Features of mitochondrial dynamics in monocytes in inflammatory and metabolic disorders

Taisiya V. Tolstik , Anastasia I. Bogatyreva , Andrey V. Grechko , Yumiko Oishi , Alexander M. Markin

Vessel Plus ›› 2022, Vol. 6 ›› Issue (1) : 58

PDF
Vessel Plus ›› 2022, Vol. 6 ›› Issue (1) :58 DOI: 10.20517/2574-1209.2022.22
Review

Features of mitochondrial dynamics in monocytes in inflammatory and metabolic disorders

Author information +
History +
PDF

Abstract

Mitochondria do not exist as separate formations in the cell; they form a homogeneous network in which the processes of division and fusion continuously occur. A shift in this balance, as well as mitochondrial dysfunction, leads to the development of chronic and metabolic disorders. Metabolic changes in mitochondria control the formation and differentiation of monocytes. Pro-inflammatory activation of monocytes/macrophages leads to a decrease in oxidative phosphorylation and an increase in mitochondrial fusion. To date, the molecular mechanisms that regulate mitochondrial dynamics to control life and death in monocytes are not well understood. In addition, there is ample evidence that abnormal mitochondrial metabolism is involved in the pathogenesis of many diseases. Mitochondrial stress and damage contribute to cell death, metabolic disorders, and inflammation. In this review, we consider in detail the involvement of mitochondrial processes in the development of pathologies and discuss how mitochondria can be therapeutically affected. Attention is also drawn to possible diagnostic studies that target mitochondrial dynamics of disorders in monocytes.

Keywords

Inflammation / macrophages / dyslipidemia / mtDNA / obesity / mitochondria

Cite this article

Download citation ▾
Taisiya V. Tolstik, Anastasia I. Bogatyreva, Andrey V. Grechko, Yumiko Oishi, Alexander M. Markin. Features of mitochondrial dynamics in monocytes in inflammatory and metabolic disorders. Vessel Plus, 2022, 6(1): 58 DOI:10.20517/2574-1209.2022.22

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fahed G,Bou Zerdan M.Metabolic Syndrome: Updates on Pathophysiology and Management in 2021.Int J Mol Sci2022;23:786 PMCID:PMC8775991

[2]

Kawai T,Scalia R.Adipose tissue inflammation and metabolic dysfunction in obesity.Am J Physiol Cell Physiol2021;320:C375-91 PMCID:PMC8294624

[3]

Chen Y,Huang W.Mitochondrial metabolic reprogramming by CD36 signaling drives macrophage inflammatory responses.Circ Res2019;125:1087-102 PMCID:PMC6921463

[4]

Wu H,Li W.Deficiency of mitophagy receptor FUNDC1 impairs mitochondrial quality and aggravates dietary-induced obesity and metabolic syndrome.Autophagy2019;15:1882-98 PMCID:PMC6844496

[5]

Supale S,Brun T.Mitochondrial dysfunction in pancreatic β cells.Trends Endocrinol Metab2012;23:477-87

[6]

Anderson EJ,Boyle KE.Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans.J Clin Invest2009;119:573-81 PMCID:PMC2648700

[7]

Kim JA,Sowers JR.Role of mitochondrial dysfunction in insulin resistance.Circ Res2008;102:401-14 PMCID:PMC2963150

[8]

Yoo SM.A molecular approach to mitophagy and mitochondrial dynamics.Mol Cells2018;41:18-26 PMCID:PMC5792708

[9]

Srinivasan S,Kashina A.Mitochondrial dysfunction and mitochondrial dynamics-the cancer connection.Biochim Biophys Acta Bioenerg2017;1858:602-14 PMCID:PMC5487289

[10]

Twig G.The interplay between mitochondrial dynamics and mitophagy.Antioxid Redox Signal2011;14:1939-51 PMCID:PMC3078508

[11]

Onishi M,Sato M,Okamoto K.Molecular mechanisms and physiological functions of mitophagy.EMBO J2021;40:e104705 PMCID:PMC7849173

[12]

Youle RJ.Mechanisms of mitophagy.Nat Rev Mol Cell Biol2011;12:9-14 PMCID:PMC4780047

