Non-autonomous effects of CCM genes loss

Federica Finetti , Lorenza Trabalzini

Vessel Plus ›› 2021, Vol. 5 ›› Issue (1) : 29

PDF
Vessel Plus ›› 2021, Vol. 5 ›› Issue (1) :29 DOI: 10.20517/2574-1209.2021.49
Minireview

Non-autonomous effects of CCM genes loss

Author information +
History +
PDF

Abstract

Cerebral cavernous malformation (CCM) is a rare disease of proven genetic origin characterized by vascular lesions affecting capillaries and small vessels of the central nervous system. CCM lesions occur in a range of different phenotypes, including wide differences in lesion number, size, and susceptibility to intracerebral hemorrhage. CCM lesion genesis requires loss of function of any of three genes, namely KRIT1 (CCM1), MGC4607 (CCM2), and PDCD10 (CCM3). These genes exert pleiotropic effects regulating multiple mechanisms involved in angiogenesis, cellular response, cell-cell and cell-matrix adhesion, cytoskeleton dynamics, and oxidative damage protection. Familial CCM is an autosomal-dominantly inherited disease in which the loss of any of the three CCM genes follows a two-hit mechanism. The heterozygous loss-of-function germline variants in one of the involved genes seems to be associated with a second postzygotic mutation, according to Knudson’s two-hit model of tumor suppressor genes. This review is an overview of very recent literature on CCM onset and progression focused on the novel concept that the loss of a CCM gene in a single cell is sufficient to induce vascular lesions. Mutated cells undergo clonal expansion and become able to promote the recruitment of non-mutated cells and to induce their angiogenic switch through the increased production of angiogenic factors and downregulation of antiangiogenic factors. A deep understanding of this process and the knowledge of unbalanced secreted factors will be useful to design new pharmacological strategies for CCM patients.

Keywords

Cerebrovascular disease / cerebral cavernous malformation / KRIT1 / CCM1 / CCM2 / CCM3 / endothelial cells / mosaicism

Cite this article

Download citation ▾
Federica Finetti, Lorenza Trabalzini. Non-autonomous effects of CCM genes loss. Vessel Plus, 2021, 5(1): 29 DOI:10.20517/2574-1209.2021.49

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wong JH,Kim JH.Ultrastructural pathological features of cerebrovascular malformations: a preliminary report.Neurosurgery2000;46:1454-9

[2]

Padarti A.Recent advances in cerebral cavernous malformation research.Vessel Plus2018;2:21 PMCID:PMC6663315

[3]

Awad IA.Cavernous angiomas: deconstructing a neurosurgical disease.J Neurosurg2019;131:1-13 PMCID:PMC6778695

[4]

Xie MG,Guo FZ.Brainstem cavernous malformations: surgical indications based on natural history and surgical outcomes.World Neurosurg2018;110:55-63

[5]

Flemming KD,Aakre J.Population-based prevalence of cerebral cavernous malformations in older adults: Mayo Clinic Study of Aging.JAMA Neurol2017;74:801-5 PMCID:PMC5647645

[6]

Flemming KD.Cerebral cavernous malformation: what a practicing clinician should know.Mayo Clin Proc2020;95:2005-20

[7]

Zabramski JM,Spetzler RF.The natural history of familial cavernous malformations: results of an ongoing study.J Neurosurg1994;80:422-32

[8]

Spiegler S,Paperlein C.Cerebral cavernous malformations: an update on prevalence, molecular genetic analyses, and genetic counselling.Mol Syndromol2018;9:60-9 PMCID:PMC5836221

[9]

Denier C,Bergametti F.Société Française de NeurochirurgieGenotype-phenotype correlations in cerebral cavernous malformations patients.Ann Neurol2006;60:550-6

[10]

Riant F,Saugier-Veber P.CCM molecular screening in a diagnosis context: novel unclassified variants leading to abnormal splicing and importance of large deletions.Neurogenetics2013;14:133-41

[11]

Akers A,A Awad I.Synopsis of guidelines for the clinical management of cerebral cavernous malformations: consensus recommendations based on systematic literature review by the angioma alliance scientific advisory board clinical experts panel.Neurosurgery2017;80:665-80 PMCID:PMC5808153

[12]

Su VL.Signalling through cerebral cavernous malformation protein networks.Open Biol2020;10:200263 PMCID:PMC7729028

[13]

Retta SF.Oxidative stress and inflammation in cerebral cavernous malformation disease pathogenesis: two sides of the same coin.Int J Biochem Cell Biol2016;81:254-70 PMCID:PMC5155701

