Pharmacological agents affecting mitophagy and inflammation

Evgeny Borisov , Evgeny Bezsonov , Damir Lyukmanov , Paolo Poggio , Donato Moschetta , Vincenza Valerio

Vessel Plus ›› 2022, Vol. 6 ›› Issue (1) : 63

PDF
Vessel Plus ›› 2022, Vol. 6 ›› Issue (1) :63 DOI: 10.20517/2574-1209.2022.20
Review

Pharmacological agents affecting mitophagy and inflammation

Author information +
History +
PDF

Abstract

Mitochondria are cellular organelles providing energy to the cells. Due to the nature of mitochondrial enzymatic repair systems, mitochondrial DNA tends to generate mutations that are repaired less efficiently than nuclear DNA mutations. There is a certain relationship between the accumulation of mitochondria with mutated DNA in tissues, the development of oxidative stress, and several pathological conditions, from specific mitochondrial diseases to an increased risk of cancer, atherosclerosis, neurodegeneration, and non-systemic inflammation. Mitophagy is the biological mechanism responsible for the degradation of dysfunctional, damaged, and mutant mitochondria. Presumably, the stimulation of mitophagy can lead to tissue cleansing from dysfunctional mitochondria, which can have a powerful therapeutic effect on the root cause of the pathology. This review examines the relationship between mitochondrial mutations and the development of oxidative stress, the mechanisms of mitophagy, and a group of chemicals that stimulate mitophagy.

Keywords

Mitochondrial DNA mutations / mitochondrial diseases / mitophagy / atherosclerosis / inflammation / pharmacology

Cite this article

Download citation ▾
Evgeny Borisov, Evgeny Bezsonov, Damir Lyukmanov, Paolo Poggio, Donato Moschetta, Vincenza Valerio. Pharmacological agents affecting mitophagy and inflammation. Vessel Plus, 2022, 6(1): 63 DOI:10.20517/2574-1209.2022.20

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

der Bliek AM, Sedensky MM, Morgan PG. Cell biology of the mitochondrion.Genetics2017;207:843-71 PMCID:PMC5676242

[2]

Keogh MJ.Mitochondrial DNA mutations in neurodegeneration.Biochim Biophys Acta2015;1847:1401-11

[3]

Baines HL,Stamp C.Similar patterns of clonally expanded somatic mtDNA mutations in the colon of heterozygous mtDNA mutator mice and ageing humans.Mech Ageing Dev2014;139:22-30 PMCID:PMC4141908

[4]

Simsek D,Gao Y.Crucial role for DNA ligase III in mitochondria but not in Xrcc1-dependent repair.Nature2011;471:245-8

[5]

Kazak L,Holt IJ.Minimizing the damage: repair pathways keep mitochondrial DNA intact.Nat Rev Mol Cell Biol2012;13:659-71

[6]

Caldecott KW.Single-strand break repair and genetic disease.Nat Rev Genet2008;9:619-31

[7]

Tan J,Stenton SL.Lifetime risk of autosomal recessive mitochondrial disorders calculated from genetic databases.EBioMedicine2020;54:102730

[8]

Frazier AE,Compton AG.Mitochondrial energy generation disorders: genes, mechanisms, and clues to pathology.J Biol Chem2019;294:5386-95 PMCID:PMC6462508

[9]

Dabravolski SA,Baig MS,Orekhov AN.Mitochondrial lipid homeostasis at the crossroads of liver and heart diseases.Int J Mol Sci2021;22:6949 PMCID:PMC8268967

[10]

Dabravolski SA,Orekhov AN.The role of mitochondria dysfunction and hepatic senescence in NAFLD development and progression.Biomed Pharmacother2021;142:112041

[11]

Dabravolski SA,Baig MS.Mitochondrial mutations and genetic factors determining NAFLD risk.Int J Mol Sci2021;22:4459 PMCID:PMC8123173

[12]

Dabravolski SA,Eid AH.Mitochondrial dysfunction and chronic inflammation in polycystic ovary syndrome.Int J Mol Sci2021;22:3923 PMCID:PMC8070512

[13]

Dabravolski SA,Baig MS.The role of mitochondrial mutations and chronic inflammation in diabetes.Int J Mol Sci2021;22:6733 PMCID:PMC8268113