[13]

Guilliams M,Yona S.Developmental and functional heterogeneity of monocytes.Immunity2018;49:595-613

[14]

Calderon B,Ferris ST.The pancreas anatomy conditions the origin and properties of resident macrophages.J Exp Med2015;212:1497-512 PMCID:PMC4577842

[15]

Mossadegh-Keller N,Gimenez G,Mailfert S.Developmental origin and maintenance of distinct testicular macrophage populations.J Exp Med2017;214:2829-41 PMCID:PMC5626405

[16]

Schyns J,Ruscitti C.Non-classical tissue monocytes and two functionally distinct populations of interstitial macrophages populate the mouse lung.Nat Commun2019;10:3964 PMCID:PMC6722135

[17]

Sawai CM,Upadhaya S.Hematopoietic stem cells are the major source of multilineage hematopoiesis in adult animals.Immunity2016;45:597-609 PMCID:PMC5054720

[18]

T’Jonck W,Bonnardel J.Niche signals and transcription factors involved in tissue-resident macrophage development.Cell Immunol2018;330:43-53 PMCID:PMC6108424

[19]

Bennett FC,Yaqoob F.A combination of ontogeny and CNS environment establishes microglial identity.Neuron2018;98:1170-1183.e8 PMCID:PMC6023731

[20]

Cronk JC,Louveau A.Peripherally derived macrophages can engraft the brain independent of irradiation and maintain an identity distinct from microglia.J Exp Med2018;215:1627-47 PMCID:PMC5987928

[21]

Grip O,Lindgren S.Increased subpopulations of CD16(+) and CD56(+) blood monocytes in patients with active Crohn’s disease.Inflamm Bowel Dis2007;13:566-72

[22]

Schmidl C,Peter K.FANTOM consortiumTranscription and enhancer profiling in human monocyte subsets.Blood2014;123:e90-9

[23]

Kapellos TS,Gemünd I.Human monocyte subsets and phenotypes in major chronic inflammatory diseases.Front Immunol2019;10:2035 PMCID:PMC6728754

[24]

Chimen M,McGettrick HM.Monocyte subsets coregulate inflammatory responses by integrated signaling through TNF and IL-6 at the endothelial cell interface.J Immunol2017;198:2834-43 PMCID:PMC5357784

[25]

Puchner A,Bonelli M.Non-classical monocytes as mediators of tissue destruction in arthritis.Ann Rheum Dis2018;77:1490-7 PMCID:PMC6161666

[26]

Gazzito Del Padre TC,de Aguiar MF.Distribution of monocytes subpopulations in the peripheral blood from patients with Behçet’s disease - impact of disease status and colchicine use.Clin Immunol2021;231:108854

[27]

Boyette LB,Hadi K.Phenotype, function, and differentiation potential of human monocyte subsets.PLoS One2017;12:e0176460 PMCID:PMC5406034

[28]

Cros J,Woollard K.Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors.Immunity2010;33:375-86 PMCID:PMC3063338

[29]

Sebastian A,Jain P,Varma PK.Non-classical monocytes and its potential in diagnosing sepsis post cardiac surgery.Int Immunopharmacol2021;99:108037

[30]

Sampath P,Ranganathan UD.Monocyte subsets: phenotypes and function in tuberculosis infection.Front Immunol2018;9:1726 PMCID:PMC6077267

[31]

Ziegler-Heitbrock L.Toward a refined definition of monocyte subsets.Front Immunol2013;4:23 PMCID:PMC3562996

[32]

Cormican S.Human monocyte subset distinctions and function: insights from gene expression analysis.Front Immunol2020;11:1070 PMCID:PMC7287163

[33]

Patil NK,Hernandez A,Sherwood ER.Regulation of leukocyte function by citric acid cycle intermediates.J Leukoc Biol2019;106:105-17 PMCID:PMC6597293

[34]

McBride MA,Stothers CL.The metabolic basis of immune dysfunction following sepsis and trauma.Front Immunol2020;11:1043 PMCID:PMC7273750

[35]