[14]

Retta SF,Trabalzini L.From genes and mechanisms to molecular-targeted therapies: the long climb to the cure of cerebral cavernous malformation (CCM) disease.Methods Mol Biol2020;2152:3-25

[15]

Maddaluno L,Cuttano R.EndMT contributes to the onset and progression of cerebral cavernous malformations.Nature2013;498:492-6

[16]

Zhou Z,Wong WY.Cerebral cavernous malformations arise from endothelial gain of MEKK3-KLF2/4 signalling.Nature2016;532:122-6 PMCID:PMC4864035

[17]

Lopez-Ramirez MA,Zeineddine HA.Thrombospondin1 (TSP1) replacement prevents cerebral cavernous malformations.J Exp Med2017;214:3331-46 PMCID:PMC5679163

[18]

Zhou Z,Goddard LM.The cerebral cavernous malformation pathway controls cardiac development via regulation of endocardial MEKK3 signaling and KLF expression.Dev Cell2015;32:168-80 PMCID:PMC4589864

[19]

Glading A,Stockton RA.KRIT-1/CCM1 is a Rap1 effector that regulates endothelial cell cell junctions.J Cell Biol2007;179:247-54 PMCID:PMC2064761

[20]

Glading AJ.Rap1 and its effector KRIT1/CCM1 regulate beta-catenin signaling.Dis Model Mech2010;3:73-83 PMCID:PMC2806902

[21]

Antognelli C,Delle Monache S.KRIT1 loss-of-function induces a chronic Nrf2-mediated adaptive homeostasis that sensitizes cells to oxidative stress: Implication for Cerebral Cavernous Malformation disease.Free Radic Biol Med2018;115:202-18 PMCID:PMC5806631

[22]

Goitre L,Moglia A.Up-regulation of NADPH oxidase-mediated redox signaling contributes to the loss of barrier function in KRIT1 deficient endothelium.Sci Rep2017;7:8296 PMCID:PMC5558000

[23]

Goitre L,Braggion S.KRIT1 loss of function causes a ROS-dependent upregulation of c-Jun.Free Radic Biol Med2014;68:134-47 PMCID:PMC3994518

[24]

Chohan MO,Morrison LA.Emerging pharmacologic targets in cerebral cavernous malformation and potential strategies to alter the natural history of a difficult disease: a Review.JAMA Neurol2019;76:492-500

[25]

Gault J,Recksiek P.Biallelic somatic and germ line CCM1 truncating mutations in a cerebral cavernous malformation lesion.Stroke2005;36:872-4

[26]

Akers AL,Steinberg GK,Marchuk DA.Biallelic somatic and germline mutations in cerebral cavernous malformations (CCMs): evidence for a two-hit mechanism of CCM pathogenesis.Hum Mol Genet2009;18:919-30 PMCID:PMC2640209

[27]

McDonald DA,Shenkar R.Lesions from patients with sporadic cerebral cavernous malformations harbor somatic mutations in the CCM genes: evidence for a common biochemical pathway for CCM pathogenesis.Hum Mol Genet2014;23:4357-70 PMCID:PMC4103679

[28]

Riant F,Ayrignac X,Tournier-Lasserve E.Recent insights into cerebral cavernous malformations: the molecular genetics of CCM.FEBS J2010;277:1070-5

[29]

Hutchinson E.Alfred Knudson and his two-hit hypothesis.Lancet Oncol2001;2:642-5

[30]

Rath M,Hoischen A.Postzygotic mosaicism in cerebral cavernous malformation.J Med Genet2020;57:212-6 PMCID:PMC7042965

[31]

Gault J,Recksiek P.Cerebral cavernous malformations: somatic mutations in vascular endothelial cells.Neurosurgery2009;65:138-44; discussion 144 PMCID:PMC2722441

[32]

Pagenstecher A,Sure U.A two-hit mechanism causes cerebral cavernous malformations: complete inactivation of CCM1, CCM2 or CCM3 in affected endothelial cells.Hum Mol Genet2009;18:911-8 PMCID:PMC2640205

[33]

Detter MR,Marchuk DA.Cerebral cavernous malformations develop through clonal expansion of mutant endothelial cells.Circ Res2018;123:1143-51 PMCID:PMC6205520

[34]

Malinverno M,Abu Taha A.Endothelial cell clonal expansion in the development of cerebral cavernous malformations.Nat Commun2019;10:2761 PMCID:PMC6591323

[35]