[14]

Salnikova D,Grechko A.Mitochondrial dysfunction in vascular wall cells and its role in atherosclerosis.Int J Mol Sci2021;22:8990 PMCID:PMC8396504

[15]

Stenton SL.Genetics of mitochondrial diseases: Identifying mutations to help diagnosis.EBioMedicine2020;56:102784 PMCID:PMC7248429

[16]

Sobenin IA,Postnov AY,Orekhov AN.Changes of mitochondria in atherosclerosis: possible determinant in the pathogenesis of the disease.Atherosclerosis2013;227:283-8

[17]

Gottlieb RA.Mitophagy and mitochondrial quality control mechanisms in the heart.Curr Pathobiol Rep2017;5:161-9 PMCID:PMC5656254

[18]

Gkikas I,Tavernarakis N.The role of mitophagy in innate immunity.Front Immunol2018;9:1283 PMCID:PMC6008576

[19]

Liesa M,Zorzano A.Mitochondrial dynamics in mammalian health and disease.Physiol Rev2009;89:799-845

[20]

Mouli PK,Shirihai OS.Frequency and selectivity of mitochondrial fusion are key to its quality maintenance function.Biophys J2009;96:3509-18 PMCID:PMC2711405

[21]

Chen G,Kepp O.Mitophagy: an emerging role in aging and age-associated diseases.Front Cell Dev Biol2020;8:200 PMCID:PMC7113588

[22]

Palikaras K,Tavernarakis N.Mechanisms of mitophagy in cellular homeostasis, physiology and pathology.Nat Cell Biol2018;20:1013-22

[23]

Palikaras K,Tavernarakis N.Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans.Nature2015;521:525-8

[24]

Sun N,Liu J.Measuring in vivo mitophagy.Mol Cell2015;60:685-96 PMCID:PMC4656081

[25]

Pedro JM, Kroemer G, Galluzzi L. Autophagy and mitophagy in cardiovascular disease.Circ Res2017;120:1812-24

[26]

Mani S,Chadha R.Mitophagy impairment in neurodegenerative diseases: Pathogenesis and therapeutic interventions.Mitochondrion2021;57:270-93

[27]

Borgia D,Spinazzi M.Increased mitophagy in the skeletal muscle of spinal and bulbar muscular atrophy patients.Hum Mol Genet2017;26:1087-103 PMCID:PMC5409076

[28]

Chen Z,Luciani A.Mitochondria, mitophagy, and metabolic disease: towards assembling the puzzle.Cell Stress2020;4:147-50 PMCID:PMC7278521

[29]

Xu Y,Ran Z.Emerging views of mitophagy in immunity and autoimmune diseases.Autophagy2020;16:3-17 PMCID:PMC6984455

[30]

Denisenko TV,Zhivotovsky B.Mitophagy in carcinogenesis and cancer treatment.Discov Oncol2021;12:58 PMCID:PMC8777571

[31]

Yu-Wai-Man P,Chinnery PF.Leber hereditary optic neuropathy.J Med Genet2002;39:162-9 PMCID:PMC1735056

[32]

Bargiela D.Mitochondria in neuroinflammation - multiple sclerosis (MS), leber hereditary optic neuropathy (LHON) and LHON-MS.Neurosci Lett2019;710:132932

[33]

Murakami H.MELAS: mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes.Brain Nerve2017;69:111-7

[34]

Seitun S,Rubegni A.MELAS syndrome with cardiac involvement: a multimodality imaging approach.Case Rep Cardiol2016;2016:1490181 PMCID:PMC5116498

[35]

Pek NMQ,Ho BX.Mitochondrial 3243A  >  G mutation confers pro-atherogenic and pro-inflammatory properties in MELAS iPS derived endothelial cells.Cell Death Dis2019;10:802 PMCID:PMC6805858

[36]

Chistiakov DA,Sobenin IA,Bobryshev YV.Vascular endothelium: functioning in norm, changes in atherosclerosis and current dietary approaches to improve endothelial function.Mini Rev Med Chem2015;15:338-50

[37]

Poznyak AV,Sobenin IA,Orekhov AN.The role of mitochondria in cardiovascular diseases.Biology (Basel)2020;9:137 PMCID:PMC7344641

[38]

