The interplay of oxidative stress and ARMS2-HTRA1 genetic risk in neovascular AMD

Zhi-Gang Lu , Adam May , Brian Dinh , Victor Lin , Fei Su , Christina Tran , Harini Adivikolanu , Rachael Ehlen , Briana Che , Zhi-Hao Wang , Daniel H. Shaw , Shyamanga Borooah , Peter X. Shaw

Vessel Plus ›› 2021, Vol. 5 ›› Issue (1) : 4

PDF
Vessel Plus ›› 2021, Vol. 5 ›› Issue (1) :4 DOI: 10.20517/2574-1209.2020.48
Review
Review

The interplay of oxidative stress and ARMS2-HTRA1 genetic risk in neovascular AMD

Author information +
History +
PDF

Abstract

Age-related macular degeneration (AMD) is the leading cause of vision loss in adults over 60 years old globally. There are two forms of advanced AMD: “dry” and “wet”. Dry AMD is characterized by geographic atrophy of the retinal pigment epithelium and overlying photoreceptors in the macular region; whereas wet AMD is characterized by vascular penetrance from the choroid into the retina, known as choroidal neovascularization (CNV). Both phenotypes eventually lead to loss of central vision. The pathogenesis of AMD involves the interplay of genetic polymorphisms and environmental risk factors, many of which elevate retinal oxidative stress. Excess reactive oxygen species react with cellular macromolecules, forming oxidation-modified byproducts that elicit chronic inflammation and promote CNV. Additionally, genome-wide association studies have identified several genetic variants in the age-related maculopathy susceptibility 2/high-temperature requirement A serine peptidase 1 (ARMS2-HTRA1) locus associated with the progression of late-stage AMD, especially the wet subtype. In this review, we will focus on the interplay of oxidative stress and HTRA1 in drusen deposition, chronic inflammation, and chronic angiogenesis. We aim to present a multifactorial model of wet AMD progression, supporting HTRA1 as a novel therapeutic target upstream of vascular endothelial growth factor (VEGF), the conventional target in AMD therapeutics. By inhibiting HTRA1’s proteolytic activity, we can reduce pro-angiogenic signaling and prevent proteolytic breakdown of the blood-retina barrier. The anti-HTRA1 approach offers a promising alternative treatment option to wet AMD, complementary to anti-VEGF therapy.

Keywords

Neovascular AMD / oxidative stress / inflammation / polymorphism of HTRA1 gene

Cite this article

Download citation ▾
Zhi-Gang Lu, Adam May, Brian Dinh, Victor Lin, Fei Su, Christina Tran, Harini Adivikolanu, Rachael Ehlen, Briana Che, Zhi-Hao Wang, Daniel H. Shaw, Shyamanga Borooah, Peter X. Shaw. The interplay of oxidative stress and ARMS2-HTRA1 genetic risk in neovascular AMD. Vessel Plus, 2021, 5(1): 4 DOI:10.20517/2574-1209.2020.48

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gehrs KM,Johnson LV.Age-related macular degeneration--emerging pathogenetic and therapeutic concepts..Ann Med2006;38:450-71 PMCID:PMC4853957

[2]

Friedman DS,Muñoz B.Prevalence of age-related macular degeneration in the United States..Arch Ophthalmol2004;122:564-72

[3]

Ambati J.Mechanisms of age-related macular degeneration..Neuron2012;75:26-39 PMCID:PMC3404137

[4]

Prokofyeva E.Epidemiology of major eye diseases leading to blindness in Europe: a literature review..Ophthalmic Res2012;47:171-88

[5]

Ding X,Chan CC.Molecular pathology of age-related macular degeneration..Prog Retin Eye Res2009;28:1-18 PMCID:PMC2715284

[6]

Al-Zamil WM.Recent developments in age-related macular degeneration: a review..Clin Interv Aging2017;12:1313-30 PMCID:PMC5573066

[7]

Chen H,Chen LJ,Chen W.Genetic associations in polypoidal choroidal vasculopathy: a systematic review and meta-analysis..Mol Vis2012;18:816-29 PMCID:PMC3324368

[8]

Wong CW,Lee WK.Age-related macular degeneration and polypoidal choroidal vasculopathy in Asians..Prog Retin Eye Res2016;53:107-39

