Microvascular dysfunction following cardioplegic arrest and cardiopulmonary bypass

Jun Feng , Shawn Kant , Frank W. Sellke

Vessel Plus ›› 2021, Vol. 5 ›› Issue (1) : 30

PDF
Vessel Plus ›› 2021, Vol. 5 ›› Issue (1) :30 DOI: 10.20517/2574-1209.2021.57
Review

Microvascular dysfunction following cardioplegic arrest and cardiopulmonary bypass

Author information +
History +
PDF

Abstract

Cardioplegia and cardiopulmonary bypass (CP/CPB) during cardiac surgery may cause systemic microvascular dysfunction. CP/CPB is associated with significant alterations in myogenic tone, agonist-induced vasomotor response, and endothelial function in various organs and vascular beds. These alterations can result in vessel spasm, organ malperfusion, and tissue damage. This review summarizes the current state of research in this field.

Keywords

Microcirculation / microvascular function / cardiac surgery / cardioplegia / cardiopulmonary bypass / vasomotor tone / myogenic tone / endothelial function

Cite this article

Download citation ▾
Jun Feng, Shawn Kant, Frank W. Sellke. Microvascular dysfunction following cardioplegic arrest and cardiopulmonary bypass. Vessel Plus, 2021, 5(1): 30 DOI:10.20517/2574-1209.2021.57

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hiratzka LF,Carter JG.The effects of cardiopulmonary bypass and cold cardioplegia on coronary flow velocity and the reactive hyperemic response in patients and dogs.Ann Thorac Surg1988;45:474-81

[2]

De Backer D,Schmartz D.Microcirculatory alterations in cardiac surgery: effects of cardiopulmonary bypass and anesthesia.Ann Thorac Surg2009;88:1396-403

[3]

Sellke N,Lawandy I.Enhanced coronary arteriolar contraction to vasopressin in patients with diabetes after cardiac surgery.J Thorac Cardiovasc Surg2018;156:2098-107 PMCID:PMC6242764

[4]

Sellke N,Lawandy I.Impaired coronary contraction to phenylephrine after cardioplegic arrest in diabetic patients.J Surg Res2018;230:80-6 PMCID:PMC6310168

[5]

Feng J,Robich MP.Effects of cardiopulmonary bypass on endothelin-1-induced contraction and signaling in human skeletal muscle microcirculation.Circulation2010;122:S150-5 PMCID:PMC2943858

[6]

Sodha NR,Clements RT.Protein kinase C alpha modulates microvascular reactivity in the human coronary and skeletal microcirculation.Surgery2007;142:243-52

[7]

Feng J,Chu LM.Thromboxane-induced contractile response of human coronary arterioles is diminished after cardioplegic arrest.Ann Thorac Surg2011;92:829-36 PMCID:PMC3281190

[8]

Murkin JM.Monitoring and optimization of the microcirculation during CPB.J Thorac Dis2019;11:S1489-91 PMCID:PMC6586585

[9]

Os MM, van den Brom CE, van Leeuwen ALI, Dekker NAM. Microcirculatory perfusion disturbances following cardiopulmonary bypass: a systematic review.Crit Care2020;24:218 PMCID:PMC7222340

[10]

Ruel M,Voisine P,Sellke FW.Vasomotor dysfunction after cardiac surgery.Eur J Cardiothorac Surg2004;26:1002-14

[11]

Jackson WF.Ion channels and the regulation of myogenic tone in peripheral arterioles. Ion Channels and Calcium Signaling in the Microcirculation.Curr Top Membr2020;85:19-58

[12]

Earley S,Brayden JE.Protein kinase C regulates vascular myogenic tone through activation of TRPM4.Am J Physiol Heart Circ Physiol2007;292:H2613-22

[13]

Schubert R.Stretch-activated Cation Channels and the Myogenic Response of Small Arteries. In: Kamkin A, Kiseleva I, editors. Mechanosensitivity in Cells and Tissues. Moscow: Academia; 2005.