Sobenin IA,Postnov AY,Bobryshev YV.Association of mitochondrial genetic variation with carotid atherosclerosis.PLoS One2013;8:e68070 PMCID:PMC3706616

[39]

Sobenin IA,Khasanova ZB.Heteroplasmic variants of mitochondrial DNA in atherosclerotic lesions of human aortic intima.Biomolecules2019;9:455 PMCID:PMC6770808

[40]

Markin AM,Grechko AV,Orekhov AN.Cellular mechanisms of human atherogenesis: focus on chronification of inflammation and mitochondrial mutations.Front Pharmacol2020;11:642 PMCID:PMC7247837

[41]

Bezsonov EE,Orekhov AN.Immunopathology of atherosclerosis and related diseases: focus on molecular biology.Int J Mol Sci2021;22:4080 PMCID:PMC8071216

[42]

Mushenkova NV,Orekhova VA,Starodubova AV.Recognition of oxidized lipids by macrophages and its role in atherosclerosis development.Biomedicines2021;9:915 PMCID:PMC8389651

[43]

Mezentsev A,Kashirskikh D,Eid AH.Proatherogenic sialidases and desialylated lipoproteins: 35 years of research and current state from bench to bedside.Biomedicines2021;9:600 PMCID:PMC8228531

[44]

Sobenin IA,Zhelankin AV.Low density lipoprotein-containing circulating immune complexes: role in atherosclerosis and diagnostic value.Biomed Res Int2014;2014:205697 PMCID:PMC4087281

[45]

Myasoedova VA,Melnichenko AA.Anti-atherosclerotic effects of a phytoestrogen-rich herbal preparation in postmenopausal women.Int J Mol Sci2016;17:1318 PMCID:PMC5000715

[46]

Malekmohammad K,Rafieian-Kopaei M.Role of lipid accumulation and inflammation in atherosclerosis: focus on molecular and cellular mechanisms.Front Cardiovasc Med2021;8:707529 PMCID:PMC8450356

[47]

Puteri MU,Kato M.PCSK9 promotes cardiovascular diseases: recent evidence about its association with platelet activation-induced myocardial infarction.Life (Basel)2022;12:190 PMCID:PMC8875594

[48]

Ding Z,Wang X.Cross-talk between pcsk9 and damaged mtDNA in vascular smooth muscle cells: role in apoptosis.Antioxid Redox Signal2016;25:997-1008

[49]

Mahboobnia K,Marini E.PCSK9 and cancer: rethinking the link.Biomed Pharmacother2021;140:111758

[50]

Mitrofanov KY,Shiganova GM.Analysis of mitochondrial DNA heteroplasmic mutations A1555G, C3256T, T3336C, С5178А, G12315A, G13513A, G14459A, G14846А and G15059A in CHD patients with the history of myocardial infarction.Exp Mol Pathol2016;100:87-91

[51]

Hefti E.Mitochondrial DNA heteroplasmy in cardiac tissue from individuals with and without coronary artery disease.Mitochondrial DNA A DNA Mapp Seq Anal2018;29:587-93 PMCID:PMC5694712

[52]

Elsharawy MA,Ibrahim MF.Impact of atherosclerosis risk factors on the clinical presentation of arterial occlusive disease in Arabic patients.Int J Angiol2008;17:203-6 PMCID:PMC2728925

[53]

Vilela EM.Inflammation and ischemic heart disease: The next therapeutic target?.Rev Port Cardiol (Engl Ed)2021;40:785-96

[54]

Linton MF,Davies SS.The role of lipids and lipoproteins in atherosclerosis. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000.

[55]

Liu YX,Wu JH.Lipid accumulation and novel insight into vascular smooth muscle cells in atherosclerosis.J Mol Med (Berl)2021;99:1511-26

[56]

Hilgendorf I,Robbins CS.Monocyte fate in atherosclerosis.Arterioscler Thromb Vasc Biol2015;35:272-9

[57]

Taleb S.Inflammation in atherosclerosis.Arch Cardiovasc Dis2016;109:708-15

[58]

Gupta RM,Libby P.The march of monocytes in atherosclerosis: one cell at a time.Circ Res2020;126:1324-6 PMCID:PMC7236482

[59]