Zuo H.Metabolic reprogramming in mitochondria of myeloid cells.Cells2019;9:5 PMCID:PMC7017304

[36]

Nikiforov NG,Kubekina MV.Two subpopulations of human monocytes that differ by mitochondrial membrane potential.Biomedicines2021;9:153 PMCID:PMC7915751

[37]

Kisand K.Metabolic fitness is decreased in monocytes of old individuals.Aging (Albany NY)2020;12:18791-2 PMCID:PMC7732277

[38]

Thorp EB.Mitochondrial indigestion after lipid scavenging.Circ Res2019;125:1103-5 PMCID:PMC6993894

[39]

Stunault MI,Guinamard RR.Metabolism plays a key role during macrophage activation.Mediators Inflamm2018;2018:2426138 PMCID:PMC6311794

[40]

Geric I,Krysko O.Lipid homeostasis and inflammatory activation are disturbed in classically activated macrophages with peroxisomal β-oxidation deficiency.Immunology2018;153:342-56 PMCID:PMC5795189

[41]

Zhu Y,Ye L.Targeting fatty acid β-oxidation impairs monocyte differentiation and prolongs heart allograft survival.JCI Insight2022;7:e151596 PMCID:PMC9057610

[42]

Faas MM.Mitochondrial function in immune cells in health and disease.Biochim Biophys Acta Mol Basis Dis2020;1866:165845

[43]

Parikh SM,He L,Zhan M.Mitochondrial function and disturbances in the septic kidney.Semin Nephrol2015;35:108-19 PMCID:PMC4465453

[44]

Bereiter-Hahn J.Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria.Microsc Res Tech1994;27:198-219

[45]

Xie JH,Jin J.The essential functions of mitochondrial dynamics in immune cells.Cell Mol Immunol2020;17:712-21 PMCID:PMC7331746

[46]

Gao Z,Wang F.Mitochondrial dynamics controls anti-tumour innate immunity by regulating CHIP-IRF1 axis stability.Nat Commun2017;8:1805 PMCID:PMC5703766

[47]

Esteban-Martínez L,McGreal RS.Programmed mitophagy is essential for the glycolytic switch during cell differentiation.EMBO J2017;36:1688-706 PMCID:PMC5470043

[48]

Rambold AS.Mitochondrial dynamics at the interface of immune cell metabolism and function.Trends Immunol2018;39:6-18

[49]

Wang H,Li X,Dhakal K.ALS-associated mutation SOD1G93A leads to abnormal mitochondrial dynamics in osteocytes.Bone2018;106:126-38 PMCID:PMC5718158

[50]

Cosentino K.MIM through MOM: the awakening of Bax and Bak pores.EMBO J2018;37:e100340 PMCID:PMC6120657

[51]

Bulthuis EP,Willems PHGM.Mitochondrial morphofunction in mammalian cells.Antioxid Redox Signal2019;30:2066-109 PMCID:PMC6529879

[52]

Gal A,Weaver D.MSTO1 is a cytoplasmic pro-mitochondrial fusion protein, whose mutation induces myopathy and ataxia in humans.EMBO Mol Med2017;9:967-84 PMCID:PMC5494519

[53]

Hoppins S.The regulation of mitochondrial dynamics.Curr Opin Cell Biol2014;29:46-52

[54]

Böckler S,Hock N.Fusion, fission, and transport control asymmetric inheritance of mitochondria and protein aggregates.J Cell Biol2017;216:2481-98 PMCID:PMC5551707

[55]

Arribat Y,Greggio C.Distinct patterns of skeletal muscle mitochondria fusion, fission and mitophagy upon duration of exercise training.Acta Physiol (Oxf)2019;225:e13179

[56]

Ciarlo L,Manganelli V.Recruitment of mitofusin 2 into “lipid rafts” drives mitochondria fusion induced by Mdivi-1.Oncotarget2018;9:18869-84 PMCID:PMC5922362

[57]

Odendall F,Tatsuta T.The mitochondrial intermembrane space-facing proteins Mcp2 and Tgl2 are involved in yeast lipid metabolism.Mol Biol Cell2019;30:2681-94 PMCID:PMC6761770