[14]

Dessy C,Hulvershorn J,Sellke FW.Evidence for involvement of the PKC-alpha isoform in myogenic contractions of the coronary microcirculation.Am J Physiol Heart Circ Physiol2000;279:H916-23

[15]

Jensen LJ,Salomonsson M.T-type Ca2+ channels and autoregulation of local blood flow.Channels (Austin)2017;11:183-95 PMCID:PMC5463881

[16]

Amin AH,Partyka M.Mechanisms of myogenic tone of coronary arteriole: Role of down stream signaling of the EGFR tyrosine kinase.Microvasc Res2011;81:135-42 PMCID:PMC3022328

[17]

Lucchesi PA,Belmadani S.Involvement of metalloproteinases 2/9 in epidermal growth factor receptor transactivation in pressure-induced myogenic tone in mouse mesenteric resistance arteries.Circulation2004;110:3587-93

[18]

Cipolla MJ,Osol G.Pressure-induced actin polymerization in vascular smooth muscle as a mechanism underlying myogenic behavior.FASEB J2002;16:72-6

[19]

Davis MJ,Nurkiewicz TR.Integrins and mechanotransduction of the vascular myogenic response.Am J Physiol Heart Circ Physiol2001;280:H1427-33

[20]

Wang SY,Franklin A.Myogenic reactivity of coronary resistance arteries after cardiopulmonary bypass and hyperkalemic cardioplegia.Circulation1995;92:1590-6

[21]

Wang SY,Li J,Sellke FW.Decreased myogenic reactivity in skeletal muscle arterioles after hypothermic cardiopulmonary bypass.J Surg Res1997;69:40-4

[22]

Khan TA,Ruel M.Mitogen-activated protein kinase inhibition and cardioplegia-cardiopulmonary bypass reduce coronary myogenic tone.Circulation2003;108 Suppl 1:II348-53

[23]

Feng J,Khabbaz KR.Large conductance calcium-activated potassium channels contribute to the reduced myogenic tone of peripheral microvasculature after cardiopulmonary bypass.J Surg Res2009;157:123-8 PMCID:PMC3609868

[24]

Tofukuji M,Li J,Franklin A.Comparative effects of continuous warm blood and intermittent cold blood cardioplegia on coronary reactivity.Ann Thorac Surg1997;64:1360-7

[25]

Wang SY,Tofukuji M,Sellke FW.Effects of blood and crystalloid cardioplegia on adrenergic and myogenic vascular mechanisms.Ann Thorac Surg1997;63:41-9

[26]

Banitt PF,Wang SY,Sellke FW.Myogenic and agonist induced responses of coronary venules after cold hyperkalaemic cardioplegia.Cardiovasc Res1995;29:827-33

[27]

Hattori Y,Akimoto K,Kasai K.Glycated serum albumin-induced vascular smooth muscle cell proliferation through activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by protein kinase C.Biochem Biophys Res Commun2001;281:891-6

[28]

Velarde V,Christopher J,Jaffa AA.Activation of MAPK by modified low-density lipoproteins in vascular smooth muscle cells.J Appl Physiol (1985)2001;91:1412-20

[29]

Liu Y,Chai Q,Kleinman LH.Peroxynitrite inhibits Ca2+-activated K+ channel activity in smooth muscle of human coronary arterioles.Circ Res2002;91:1070-6

[30]

Nardi P,Bertoldo F.Warm blood cardioplegia versus cold crystalloid cardioplegia for myocardial protection during coronary artery bypass grafting surgery.Cell Death Discov2018;4:23 PMCID:PMC5841304

[31]

Feng J.Microvascular dysfunction in patients with diabetes after cardioplegic arrest and cardiopulmonary bypass.Curr Opin Cardiol2016;31:618-24 PMCID:PMC5326580

[32]

Pires PW,Dorrance AM.Regulation of myogenic tone and structure of parenchymal arterioles by hypertension and the mineralocorticoid receptor.Am J Physiol Heart Circ Physiol2015;309:H127-36 PMCID:PMC4491521

[33]

Brummelen P, Jie K, van Zwieten PA. Alpha-adrenergic receptors in human blood vessels.Br J Clin Pharmacol1986;21 Suppl 1:33S-9S PMCID:PMC1400759

[34]

Wang SY,Johnson RG,Sellke FW.Adrenergic regulation of coronary microcirculation after extracorporeal circulation and crystalloid cardioplegia.Am J Physiol1994;267:H2462-70

[35]

Lundvall J.Beta adrenergic dilator component of the sympathetic vascular response in skeletal muscle. Influence on the micro-circulation and on transcapillary exchange.Acta Physiol Scand1976;96:180-92

[36]

Ziegler O,Liu Y.Skeletal muscle microvasculature response to β-adrenergic stimuli is diminished with cardiac surgery.Surgery2020;167:493-8 PMCID:PMC7002023

[37]

Tan CMJ,Tapoulal N,Leeson P.The role of neuropeptide Y in cardiovascular health and disease.Front Physiol2018;9:1281 PMCID:PMC6157311