Chistiakov DA,Sobenin IA.Plasmacytoid dendritic cells: development, functions, and role in atherosclerotic inflammation.Front Physiol2014;5:279

[60]

Chistiakov DA,Orekhov AN.Myeloid dendritic cells: Development, functions, and role in atherosclerotic inflammation.Immunobiology2015;220:833-44

[61]

Chistiakov DA,Orekhov AN.Strategies to deliver microRNAs as potential therapeutics in the treatment of cardiovascular pathology.Drug Deliv2012;19:392-405

[62]

Soldatov VO,Balamutova TI,Dovgan AP.Endothelial dysfunction: comparative evaluation of ultrasound dopplerography, laser dopplerflowmetry and direct monitoring of arterial pressure for conducting pharmacological tests in rats.Research Results in Pharmacology2018;4:73-80

[63]

Scioli MG,D'Amico F.Oxidative stress and new pathogenetic mechanisms in endothelial dysfunction: potential diagnostic biomarkers and therapeutic targets.J Clin Med2020;9:1995 PMCID:PMC7355625

[64]

Rodger CE,Ganley IG.Mammalian mitophagy - from in vitro molecules to in vivo models.FEBS J2018;285:1185-202 PMCID:PMC5947125

[65]

Iorio R,Petricca S.Mitophagy: molecular mechanisms, new concepts on parkin activation and the emerging role of AMPK/ULK1 axis.Cells2021;11:30 PMCID:PMC8750607

[66]

Vincow ES,Thomas RE.The PINK1-Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo.Proc Natl Acad Sci USA2013;110:6400-5 PMCID:PMC3631677

[67]

Kondapalli C,Zhang N.PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65.Open Biol2012;2:120080 PMCID:PMC3376738

[68]

Lee L,Nakamura Y,Henley JM.Parkin-mediated ubiquitination contributes to the constitutive turnover of mitochondrial fission factor (Mff).PLoS One2019;14:e0213116 PMCID:PMC6528996

[69]

Koyano F,Kosako H,Matsuda N.Parkin recruitment to impaired mitochondria for nonselective ubiquitylation is facilitated by MITOL.J Biol Chem2019;294:10300-14 PMCID:PMC6664184

[70]

Vives-Bauza C,Tocilescu M.PINK1/Parkin direct mitochondria to autophagy.Autophagy2010;6:315-6

[71]

Lazarou M.Keeping the immune system in check: a role for mitophagy.Immunol Cell Biol2015;93:3-10

[72]

Stockum S, Marchesan E, Ziviani E. Mitochondrial quality control beyond PINK1/Parkin.Oncotarget2018;9:12550-1 PMCID:PMC5849152

[73]

Fu M,Shankar J,Joshi B.Regulation of mitophagy by the Gp78 E3 ubiquitin ligase.Mol Biol Cell2013;24:1153-62 PMCID:PMC3623636

[74]

Ikeda F.Mitophagy is induced by short ubiquitin chains on mitochondria.J Cell Biol2020;219:e202008031 PMCID:PMC7480096

[75]

Gatica D,Klionsky DJ.Cargo recognition and degradation by selective autophagy.Nat Cell Biol2018;20:233-42 PMCID:PMC6028034

[76]

Montava-Garriga L.Outstanding questions in mitophagy: what we do and do not know.J Mol Biol2020;432:206-30

[77]

Chu CT,Dagda RK.Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells.Nat Cell Biol2013;15:1197-205 PMCID:PMC3806088

[78]

Chu CT,Kagan VE.LC3 binds externalized cardiolipin on injured mitochondria to signal mitophagy in neurons: implications for Parkinson disease.Autophagy2014;10:376-8 PMCID:PMC5396091

[79]

Pizzuto M.Cardiolipin in immune signaling and cell death.Trends Cell Biol2020;30:892-903

[80]

Singh F,Rosewell P,Reith AD.Pharmacological rescue of impaired mitophagy in Parkinson’s disease-related LRRK2 G2019S knock-in mice.Elife2021;10:e67604 PMCID:PMC8331189

[81]

McWilliams TG,Montava-Garriga L.Basal mitophagy occurs independently of PINK1 in mouse tissues of high metabolic demand.Cell Metab2018;27:439-449.e5 PMCID:PMC5807059

[82]