[58]

El-Hattab AW,Almannai M.Mitochondrial dynamics: biological roles, molecular machinery, and related diseases.Mol Genet Metab2018;125:315-21

[59]

Chan DC.Mitochondrial dynamics and its involvement in disease.Annu Rev Pathol2020;15:235-59

[60]

Hu Q,Gutiérrez Cortés N.Increased Drp1 acetylation by lipid overload induces cardiomyocyte death and heart dysfunction.Circ Res2020;126:456-70 PMCID:PMC7035202

[61]

Wu NN,Ren J.Mitophagy, mitochondrial dynamics, and homeostasis in cardiovascular aging.Oxid Med Cell Longev2019;2019:9825061 PMCID:PMC6875274

[62]

Burman JL,Wang C.Mitochondrial fission facilitates the selective mitophagy of protein aggregates.J Cell Biol2017;216:3231-47 PMCID:PMC5626535

[63]

Chan DC.Mitochondrial fusion and fission in mammals.Annu Rev Cell Dev Biol2006;22:79-99

[64]

Chen Y,Dorn GW 2nd.Mitochondrial fusion is essential for organelle function and cardiac homeostasis.Circ Res2011;109:1327-31 PMCID:PMC3237902

[65]

Head B,Amiri M,van der Bliek AM.Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells.J Cell Biol2009;187:959-66 PMCID:PMC2806274

[66]

Ban T,Kohno H.Molecular basis of selective mitochondrial fusion by heterotypic action between OPA1 and cardiolipin.Nat Cell Biol2017;19:856-63

[67]

Ikeda Y,Maejima Y.Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress.Circ Res2015;116:264-78

[68]

Gandre-Babbe S.The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells.Mol Biol Cell2008;19:2402-12 PMCID:PMC2397315

[69]

Wang X,Gu Z,Luo J.Mitochondrial metal ion transport in cell metabolism and disease.Int J Mol Sci2021;22:7525 PMCID:PMC8305404

[70]

Quintana A.Mitochondrial dynamics and their impact on T cell function.Cell Calcium2012;52:57-63

[71]

Saxton WM.The axonal transport of mitochondria.J Cell Sci2012;125:2095-104 PMCID:PMC3656622

[72]

Myasoedova VA,Songia P.Sex-specific differences in age-related aortic valve calcium load: a systematic review and meta-analysis.Ageing Res Rev2020;61:101077

[73]

Hu C,Huang X.OPA1 and MICOS Regulate mitochondrial crista dynamics and formation.Cell Death Dis2020;11:940 PMCID:PMC7603527

[74]

Baechler BL,Quadrilatero J.Mitophagy regulates mitochondrial network signaling, oxidative stress, and apoptosis during myoblast differentiation.Autophagy2019;15:1606-19 PMCID:PMC6693454

[75]

Skuratovskaia D,Vulf M.Mitochondrial destiny in type 2 diabetes: the effects of oxidative stress on the dynamics and biogenesis of mitochondria.PeerJ2020;8:e9741 PMCID:PMC7453922

[76]

Jackisch L,Kumar S,Tripathi G.Tunicamycin-induced endoplasmic reticulum stress mediates mitochondrial dysfunction in human adipocytes.J Clin Endocrinol Metab2020;105:2905-18

[77]

Elorza AA.mtDNA heteroplasmy at the core of aging-associated heart failure. An integrative view of OXPHOS and mitochondrial life cycle in cardiac mitochondrial physiology.Front Cell Dev Biol2021;9:625020 PMCID:PMC7937615

[78]

Wang J,Zhao N.Effects of mitochondrial dynamics in the pathophysiology of obesity.Front Biosci (Landmark Ed)2022;27:107

[79]

Lefranc C,Palacios-Ramirez R.Mitochondrial oxidative stress in obesity: role of the mineralocorticoid receptor.J Endocrinol2018;238:R143-59

[80]

Xu Z,Guo Q,Gan Z.Mitochondrial quality orchestrates muscle-adipose dialog to alleviate dietary obesity.Pharmacol Res2019;141:176-80

[81]