[38]

McDermott BJ.NPY and cardiac diseases.Curr Top Med Chem2007;7:1692-703

[39]

Silva AP,Grouzmann E.Neuropeptide Y and its receptors as potential therapeutic drug targets.Clinica Chimica Acta2002;326:3-25

[40]

Mirman B,Zhang Z.Effects of neuropeptide Y on the microvasculature of human skeletal muscle.Surgery2020;168:155-9 PMCID:PMC7325857

[41]

Matyal R,Robich M.Chronic type II diabetes mellitus leads to changes in neuropeptide Y receptor expression and distribution in human myocardial tissue.Eur J Pharmacol2011;665:19-28 PMCID:PMC3281191

[42]

Meng F,Wang J,Xu C.The gender-specific expression of neuropeptide Y and neuropeptide Y receptors in human atrial tissue during cardiopulmonary bypass surgery.J Thorac Dis2018;10:6563-8 PMCID:PMC6344680

[43]

Marasciulo FL,Potenza MA.Endothelin-1: the yin and yang on vascular function.Curr Med Chem2006;13:1655-65

[44]

Kowalczyk A,Kolodziejczyk M,Goraca A.The role of endothelin-1 and endothelin receptor antagonists in inflammatory response and sepsis.Arch Immunol Ther Exp (Warsz)2015;63:41-52 PMCID:PMC4289534

[45]

Bond BR,Clair MJ.Endothelin-1 during and after cardiopulmonary bypass: association to graft sensitivity and postoperative recovery.J Thorac Cardiovasc Surg2001;122:358-64

[46]

Verma S,Weisel RD.Increased endothelin-1 production in diabetic patients after cardioplegic arrest and reperfusion impairs coronary vascular reactivity: reversal by means of endothelin antagonism.J Thorac Cardiovasc Surg2002;123:1114-9

[47]

Feng J,Khabbaz KR.Endothelin-1-induced contractile responses of human coronary arterioles via endothelin-A receptors and PKC-alpha signaling pathways.Surgery2010;147:798-804 PMCID:PMC2875281

[48]

Watts SW,Davis RP.Serotonin and blood pressure regulation.Pharmacol Rev2012;64:359-88 PMCID:PMC3310484

[49]

Berg KA.Regulation of 5-HT1A and 5-HT1B receptor systems by phospholipid signaling cascades.Brain Res Bull2001;56:471-7

[50]

Caughey GE,Penglis PS,James MJ.Roles of cyclooxygenase (COX)-1 and COX-2 in prostanoid production by human endothelial cells: selective up-regulation of prostacyclin synthesis by COX-2.J Immunol2001;167:2831-8

[51]

Sabe SA,Liu Y,Ehsan A.Decreased contractile response of peripheral arterioles to serotonin after CPB in patients with diabetes.Surgery2018;164:288-93 PMCID:PMC6056334

[52]

Metais C,Simons M.Serotonin-induced coronary contraction increases after blood cardioplegia-reperfusion: role of COX-2 expression.Circulation1999;100:II328-34

[53]

Metais C,Li J,Sellke FW.Serotonin-induced human coronary microvascular contraction during acute myocardial ischemia is blocked by COX-2 inhibition.Basic Res Cardiol2001;96:59-67

[54]

Robich MP,Feng J.Altered coronary microvascular serotonin receptor expression after coronary artery bypass grafting with cardiopulmonary bypass.J Thorac Cardiovasc Surg2010;139:1033-40 PMCID:PMC2843817

[55]

Sato K,Metais C,Sellke F.Increased pulmonary vascular contraction to serotonin after cardiopulmonary bypass: role of cyclooxygenase.J Surg Res2000;90:138-43

[56]

Masetti P,Kouchoukos NT.Vasopressin therapy for vasoplegic syndrome following cardiopulmonary bypass.J Card Surg2002;17:485-9

[57]

Holmes CL,Granton JT.Science review: Vasopressin and the cardiovascular system part 1--receptor physiology.Crit Care2003;7:427-34 PMCID:PMC374366

[58]

Khan TA,Ruel M,Sellke FW.Differential effects on the mesenteric microcirculatory response to vasopressin and phenylephrine after cardiopulmonary bypass.J Thorac Cardiovasc Surg2007;133:682-8

[59]

Sellke FW,Dai HB,Schoen FJ,Johnson RG.Mechanisms causing coronary microvascular dysfunction following crystalloid cardioplegia and reperfusion.Cardiovasc Res1993;27:1925-32