Cummins N.Shedding light on mitophagy in neurons: what is the evidence for PINK1/Parkin mitophagy in vivo?.Cell Mol Life Sci2018;75:1151-62

[83]

Lee JJ,Martinez Zarate A.Basal mitophagy is widespread in Drosophila but minimally affected by loss of Pink1 or parkin.J Cell Biol2018;217:1613-22 PMCID:PMC5940313

[84]

Matsuda S,Minami A,Kitagishi Y.Functions and characteristics of PINK1 and Parkin in cancer.Front Biosci (Landmark Ed)2015;20:491-501

[85]

Quinn PMJ,Ambrósio AF.PINK1/PARKIN signalling in neurodegeneration and neuroinflammation.Acta Neuropathol Commun2020;8:189 PMCID:PMC7654589

[86]

Ge P,Dawson TM.PINK1 and Parkin mitochondrial quality control: a source of regional vulnerability in Parkinson’s disease.Mol Neurodegener2020;15:20 PMCID:PMC7071653

[87]

Li J,Huang H.Pink1 promotes cell proliferation and affects glycolysis in breast cancer.Exp Biol Med (Maywood)2022;247:985-95 PMCID:PMC9265526

[88]

McWilliams TG,Allen GF.mito-QC illuminates mitophagy and mitochondrial architecture in vivo.J Cell Biol2016;214:333-45 PMCID:PMC4970326

[89]

Whitworth AJ.PINK1/Parkin mitophagy and neurodegeneration-what do we really know in vivo?.Curr Opin Genet Dev2017;44:47-53

[90]

Sekine S.PINK1 import regulation; a fine system to convey mitochondrial stress to the cytosol.BMC Biol2018;16:2 PMCID:PMC5795276

[91]

Lin XH,Ma M.Suppressing DRP1-mediated mitochondrial fission and mitophagy increases mitochondrial apoptosis of hepatocellular carcinoma cells in the setting of hypoxia.Oncogenesis2020;9:67 PMCID:PMC7359348

[92]

Schweers RL,Randall MS.NIX is required for programmed mitochondrial clearance during reticulocyte maturation.Proc Natl Acad Sci U S A2007;104:19500-5 PMCID:PMC2148318

[93]

Sandoval H,Dasgupta SK.Essential role for Nix in autophagic maturation of erythroid cells.Nature2008;454:232-5 PMCID:PMC2570948

[94]

Al Rawi S,Djeddi A.Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission.Science2011;334:1144-7

[95]

Sato M.Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos.Science2011;334:1141-4

[96]

Rojansky R,Chan DC.Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1.Elife2016;5:e17896 PMCID:PMC5127638

[97]

Gottlieb RA.MitoTimer: a novel protein for monitoring mitochondrial turnover in the heart.J Mol Med (Berl)2015;93:271-8 PMCID:PMC4333239

[98]

Esteban-Martínez L,Boya P.Mitophagy, metabolism, and cell fate.Mol Cell Oncol2017;4:e1353854 PMCID:PMC5644481

[99]

Suárez-Rivero JM,Povea-Cabello S.From mitochondria to atherosclerosis: the inflammation path.Biomedicines2021;9:258 PMCID:PMC8000234

[100]

Summerhill VI,Yet SF,Orekhov AN.The atherogenic role of circulating modified lipids in atherosclerosis.Int J Mol Sci2019;20:3561 PMCID:PMC6678182

[101]

Georgakopoulos ND,Campanella M.The pharmacological regulation of cellular mitophagy.Nat Chem Biol2017;13:136-46

[102]

Wang Y,Steipe B,Kim PK.ROS-induced mitochondrial depolarization initiates PARK2/PARKIN-dependent mitochondrial degradation by autophagy.Autophagy2012;8:1462-76

[103]

Narendra DP,Tanaka A.PINK1 is selectively stabilized on impaired mitochondria to activate Parkin.PLoS Biol2010;8:e1000298 PMCID:PMC2811155

[104]

Bestman JE,Rahn JJ,Chan SS.The cellular and molecular progression of mitochondrial dysfunction induced by 2,4-dinitrophenol in developing zebrafish embryos.Differentiation2015;89:51-69 PMCID:PMC4466198

[105]