[9]

Cheung CMG,Ruamviboonsuk P.Polypoidal Choroidal Vasculopathy: Definition, Pathogenesis, Diagnosis, and Management..Ophthalmology2018;125:708-24

[10]

Kondo N,Ishibashi K,Negi A.Elastin gene polymorphisms in neovascular age-related macular degeneration and polypoidal choroidal vasculopathy..Invest Ophthalmol Vis Sci2008;49:1101-5

[11]

Stone EM,Munier FL.A single EFEMP1 mutation associated with both Malattia Leventinese and Doyne honeycomb retinal dystrophy..Nat Genet1999;22:199-202

[12]

Marmorstein L.Association of EFEMP1 with malattia leventinese and age-related macular degeneration: a mini-review..Ophthalmic Genet2004;25:219-26

[13]

Livingstone I,Furniss D.The Pathophysiological Significance of Fibulin-3..Biomolecules2020;10:1294 PMCID:PMC7563619

[14]

Gliem M,Mangold E.Sorsby Fundus Dystrophy: Novel Mutations, Novel Phenotypic Characteristics, and Treatment Outcomes..Invest Ophthalmol Vis Sci2015;56:2664-76

[15]

Qi JH,Singh R.Sorsby Fundus Dystrophy Mutation in Tissue Inhibitor of Metalloproteinase 3 (TIMP3) promotes Choroidal Neovascularization via a Fibroblast Growth Factor-dependent Mechanism..Sci Rep2019;9:17429 PMCID:PMC6874529

[16]

Tanna P,Fujinami K.Stargardt disease: clinical features, molecular genetics, animal models and therapeutic options..Br J Ophthalmol2017;101:25-30 PMCID:PMC5256119

[17]

Tsang SH.Tsang SH.Stargardt Disease..Atlas of Inherited Retinal Diseases.2018;ChamSpringer International Publishing139-51

[18]

Guziewicz KE,Gómez NM.Bestrophinopathy: An RPE-photoreceptor interface disease..Prog Retin Eye Res2017;58:70-88 PMCID:PMC5441932

[19]

Johnson AA,Lee CJ.Bestrophin 1 and retinal disease..Prog Retin Eye Res2017;58:45-69 PMCID:PMC5600499

[20]

Al-Rashaed S.Long-term follow-up of choroidal neovascularization secondary to angioid streaks: case series and literature review..Clin Ophthalmol2012;6:1029-34 PMCID:PMC3402123

[21]

Martinez-Serrano MG,Guerrero-Naranjo JL.Long-term follow-up of patients with choroidal neovascularization due to angioid streaks..Clin Ophthalmol2017;11:23-30 PMCID:PMC5182034

[22]

Chatziralli I,Dimitriou E.ANGIOID STREAKS: A Comprehensive Review From Pathophysiology to Treatment..Retina2019;39:1-11

[23]

Shaw PX,Douglas C.Oxidative stress, innate immunity, and age-related macular degeneration..AIMS Mol Sci2016;3:196-221 PMCID:PMC4882104

[24]

Kauppinen A,Suuronen T,Salminen A.Oxidative stress activates NLRP3 inflammasomes in ARPE-19 cells--implications for age-related macular degeneration (AMD)..Immunol Lett2012;147:29-33

[25]

Hollyfield JG,Rayborn ME.Oxidative damage-induced inflammation initiates age-related macular degeneration..Nat Med2008;14:194-8 PMCID:PMC2748836

[26]

Datta S,Ebrahimi K,Handa JT.The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD..Prog Retin Eye Res2017;60:201-18 PMCID:PMC5600827

[27]

Sobrin L,Yu Y.ARMS2/HTRA1 locus can confer differential susceptibility to the advanced subtypes of age-related macular degeneration..Am J Ophthalmol2011;151:345-52.e3 PMCID:PMC3763907

[28]

Askari M,Gorjipour F.Association of Htra1 gene polymorphisms with the risk of developing AMD in Iranian population..Rep Biochem Mol Biol2015;4:43-9 PMCID:PMC4757096

[29]