[60]

Nakahata N.Thromboxane A2: physiology/pathophysiology, cellular signal transduction and pharmacology.Pharmacol Ther2008;118:18-35

[61]

Hadi HA,Al Suwaidi J.Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome.Vasc Health Risk Manag2005;1:183-98 PMCID:PMC1993955

[62]

He GW.Coronary endothelial function in open heart surgery.Clin Exp Pharmacol Physiol1997;24:955-7

[63]

Sellke FW,Ely DL.Coronary endothelial injury after cardiopulmonary bypass and ischemic cardioplegia is mediated by oxygen-derived free radicals.Circulation1993;88:II395-400

[64]

Sellke FW,Schoen FJ.Impaired endothelium-dependent coronary microvascular relaxation after cold potassium cardioplegia and reperfusion.J Thorac Cardiovasc Surg1993;105:52-8

[65]

Sellke FW,Johnson RG,Banitt PF,Weintraub RM.Blood and albumin cardioplegia preserve endothelium-dependent microvascular responses.Ann Thorac Surg1993;55:977-85

[66]

Feng J,Ramlawi B.Bradykinin induces microvascular preconditioning through the opening of calcium-activated potassium channels.Surgery2006;140:192-7

[67]

Feng J,Li J.Improved profile of bad phosphorylation and caspase 3 activation after blood versus crystalloid cardioplegia.Ann Thorac Surg2004;77:1384-9; discussion 1389

[68]

Feng J,Sandmeyer JL.Bradykinin preconditioning improves the profile of cell survival proteins and limits apoptosis after cardioplegic arrest.Circulation2005;112:I190-5

[69]

Feng J,Li J.Bradykinin preconditioning preserves coronary microvascular reactivity during cardioplegia-reperfusion.Ann Thorac Surg2005;79:911-6

[70]

Paparella D,Young E.Cardiopulmonary bypass induced inflammation: pathophysiology and treatment. An update.Eur J Cardiothorac Surg2002;21:232-44

[71]

Aljure OD.Cardiopulmonary bypass and inflammation: the hidden enemy.J Cardiothorac Vasc Anesth2019;33:346-7

[72]

Levy JH.Inflammatory response to cardiopulmonary bypass.Ann Thorac Surg2003;75:S715-20

[73]

Lambert J,Donker AJ.Endothelium-dependent and -independent vasodilation of large arteries in normoalbuminuric insulin-dependent diabetes mellitus.Arterioscler Thromb Vasc Biol1996;16:705-11

[74]

Chen K,Popel AS.Nitric oxide in the vasculature: where does it come from and where does it go?.Antioxid Redox Signal2008;10:1185-98 PMCID:PMC2932548

[75]

Engelman DT,Engelman RM.Constitutive nitric oxide release is impaired after ischemia and reperfusion.J Thorac Cardiovasc Surg1995;110:1047-53

[76]

He G.Hyperkalemia alters endothelium-dependent relaxation through non-nitric oxide and noncyclooxygenase pathway: a mechanism for coronary dysfunction due to cardioplegia.Ann Thorac Surg1996;61:1394-9

[77]

Andrási TB,Bakos G.L-arginine protects the mesenteric vascular circulation against cardiopulmonary bypass-induced vascular dysfunction.Surgery2003;134:72-9

[78]

Meldrum DR,Sheridan BC,Banerjee A.Cardiac surgical implications of calcium dyshomeostasis in the heart.Ann Thorac Surg1996;61:1273-80

[79]

Mehlhorn U.Role of cardiopulmonary bypass and cardioplegic arrest in the regulation of cardiac nitric oxide synthase activity.J Thorac Cardiovasc Surg2002;124:418-9

[80]

Kukreja RC.The oxygen free radical system: from equations through membrane-protein interactions to cardiovascular injury and protection.Cardiovasc Res1992;26:641-55

[81]

Sellke FW,Verrier ED.Endothelial cell injury in cardiovascular surgery: The pathophysiology of vasomotor dysfunction.Ann Thorac Surg1996;62:1222-8

[82]

Stahl GL,Frendl G.Complement-mediated loss of endothelium-dependent relaxation of porcine coronary arteries. Role of the terminal membrane attack complex.Circ Res1995;76:575-83

[83]

Crofford LJ.COX-1 and COX-2 tissue expression: implications and predictions.J Rheumatol Suppl1997;49:15-9

[84]