Geisler JG,Halpern J.DNP, mitochondrial uncoupling, and neuroprotection: a little dab’ll do ya.Alzheimers Dement2017;13:582-91 PMCID:PMC5337177

[106]

Tai Y,Peng X.Mitochondrial uncoupler BAM15 inhibits artery constriction and potently activates AMPK in vascular smooth muscle cells.Acta Pharm Sin B2018;8:909-18 PMCID:PMC6251816

[107]

Dang CP,Charoensappakit A.BAM15, a mitochondrial uncoupling agent, attenuates inflammation in the lps injection mouse model: an adjunctive anti-inflammation on macrophages and hepatocytes.J Innate Immun2021;13:359-75 PMCID:PMC8613553

[108]

Felber SM.Valinomycin can depolarize mitochondria in intact lymphocytes without increasing plasma membrane potassium fluxes.FEBS Letters1982;150:122-4

[109]

Ashrafi G.The pathways of mitophagy for quality control and clearance of mitochondria.Cell Death Differ2013;20:31-42 PMCID:PMC3524633

[110]

Rakovic A,Mårtensson CU.PINK1-dependent mitophagy is driven by the UPS and can occur independently of LC3 conversion.Cell Death Differ2019;26:1428-41 PMCID:PMC6748138

[111]

Kim KY,Lee SY.Salinomycin-induced apoptosis of human prostate cancer cells due to accumulated reactive oxygen species and mitochondrial membrane depolarization.Biochem Biophys Res Commun2011;413:80-6

[112]

Managò A,Carraretto L.Early effects of the antineoplastic agent salinomycin on mitochondrial function.Cell Death Dis2015;6:e1930 PMCID:PMC4632293

[113]

Thomas RE,Burman JL,Pallanck LJ.PINK1-Parkin pathway activity is regulated by degradation of PINK1 in the mitochondrial matrix.PLoS Genet2014;10:e1004279 PMCID:PMC4038460

[114]

Shi G,Grimes DA.Functional alteration of PARL contributes to mitochondrial dysregulation in Parkinson’s disease.Hum Mol Genet2011;20:1966-74

[115]

Meissner C,Hehn B.Intramembrane protease PARL defines a negative regulator of PINK1- and PARK2/Parkin-dependent mitophagy.Autophagy2015;11:1484-98 PMCID:PMC4590680

[116]

Shi G.The mitochondrial rhomboid protease PARL is regulated by PDK2 to integrate mitochondrial quality control and metabolism.Cell Rep2017;18:1458-72

[117]

Lysyk L,Arutyunova E.Insights into the catalytic properties of the mitochondrial rhomboid protease PARL.J Biol Chem2021;296:100383 PMCID:PMC7966987

[118]

Urban S.The rhomboid protease family: a decade of progress on function and mechanism.Genome Biol2011;12:231 PMCID:PMC3333768

[119]

Parsons WH,Crainic JA.Development of succinimide-based inhibitors for the mitochondrial rhomboid protease PARL.Bioorg Med Chem Lett2021;49:128290

[120]

Hertz NT,Sos ML.A neo-substrate that amplifies catalytic activity of parkinson's-disease-related kinase PINK1.Cell2013;154:737-47 PMCID:PMC3950538

[121]

Clark EH,Hoshikawa T.Targeting mitophagy in Parkinson’s disease.J Biol Chem2021;296:100209 PMCID:PMC7948953

[122]

Nagaria O,Kabir R,Kobayashi T.Kinetin is sufficient to accelerate mitophagy flux in H9c2 cardiac myoblast cells.FASEB j2019;33

[123]

Allen GF,James J.Loss of iron triggers PINK1/Parkin-independent mitophagy.EMBO Rep2013;14:1127-35 PMCID:PMC3981094

[124]

Lee JW,Ju C.Hypoxia signaling in human diseases and therapeutic targets.Exp Mol Med2019;51:1-13 PMCID:PMC6586801

[125]

Zhao JF,Allen GFG,Ganley IG.HIF1α-dependent mitophagy facilitates cardiomyoblast differentiation.Cell Stress2020;4:99-113 PMCID:PMC7212530

[126]

Park SJ,Kim ES.Mitochondrial fragmentation caused by phenanthroline promotes mitophagy.FEBS Lett2012;586:4303-10

[127]