Drake JC,Laker RC.Mitochondria-localized AMPK responds to local energetics and contributes to exercise and energetic stress-induced mitophagy.Proc Natl Acad Sci USA2021;118:e2025932118 PMCID:PMC8449344

[82]

Morales PE,Ávalos-Guajardo Y.Emerging role of mitophagy in cardiovascular physiology and pathology.Mol Aspects Med2020;71:100822

[83]

Sobenin IA,Postnov AY,Orekhov AN.Mitochondrial mutations are associated with atherosclerotic lesions in the human aorta.Clin Dev Immunol2012;2012:832464 PMCID:PMC3446814

[84]

Bach D,Pich S.Expression of Mfn2, the Charcot-Marie-Tooth neuropathy type 2A gene, in human skeletal muscle: effects of type 2 diabetes, obesity, weight loss, and the regulatory role of tumor necrosis factor alpha and interleukin-6.Diabetes2005;54:2685-93

[85]

Mahdaviani K,Su S.Mfn2 deletion in brown adipose tissue protects from insulin resistance and impairs thermogenesis.EMBO Rep2017;18:1123-38 PMCID:PMC5887905

[86]

Chiong M,Norambuena-Soto I.Mitochondrial metabolism and the control of vascular smooth muscle cell proliferation.Front Cell Dev Biol2014;2:72 PMCID:PMC4266092

[87]

Soldatov VO,Balamutova TI,Dovgan AP.Endothelial dysfunction: comparative evaluation of ultrasound dopplerography, laser dopplerflowmetry and direct monitoring of arterial pressure for conducting pharmacological tests in rats.RRP2018;4:73-80

[88]

Kulkarni SS,Boutant M.Mfn1 deficiency in the liver protects against diet-induced insulin resistance and enhances the hypoglycemic effect of metformin.Diabetes2016;65:3552-60

[89]

Li D,Xing Y.Novel insights and current evidence for mechanisms of atherosclerosis: mitochondrial dynamics as a potential therapeutic target.Front Cell Dev Biol2021;9:673839 PMCID:PMC8293691

[90]

Kyriakoudi S,Petrou PP.When the balance tips: dysregulation of mitochondrial dynamics as a culprit in disease.Int J Mol Sci2021;22:4617 PMCID:PMC8124286

[91]

Gomes LC,Scorrano L.During autophagy mitochondria elongate, are spared from degradation and sustain cell viability.Nat Cell Biol2011;13:589-98 PMCID:PMC3088644

[92]

Quirós PM,Sala D.Loss of mitochondrial protease OMA1 alters processing of the GTPase OPA1 and causes obesity and defective thermogenesis in mice.EMBO J2012;31:2117-33 PMCID:PMC3343468

[93]

Tezze C,Desbats MA.Age-associated loss of OPA1 in muscle impacts muscle mass, metabolic homeostasis, systemic inflammation, and epithelial senescence.Cell Metab2017;25:1374-1389.e6 PMCID:PMC5462533

[94]

Liu R,Yu L.Impaired mitochondrial dynamics and bioenergetics in diabetic skeletal muscle.PLoS One2014;9:e92810 PMCID:PMC3962456

[95]

Bhat S, Shrestha D, Massey N, Karriker LA, Kanthasamy AG, Charavaryamath C. Organic dust exposure induces stress response and mitochondrial dysfunction in monocytic cells.Histochem Cell Biol2021;155:699-718 PMCID:PMC8195852

[96]

Shen Y,Zhang X.TRAF3 promotes ROS production and pyroptosis by targeting ULK1 ubiquitination in macrophages.FASEB J2020;34:7144-59

[97]

Sobenin IA,Khasanova ZB.Carotid atherosclerosis-related mutations of mitochondrial DNA do not explain the phenotype of metabolic syndrome.Vessel Plus2019;3:14

[98]

Sobenin IA,Postnov AY,Bobryshev YV.Association of mitochondrial genetic variation with carotid atherosclerosis.PLoS One2013;8:e68070 PMCID:PMC3706616

[99]