Louvi A,Two AM,Min W.Loss of cerebral cavernous malformation 3 (Ccm3) in neuroglia leads to CCM and vascular pathology.Proc Natl Acad Sci U S A2011;108:3737-42 PMCID:PMC3048113

[36]

Wang K,He Y.Mural cell-specific deletion of cerebral cavernous malformation 3 in the brain induces cerebral cavernous malformations.Arterioscler Thromb Vasc Biol2020;40:2171-86

[37]

Lopez-Ramirez MA,Hale P.Non cell-autonomous effect of astrocytes on cerebral cavernous malformations.BioRxiv2021;

[38]

Finetti F,Ercoli J.KRIT1 loss-mediated upregulation of NOX1 in stromal cells promotes paracrine pro-angiogenic responses.Cell Signal2020;68:109527

[39]

Chapman EM,Ohashi Y.A conserved CCM complex promotes apoptosis non-autonomously by regulating zinc homeostasis.Nat Commun2019;10:1791 PMCID:PMC6470173

[40]

Wüstehube J,Liebler SS.Cerebral cavernous malformation protein CCM1 inhibits sprouting angiogenesis by activating DELTA-NOTCH signaling.Proc Natl Acad Sci U S A2010;107:12640-5 PMCID:PMC2906569

[41]

DiStefano PV,Sarelius IH.KRIT1 protein depletion modifies endothelial cell behavior via increased vascular endothelial growth factor (VEGF) signaling.J Biol Chem2014;289:33054-65 PMCID:PMC4239650

[42]

Baev NI.Endothelial cell culture from human cerebral cavernous malformations.Stroke1998;29:2426-34

[43]

Zhao Y,Zhou LF,Mao Y.Morphological observation and in vitro angiogenesis assay of endothelial cells isolated from human cerebral cavernous malformations.Stroke2007;38:1313-9

[44]

Glading AJ,Trabalzini L.Disease models in cerebral cavernous malformations.Drug Discov Today Dis Model2020;31:21-9 PMCID:PMC5003657

[45]

Wang K,Wang M.CCM3 and cerebral cavernous malformation disease.Stroke Vasc Neurol2019;4:67-70 PMCID:PMC6613868

[46]

Jenny Zhou H,Zhang H.Endothelial exocytosis of angiopoietin-2 resulting from CCM3 deficiency contributes to cerebral cavernous malformation.Nat Med2016;22:1033-42 PMCID:PMC5014607

[47]

Sartages M,García-Colomer M.High levels of receptor tyrosine kinases in ccm3-deficient cells increase their susceptibility to tyrosine kinase inhibition.Biomedicines2020;8:624 PMCID:PMC7766026

[48]

DiStefano PV.VEGF signalling enhances lesion burden in KRIT1 deficient mice.J Cell Mol Med2020;24:632-9 PMCID:PMC6933401

[49]

Schulz GB,Wüstehube-Lausch J.Cerebral cavernous malformation-1 protein controls DLL4-Notch3 signaling between the endothelium and pericytes.Stroke2015;46:1337-43

[50]

You C,Dammann P.EphB4 forward signalling mediates angiogenesis caused by CCM3/PDCD10-ablation.J Cell Mol Med2017;21:1848-58 PMCID:PMC5571521

[51]

Whitehead KJ,Adams JA,Li DY.Ccm1 is required for arterial morphogenesis: implications for the etiology of human cavernous malformations.Development2004;131:1437-48

[52]

Bravi L,Pisati F.Endothelial cells lining sporadic cerebral cavernous malformation cavernomas undergo endothelial-to-mesenchymal transition.Stroke2016;47:886-90

[53]

Dejana E,Simons M.The molecular basis of endothelial cell plasticity.Nat Commun2017;8:14361 PMCID:PMC5309780

[54]

Fisher OS,Zhang R.Structural basis for the disruption of the cerebral cavernous malformations 2 (CCM2) interaction with Krev interaction trapped 1 (KRIT1) by disease-associated mutations.J Biol Chem2015;290:2842-53 PMCID:PMC4317034

[55]

Cullere X,Bennett PM,Mayadas TN.The cerebral cavernous malformation proteins CCM2L and CCM2 prevent the activation of the MAP kinase MEKK3.Proc Natl Acad Sci U S A2015;112:14284-9 PMCID:PMC4655542

[56]

Lopez-Ramirez MA,Girard R.Cerebral cavernous malformations form an anticoagulant vascular domain in humans and mice.Blood2019;133:193-204 PMCID:PMC6337879

PDF

39

Accesses

0

Citation

Detail

Sections
Recommended

/