Hara Y,Tanaka A.Iron loss triggers mitophagy through induction of mitochondrial ferritin.EMBO Rep2020;21:e50202 PMCID:PMC7645172

[128]

Xu LJ,Pan H.Deferiprone protects the isolated atria from cardiotoxicity induced by doxorubicin.Acta Pharmacol Sin2006;27:1333-9

[129]

Denison SR,Becker NA.Alterations in the common fragile site gene Parkin in ovarian and other cancers.Oncogene2003;22:8370-8

[130]

Long M,Longo M.DGAT1 activity synchronises with mitophagy to protect cells from metabolic rewiring by iron  depletion.EMBO J2022;41:e109390 PMCID:PMC9108618

[131]

Read AD,Archer SL.Mitochondrial iron-sulfur clusters: Structure, function, and an emerging role in vascular biology.Redox Biol2021;47:102164 PMCID:PMC8577454

[132]

Paul BT,Torti FM.Mitochondria and Iron: current questions.Expert Rev Hematol2017;10:65-79 PMCID:PMC5538026

[133]

Ward DM.Mitochondrial iron in human health and disease.Annu Rev Physiol2019;81:453-82 PMCID:PMC6641538

[134]

Li Y.AMPK and autophagy.Adv Exp Med Biol2019;1206:85-108

[135]

Nasri H.Metformin: current knowledge.J Res Med Sci2014;19:658-64 PMCID:PMC4214027

[136]

Rena G,Pearson ER.The mechanisms of action of metformin.Diabetologia2017;60:1577-85 PMCID:PMC5552828

[137]

Bhansali S,Dhawan V.Metformin promotes mitophagy in mononuclear cells: a potential in vitro model for unraveling metformin’s mechanism of action.Ann N Y Acad Sci2020;1463:23-36

[138]

Pan H.Key proteins and pathways that regulate lifespan.J Biol Chem2017;292:6452-60 PMCID:PMC5399099

[139]

Jang SY,Hwang ES.Nicotinamide-induced mitophagy: event mediated by high NAD+/NADH ratio and SIRT1 protein activation.J Biol Chem2012;287:19304-14 PMCID:PMC3365962

[140]

Sebori R,Hosoda R,Horio Y.Resveratrol decreases oxidative stress by restoring mitophagy and improves the pathophysiology of dystrophin-deficient mdx mice.Oxid Med Cell Longev2018;2018:9179270 PMCID:PMC6231358

[141]

Shaito A,Younes N.Potential adverse effects of resveratrol: a literature review.Int J Mol Sci2020;21:2084 PMCID:PMC7139620

[142]

Grynkiewicz G.New perspectives for Fisetin.Front Chem2019;7:697 PMCID:PMC6842927

[143]

Jia S,Zhou S,Ding G.Fisetin induces autophagy in pancreatic cancer cells via endoplasmic reticulum stress- and mitochondrial stress-dependent pathways.Cell Death Dis2019;10:142 PMCID:PMC6374379

[144]

Hung CH,Chu PM.Quercetin is a potent anti-atherosclerotic compound by activation of SIRT1 signaling under oxLDL stimulation.Mol Nutr Food Res2015;59:1905-17

[145]

Li X,Gao Y.Protective effects of quercetin on mitochondrial biogenesis in experimental traumatic brain injury via the Nrf2 signaling pathway.PLoS One2016;11:e0164237 PMCID:PMC5079551

[146]

Liu T,Zhang X.Quercetin alleviates kidney fibrosis by reducing renal tubular epithelial cell senescence through the SIRT1/PINK1/mitophagy axis.Life Sci2020;257:118116

[147]

Pietrocola F,Markaki M.Aspirin recapitulates features of caloric restriction.Cell Rep2018;22:2395-407 PMCID:PMC5848858

[148]

Eisenberg T,Schauer A.Induction of autophagy by spermidine promotes longevity.Nat Cell Biol2009;11:1305-14

[149]

Yang X,Dai Y.Spermidine inhibits neurodegeneration and delays aging via the PINK1-PDR1-dependent mitophagy pathway in C. elegans.Aging (Albany NY)2020;12:16852-66 PMCID:PMC7521492

PDF

39

Accesses

0

Citation

Detail

Sections
Recommended

/