Zhang X,Jia H,Ni J.The m6A methyltransferase METTL3 modifies PGC-1α mRNA promoting mitochondrial dysfunction and oxLDL-induced inflammation in monocytes.J Biol Chem2021;297:101058 PMCID:PMC8406003

[100]

López-Armada MJ,Vaamonde-García C.Mitochondrial dysfunction and the inflammatory response.Mitochondrion2013;13:106-18

[101]

Ryan BJ,Fon EA.Mitochondrial dysfunction and mitophagy in Parkinson’s: from familial to sporadic disease.Trends Biochem Sci2015;40:200-10

[102]

Smith AM,Ryan BJ.Mitochondrial dysfunction and increased glycolysis in prodromal and early Parkinson’s blood cells.Mov Disord2018;33:1580-90 PMCID:PMC6221131

[103]

Williams J,Assimos DG.Monocyte mitochondrial function in calcium oxalate stone formers.Urology2016;93:224.e1-6 PMCID:PMC4914421

[104]

Patel M,Adedoyin O.Oxalate induces mitochondrial dysfunction and disrupts redox homeostasis in a human monocyte derived cell line.Redox Biol2018;15:207-15 PMCID:PMC5975227

[105]

Geisberger S,Neubert P.Salt transiently inhibits mitochondrial energetics in mononuclear phagocytes.Circulation2021;144:144-58 PMCID:PMC8270232

[106]

Bajpai G,Li W.Tissue resident CCR2- and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury.Circ Res2019;124:263-78 PMCID:PMC6626616

[107]

Italiani P,Della Camera G.Profiling the course of resolving vs. persistent inflammation in human monocytes: the role of IL-1 family molecules.Front Immunol2020;11:1426 PMCID:PMC7365847

[108]

Poznyak AV,Markin AM.Overview of OxLDL and its impact on cardiovascular health: focus on atherosclerosis.Front Pharmacol2020;11:613780 PMCID:PMC7836017

[109]

Orekhov AN,Gavrilin MA.Macrophages in immunopathology of atherosclerosis: a target for diagnostics and therapy.Curr Pharm Des2015;21:1172-9 PMCID:PMC4428062

[110]

Gordon S.Monocyte and macrophage heterogeneity.Nat Rev Immunol2005;5:953-64

[111]

Gratchev A,Guillot P.Alternatively activated antigen-presenting cells: molecular repertoire, immune regulation, and healing.Skin Pharmacol Appl Skin Physiol2001;14:272-9

[112]

Gratchev A,Duperrier K,Velten FW.The receptor for interleukin-17E is induced by Th2 cytokines in antigen-presenting cells.Scand J Immunol2004;60:233-7

[113]

Zhang L.Inflammatory response of macrophages in infection.2014;13:138-52

[114]

Rodríguez-Prados JC,Cuenca J.Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation.J Immunol2010;185:605-14

[115]

Davis MJ,Qiu Y.Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in Cryptococcus neoformans infection.mBio2013;4:e00264-13 PMCID:PMC3684832

[116]

Ravi S,Kramer P,Darley-Usmar VM.Mitochondria in monocytes and macrophages-implications for translational and basic research.Int J Biochem Cell Biol2014;53:202-7 PMCID:PMC4111987

[117]

Vats D,Odegaard JI.Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation.Cell Metab2006;4:13-24 PMCID:PMC1904486

[118]

Youm YH,Grant RW.The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease.Nat Med2015;21:263-9 PMCID:PMC4352123

[119]

Postat J.Quorum sensing by monocyte-derived populations.Front Immunol2019;10:2140 PMCID:PMC6749007

[120]

Poitou C,Renovato M.CD14dimCD16+ and CD14+CD16+ monocytes in obesity and during weight loss: relationships with fat mass and subclinical atherosclerosis.Arterioscler Thromb Vasc Biol2011;31:2322-30

[121]

Devêvre EF,Clément K,Cremer I.Profiling of the three circulating monocyte subpopulations in human obesity.J Immunol2015;194:3917-23

[122]

Bekkering S,Joosten LA,Netea MG.Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes.Arterioscler Thromb Vasc Biol2014;34:1731-8

[123]

