoriasis: a meta-analysis.Br J Dermatol2013;169:1180-7

[105]

Holzer M,Curcic S.Psoriasis alters HDL composition and cholesterol efflux capacity.J Lipid Res2012;53:1618-24 PMCID:PMC3540842

[106]

Williams KJ.The response-to-retention hypothesis of early atherogenesis.Arterioscler Thromb Vasc Biol1995;15:551-61 PMCID:PMC2924812

[107]

Yang H,Okoro EU.Transport of apolipoprotein B-containing lipoproteins through endothelial cells is associated with apolipoprotein E-carrying HDL-like particle formation.Int J Mol Sci2018;19:3593 PMCID:PMC6274886

[108]

Tiwari S.Intracellular trafficking and secretion of very low density lipoproteins.Arterioscler Thromb Vasc Biol2012;32:1079-86 PMCID:PMC3334296

[109]

Mestas J.Monocyte-endothelial cell interactions in the development of atherosclerosis.Trends Cardiovasc Med2008;18:228-32 PMCID:PMC2650852

[110]

Frambach SJCM,Smeitink JAM,Russel FGM.Brothers in arms: ABCA1- and ABCG1-Mediated cholesterol efflux as promising targets in cardiovascular disease treatment.Pharmacol Rev2020;72:152-90

[111]

Chen HJ,de Winther MPJ.Type-I interferons in atherosclerosis.J Exp Med2020;217 PMCID:PMC7037237

[112]

Soldatov VO,Pokrovskaya TG.Ultrasonic dopplerography for the evaluation of endothelial function in the conduct of pharmacological vascular samples in an experiment Production and Hosted by.Int J Res Pharm Sci2018;9:735-40

[113]

Filippi MD.Mechanism of diapedesis: importance of the transcellular route.Adv Immunol2016;129:25-53 PMCID:PMC4889131

[114]

Soldatov VO,Balamutova TI,Dovgan AP.Endothelial dysfunction: comparative evaluation of ultrasound dopplerography, laser dopplerflowmetry and direct monitoring of arterial pressure for conducting pharmacological tests in rats.Res Results Pharmacol2018;4:73-80

[115]

Liberale L,Montecucco F.Pathophysiological relevance of macrophage subsets in atherogenesis.Thromb Haemost2017;117:7-18

[116]

Chistiakov DA,Sobenin IA.Plasmacytoid dendritic cells: development, functions, and role in atherosclerotic inflammation.Front Physiol2014;5:279

[117]

Orekhov AN.Low density lipoprotein-induced lipid accumulation is a key phenomenon of atherogenesis at the arterial cell level.Vessel Plus2019;3:3

[118]

Chistiakov DA,Orekhov AN.Myeloid dendritic cells: development, functions, and role in atherosclerotic inflammation.Immunobiology2015;220:833-44

[119]

Yan J.Lipid metabolism in regulation of macrophage functions.Trends Cell Biol2020;30:979-89

[120]

Paukner K,Poledne R.Cholesterol in the cell membrane-an emerging player in atherogenesis.Int J Mol Sci2022;23:533 PMCID:PMC8745363

[121]

Brown MS.The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor.Cell1997;89:331-40

[122]

Boucher P,Terrand J.atherosclerosis: gone with the Wnt?.Atherosclerosis2020;301:15-22

[123]

Groenen AG,Tall AR.Cholesterol efflux pathways, inflammation, and atherosclerosis.Crit Rev Biochem Mol Biol2021;56:426-39 PMCID:PMC9007272

[124]

Ikonen E.Cholesterol transport between cellular membranes: a balancing act between interconnected lipid fluxes.Dev Cell2021;56:1430-6

[125]

Kim KW,Williams JW.Monocyte recruitment, specification, and function in atherosclerosis.Cells2020;10:15

[126]

Moroni F,Norata GD,Camici PG.The role of monocytes and macrophages in human atherosclerosis, plaque neoangiogenesis, and atherothrombosis.Mediators Inflamm2019;2019:7434376 PMCID:PMC6476044

[127]

Baidžajevas K,Lee B.Macrophage polarisation associated with atherosclerosis differentially affects their capacity to handle lipids.Atherosclerosis2020;305:10-8

[128]

Qiao JH,Mishra NK.Role of macrophage colony-stimulating factor in atherosclerosis: studies of osteopetrotic mice.Am J Pathol1997;150:1687 PMCID:PMC1858194

[129]

Manjarrez-Reyna AN,Aguayo-Guerrero JA.Native low-density lipoproteins act in synergy with lipopolysaccharide to alter the balance of human monocyte subsets and their ability to produce IL-1 beta, CCR2, and CX3CR1 in vitro and in vivo: implications in atherogenesis.Biomolecules2021;11:1169 PMCID:PMC8391227

[130]

Chistiakov DA,Sobenin IA,Bobryshev YV.Vascular endothelium: functioning in norm, changes in atherosclerosis and current dietary approaches to improve endothelial function.Mini Rev Med Chem2015;15:338-50

[131]

Sobenin IA,Postnov AY,Orekhov AN.Changes of mitochondria in atherosclerosis: possible determinant in the pathogenesis of the disease.Atherosclerosis2013;227:283-8

[132]

Yang S,Hao YM.Macrophage polarization in atherosclerosis.Clin Chim Acta2020;501:142-6

[133]