Matsumoto H,Murakami M.Concordant induction of prostaglandin E2 synthase with cyclooxygenase-2 leads to preferred production of prostaglandin E2 over thromboxane and prostaglandin D2 in lipopolysaccharide-stimulated rat peritoneal macrophages.Biochem Biophys Res Commun1997;230:110-4

[85]

Brock TG,Peters-Golden M.Arachidonic acid is preferentially metabolized by cyclooxygenase-2 to prostacyclin and prostaglandin E2.J Biol Chem1999;274:11660-6

[86]

Ricciotti E,Grosser T.COX-2, the dominant source of prostacyclin.Proc Natl Acad Sci U S A2013;110:E183 PMCID:PMC3549068

[87]

Sodha NR,Sellke FW.Vascular changes after cardiac surgery: role of NOS, COX, kinases, and growth factors.Front Biosci (Landmark Ed)2009;14:689-98 PMCID:PMC4771624

[88]

Sellke FW.Vascular changes after cardiopulmonary bypass and ischemic cardiac arrest: roles of nitric oxide synthase and cyclooxygenase.Braz J Med Biol Res1999;32:1345-52

[89]

Feng J,Singh AK.Diabetes upregulation of cyclooxygenase 2 contributes to altered coronary reactivity after cardiac surgery.Ann Thorac Surg2017;104:568-76 PMCID:PMC5891657

[90]

Garland CJ,Jiménez-Altayó F.Vascular hyperpolarization to β-adrenoceptor agonists evokes spreading dilatation in rat isolated mesenteric arteries.Br J Pharmacol2011;164:913-21 PMCID:PMC3195914

[91]

Liu Y,Singh AK.Inactivation of endothelial small/intermediate conductance of calcium-activated potassium channels contributes to coronary arteriolar dysfunction in diabetic patients.J Am Heart Assoc2015;4:e002062 PMCID:PMC4599465

[92]

Liu Y,Xie A.Metabolic regulation of endothelial SK channels and human coronary microvascular function.Int J Cardiol2020;312:1-9 PMCID:PMC7388214

[93]

Xing H,Shi G.Chronic inhibition of mROS protects against coronary endothelial dysfunction in mice with diabetes.Front Cell Dev Biol2021;9:643810 PMCID:PMC7930489

[94]

Si H,Wölfle SE.Impaired endothelium-derived hyperpolarizing factor-mediated dilations and increased blood pressure in mice deficient of the intermediate-conductance Ca2+-activated K+ channel.Circ Res2006;99:537-44

[95]

Liu Y,Feng J.Calcium-activated potassium channels contribute to human skeletal muscle microvascular endothelial dysfunction related to cardiopulmonary bypass.Surgery2008;144:239-44 PMCID:PMC2646507

[96]

Feng J,Clements RT.Calcium-activated potassium channels contribute to human coronary microvascular dysfunction after cardioplegic arrest.Circulation2008;118:S46-51 PMCID:PMC2646506

[97]

Liu Y,Lawandy I,Sellke FW.Decreased coronary arteriolar response to KCa channel opener after cardioplegic arrest in diabetic patients.Mol Cell Biochem2018;445:187-94 PMCID:PMC6033646

[98]

Zhang Z,Liu Y.Coronary endothelial dysfunction prevented by small-conductance calcium-activated potassium channel activator in mice and patients with diabetes.J Thorac Cardiovasc Surg2020;160:e263-80 PMCID:PMC7439127

[99]

Yang Q,Man YB,He GW.Use of intermediate/small conductance calcium-activated potassium-channel activator for endothelial protection.J Thorac Cardiovasc Surg2011;141:501-10, 510.e1

[100]

Yang Q,He GW.Calcium-activated potassium channels in vasculature in response to ischemia-reperfusion.J Cardiovasc Pharmacol2012;59:109-15

[101]

Chenoweth DE,Hugli TE,Blackstone EH.Complement activation during cardiopulmonary bypass: evidence for generation of C3a and C5a anaphylatoxins.N Engl J Med1981;304:497-503

[102]

Bruins P,Yazdanbakhsh AP.Activation of the complement system during and after cardiopulmonary bypass surgery: postsurgery activation involves C-reactive protein and is associated with postoperative arrhythmia.Circulation1997;96:3542-8

[103]

Pinckard RN,Giclas PC,Boyer JT.Consumption of classical complement components by heart subcellular membranes in vitro and in patients after acute myocardial infarction.J Clin Invest1975;56:740-50 PMCID:PMC301923

[104]

Tofukuji M,Metais C.Mesenteric dysfunction after cardiopulmonary bypass: role of complement C5a.Ann Thorac Surg2000;69:799-807