Sobenin IA,Zhelankin AV.Low density lipoprotein-containing circulating immune complexes: role in atherosclerosis and diagnostic value.Biomed Res Int2014;2014:205697 PMCID:PMC4087281

[124]

Christ A,Lauterbach MAR.Western diet triggers NLRP3-dependent innate immune reprogramming.Cell2018;172:162-175.e14 PMCID:PMC6324559

[125]

Summerhill VI,Yet SF,Orekhov AN.The atherogenic role of circulating modified lipids in atherosclerosis.Int J Mol Sci2019;20:3561 PMCID:PMC6678182

[126]

Wei M,Shelehchi M.Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease.Sci Transl Med2017;9:eaai8700 PMCID:PMC6816332

[127]

Jordan S,Casanova-Acebes M.Dietary intake regulates the circulating inflammatory monocyte pool.Cell2019;178:1102-1114.e17 PMCID:PMC7357241

[128]

Chistiakov DA,Sobenin IA,Bobryshev YV.Vascular endothelium: functioning in norm, changes in atherosclerosis and current dietary approaches to improve endothelial function.Mini Rev Med Chem2015;15:338-50

[129]

Sobenin IA,Postnov AY,Orekhov AN.Changes of mitochondria in atherosclerosis: possible determinant in the pathogenesis of the disease.Atherosclerosis2013;227:283-8

[130]

Malik AN.Is mitochondrial DNA content a potential biomarker of mitochondrial dysfunction?.Mitochondrion2013;13:481-92

[131]

Chistiakov DA,Orekhov AN.Strategies to deliver microRNAs as potential therapeutics in the treatment of cardiovascular pathology.Drug Deliv2012;19:392-405

[132]

Markin AM,Sukhorukov VN,Orekhov AN.The role of physical activity in the development of atherosclerotic lesions of the vascular wall.Clin exp morphology2019;8:25-31.

[133]

Zielonka J,Sikora A.Mitochondria-targeted triphenylphosphonium-based compounds: syntheses, mechanisms of action, and therapeutic and diagnostic applications.Chem Rev2017;117:10043-120 PMCID:PMC5611849

[134]

Stanzione R,Cotugno M.Uncoupling protein 2 as a pathogenic determinant and therapeutic target in cardiovascular and metabolic diseases.Curr Neuropharmacol2022;20:662-74

[135]

Schneeberger M,Sebastián D.Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance.Cell2013;155:172-87 PMCID:PMC3839088

[136]

Kiyuna LA,Chen CH,Ferreira JCB.Targeting mitochondrial dysfunction and oxidative stress in heart failure: Challenges and opportunities.Free Radic Biol Med2018;129:155-68 PMCID:PMC6309415

[137]

Myasoedova VA,Melnichenko AA.Anti-atherosclerotic effects of a phytoestrogen-rich herbal preparation in postmenopausal women.Int J Mol Sci2016;17:1318 PMCID:PMC5000715

[138]

Zhu Y,Lu Y,Ke Y.Ilexgenin A inhibits mitochondrial fission and promote Drp1 degradation by Nrf2-induced PSMB5 in endothelial cells.Drug Dev Res2019;80:481-9

[139]

Soldatov VO,Pokrovskaya TG.International journal of research in pharmaceutical sciences ultrasonic dopplerography for the evaluation of endothelial function in the conduct of pharmacological vascular samples in an experiment production and hosted by.Int J Res Pharm Sci2018;9:735-40.

[140]

Kumar P,Oster RA.Dietary oxalate loading impacts monocyte metabolism and inflammatory signaling in humans.Front Immunol2021;12:617508 PMCID:PMC7959803

[141]

Puchenkova OA,Soldatov VO.Study of antiatherosclerotic and endothelioprotective activity of peptide agonists of EPOR/CD131 heteroreceptor.Farm farmakol (Pâtigorsk)2020;8:100-11

[142]

Hohensinner PJ,Haider P.Pharmacological inhibition of fatty acid oxidation reduces atherosclerosis progression by suppression of macrophage NLRP3 inflammasome activation.Biochem Pharmacol2021;190:114634

PDF

43

Accesses

0

Citation

Detail

Sections
Recommended

/