Dhawan UK,Subramanian M.Dead cell and debris clearance in the atherosclerotic plaque: Mechanisms and therapeutic opportunities to promote inflammation resolution.Pharmacol Res2021;170:105699

[134]

Shklover J,Kurant E.Apoptotic cell clearance in development.Curr Top Dev Biol2015;114:297-334

[135]

Zhao Y,Liu L.Specific loss of ABCA1 (ATP-binding cassette transporter A1) suppresses TCR (T-cell receptor) signaling and provides protection against atherosclerosis.Arterioscler Thromb Vasc Biol2022;42:e311-26

[136]

Wanke F,Rümmelin A.Ligand-dependent kinase activity of MERTK drives efferocytosis in human iPSC-derived macrophages.Cell Death Dis2021;12:538 PMCID:PMC8149813

[137]

Ruotsalainen AK,Heiskanen E.Nuclear factor E2-related factor 2 deficiency impairs atherosclerotic lesion development but promotes features of plaque instability in hypercholesterolaemic mice.Cardiovasc Res2019;115:243-54

[138]

Boyle JJ,Bennett MR.Tumor necrosis factor-alpha promotes macrophage-induced vascular smooth muscle cell apoptosis by direct and autocrine mechanisms.Arterioscler Thromb Vasc Biol2003;23:1553-8

[139]

Fadok VA,Konowal A,Westcott JY.Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF.J Clin Invest1998;101:890-8 PMCID:PMC508637

[140]

Orekhov AN,Nikiforov NG.Monocyte differentiation and macrophage polarization.Vessel Plus2019;3:10

[141]

Hanna RN,Hubbeling HG.The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C- monocytes.Nat Immunol2011;12:778-85 PMCID:PMC3324395

[142]

Tang RZ,Yang FF.DNA methyltransferase 1 and Krüppel-like factor 4 axis regulates macrophage inflammation and atherosclerosis.J Mol Cell Cardiol2019;128:11-24

[143]

Cardilo-Reis L,Schreier SM.Interleukin-13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype.EMBO Mol Med2012;4:1072-86 PMCID:PMC3491837

[144]

Mushenkova NV,Melnichenko AA.Functional phenotypes of intraplaque macrophages and their distinct roles in atherosclerosis development and atheroinflammation.Biomedicines2022;10:452 PMCID:PMC8962399

[145]

Kadl A,Sharma PR.Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2.Circ Res2010;107:737-46 PMCID:PMC2941538

[146]

Jinnouchi H,Sakamoto A.Diversity of macrophage phenotypes and responses in atherosclerosis.Cell Mol Life Sci2020;77:1919-32

[147]

Nordlohne J.Interleukin 17A in atherosclerosis - regulation and pathophysiologic effector function.Cytokine2019;122:154089

[148]

Yao SY,Li SJ.Application of a mechanically responsive, inflammatory macrophage-targeted dual-sensitive hydrogel drug carrier for atherosclerosis.Colloids Surf B Biointerfaces2020;186:110718

[149]

Chen X,Chen Q.Experimental study of ultrafine superparamagnetic iron oxide-enhanced MRI in an atherosclerotic plaque model.J Nanosci Nanotechnol2020;20:7444-50

[150]

Li Y,Wu X.Dual-modality imaging of atherosclerotic plaques using ultrasmall superparamagnetic iron oxide labeled with rhodamine.Nanomedicine2019;14:1935-44

[151]

Nahrendorf M,Meerwaldt AE.Imaging Cardiovascular and lung macrophages with the positron emission tomography sensor 64Cu-macrin in mice, rabbits, and pigs.Circ Cardiovasc Imaging2020;13:e010586 PMCID:PMC7583675

[152]

Konishi T,Yamamoto Y.The potential relationship between 18F-FDG uptake and wall shear stress in a patient with carotid artery disease.J Nucl Cardiol2021;28:367-70

[153]

Fujimura Y,Trout Iii H.Increased peripheral benzodiazepine receptors in arterial plaque of patients with atherosclerosis: an autoradiographic study with [(3)H]PK 11195.Atherosclerosis2008;201:108-11

[154]

Han S,Wang S.Tumor microenvironment remodeling and tumor therapy based on M2-like tumor associated macrophage-targeting nano-complexes.Theranostics2021;11:2892-916 PMCID:PMC7806477

[155]

Taghizadeh E,Renani PG,Navashenaq JG.Macrophage: a key therapeutic target in atherosclerosis?.Curr Pharm Des2019;25:3165-74

[156]

Hetherington I.Anti-atherosclerotic therapies: milestones, challenges, and emerging innovations.Mol Ther2022;30:3106-17 PMCID:PMC9552812

[157]

Kang MK,Choo EH.Anti-inflammatory effect of statin is continuously working throughout use: a prospective three time point 18F-FDG PET/CT imaging study.Int J Cardiovasc Imaging2019;35:1745-53

[158]

Nofer JR,Brodde M.FTY720, a synthetic sphingosine 1 phosphate analogue, inhibits development of atherosclerosis in low-density lipoprotein receptor-deficient mice.Circulation2007;115:501-8

[159]

Puchenkova OA,Soldatov VO.Study of antiatherosclerotic and endothelioprotective activity of peptide agonists of EPOR/CD131 heteroreceptor.Farm Farmakol2020;8:100-11

PDF

48

Accesses

0

Citation

Detail

Sections
Recommended

/