[105]

Park KW,Metais C.Attenuation of endothelium-dependent dilation of pig pulmonary arterioles after cardiopulmonary bypass is prevented by monoclonal antibody to complement C5a.Anesth Analg1999;89:42-8

[106]

Tofukuji M,Agah A,Simons M.Anti-C5a monoclonal antibody reduces cardiopulmonary bypass and cardioplegia-induced coronary endothelial dysfunction.J Thorac Cardiovasc Surg1998;116:1060-8

[107]

Tofukuji M,Collard CD.Effect of sialyl Lewisx oligosaccharide on myocardial and cerebral injury in the pig.Ann Thorac Surg1999;67:112-9

[108]

Kawata H,Mayer JE.Evidence for the role of neutrophils in reperfusion injury after cold cardioplegic ischemia in neonatal lambs. J Thorac Cardiovasc Surg. 1992;103:908-17; discussion 17-8.

[109]

Schermerhorn ML,Khoury PR.Sialyl lewis oligosaccharide preserves cardiopulmonary and endothelial function after hypothermic circulatory arrest in lambs.J Thorac Cardiovasc Surg2000;120:230-7

[110]

Giacinto O,Nenna A.Inflammatory response and endothelial dysfunction following cardiopulmonary bypass: pathophysiology and pharmacological targets.Recent Pat Inflamm Allergy Drug Discov2019;13:158-73

[111]

Tofukuji M,Li J,Simons M.Myocardial VEGF expression after cardiopulmonary bypass and cardioplegia.Circulation1998;98:II242-6; discussion II7

[112]

Emani S,Sodha NR,Bianchi C.Increased vascular permeability after cardiopulmonary bypass in patients with diabetes is associated with increased expression of vascular endothelial growth factor and hepatocyte growth factor.J Thorac Cardiovasc Surg2009;138:185-91 PMCID:PMC2762706

[113]

Mieno S,Boodhwani M.Role of stromal-derived factor-1alpha in the induction of circulating CD34+CXCR4+ progenitor cells after cardiac surgery.Circulation2006;114:I186-92

[114]

Bianchi C,Sato K.Biochemical and structural evidence for pig myocardium adherens junction disruption by cardiopulmonary bypass.Circulation2001;104:I319-24

[115]

Khan TA,Araujo E.Aprotinin preserves cellular junctions and reduces myocardial edema after regional ischemia and cardioplegic arrest.Circulation2005;112:I196-201

[116]

Feng J,Sabe AA.Differential impairment of adherens-junction expression/phosphorylation after cardioplegia in diabetic versus non-diabetic patients.Eur J Cardiothorac Surg2016;49:937-43 PMCID:PMC4744457

[117]

Feng J,Singh AK.Effects of diabetes and cardiopulmonary bypass on expression of adherens junction proteins in human peripheral tissue.Surgery2017;161:823-9 PMCID:PMC5305435

[118]

Hinsbergh VW, van Nieuw Amerongen GP. Endothelial hyperpermeability in vascular leakage.Vascul Pharmacol2002;39:171-2

[119]

Clajus C,David S.Angiopoietin-2 is a potential mediator of endothelial barrier dysfunction following cardiopulmonary bypass.Cytokine2012;60:352-9 PMCID:PMC4127984

[120]

Feng J,Chu LM.Changes in microvascular reactivity after cardiopulmonary bypass in patients with poorly controlled versus controlled diabetes.Circulation2012;126:S73-80 PMCID:PMC3448935

[121]

Feng J,Dobrilovic N,Singh AK.Decreased coronary microvascular reactivity after cardioplegic arrest in patients with uncontrolled diabetes mellitus.Surgery2012;152:262-9 PMCID:PMC3407967

[122]

Potz BA,Feng J.Diabetes and Cardioplegia.J Nat Sci2017;3:e394 PMCID:PMC5533287

[123]

Feng J,Liu Y,Ehsan A.Cyclooxygenase 2 contributes to bradykinin-induced microvascular responses in peripheral arterioles after cardiopulmonary bypass.J Surg Res2017;218:246-52 PMCID:PMC5649638

[124]

Dharmashankar K.Vascular endothelial function and hypertension: insights and directions.Curr Hypertens Rep2010;12:448-55 PMCID:PMC2982873

[125]

Brandes RP.Endothelial dysfunction and hypertension.Hypertension2014;64:924-8

PDF

37

Accesses

0

Citation

Detail

Sections
Recommended

/