Andreoli MT,Kim BJ.Comprehensive analysis of complement factor H and LOC387715/ARMS2/HTRA1 variants with respect to phenotype in advanced age-related macular degeneration..Am J Ophthalmol2009;148:869-74 PMCID:PMC2787659

[30]

Grassmann F,Weber BH.Recombinant Haplotypes Narrow the ARMS2/HTRA1 Association Signal for Age-Related Macular Degeneration..Genetics2017;205:919-24 PMCID:PMC5289859

[31]

Provis JM,Cornish EE,Madigan MC.Anatomy and development of the macula: specialisation and the vulnerability to macular degeneration..Clin Exp Optom2005;88:269-81

[32]

Strauss O.The retinal pigment epithelium in visual function..Physiol Rev2005;85:845-81

[33]

Bhutto I.Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex..Mol Aspects Med2012;33:295-317 PMCID:PMC3392421

[34]

Thompson RB,Bundy JG.Identification of hydroxyapatite spherules provides new insight into subretinal pigment epithelial deposit formation in the aging eye..Proc Natl Acad Sci U S A2015;112:1565-70 PMCID:PMC4321314

[35]

Klein R,Myers CE.Harmonizing the classification of age-related macular degeneration in the three-continent AMD consortium..Ophthalmic Epidemiol2014;21:14-23 PMCID:PMC4029416

[36]

Ferris III FL,Bird A.Clinical classification of age-related macular degeneration..Ophthalmology2013;120:844-51

[37]

Johnson PT,Talaga KC.Drusen-associated degeneration in the retina..Invest Ophthalmol Vis Sci2003;44:4481-8

[38]

Khan KN,Khan RS.Differentiating drusen: Drusen and drusen-like appearances associated with ageing, age-related macular degeneration, inherited eye disease and other pathological processes..Prog Retin Eye Res2016;53:70-106

[39]

Penfold PL,Gillies MC.Immunological and aetiological aspects of macular degeneration..Prog Retin Eye Res2001;20:385-414

[40]

Kwak N,Wood JM.VEGF is major stimulator in model of choroidal neovascularization..Invest Ophthalmol Vis Sci2000;41:3158-64

[41]

Ishibashi T,Yoshikawa H,Sueishi K.Expression of vascular endothelial growth factor in experimental choroidal neovascularization..Graefes Arch Clin Exp Ophthalmol1997;235:159-67

[42]

Deshmane SL,Amini S.Monocyte chemoattractant protein-1 (MCP-1): an overview..J Interferon Cytokine Res2009;29:313-26 PMCID:PMC2755091

[43]

Hong KH,Han KH.Monocyte chemoattractant protein-1-induced angiogenesis is mediated by vascular endothelial growth factor-A..Blood2005;105:1405-7

[44]

Weis SM.Pathophysiological consequences of VEGF-induced vascular permeability..Nature2005;437:497-504

[45]

Nita M,Grzybowski A,Romaniuk W.Age-related macular degeneration and changes in the extracellular matrix..Med Sci Monit2014;20:1003-16 PMCID:PMC4072585

[46]

Singh M.Metalloproteinases as mediators of inflammation and the eyes: molecular genetic underpinnings governing ocular pathophysiology..Int J Ophthalmol2017;10:1308-18 PMCID:PMC5554853

[47]

Pufe T,Petersen W,Tillmann B.Vascular endothelial growth factor (VEGF) induces matrix metalloproteinase expression in immortalized chondrocytes..J Pathol2004;202:367-74

[48]

Huang WC,Susana A,Newby AC.Classical macrophage activation up-regulates several matrix metalloproteinases through mitogen activated protein kinases and nuclear factor-κB..PLoS One2012;7:e42507

[49]

Bandyopadhyay M.Matrix metalloproteinase activity creates pro-angiogenic environment in primary human retinal pigment epithelial cells exposed to complement..Invest Ophthalmol Vis Sci2012;53:1953-61 PMCID:PMC3995566

[50]

Mitchell P,Gopinath B.Age-related macular degeneration..The Lancet2018;392:1147-59

[51]

Terman A.Oxidative stress, accumulation of biological ‘garbage’, and aging..Antioxid Redox Signal2006;8:197-204

[52]

Valko M,Moncol J,Mazur M.Free radicals and antioxidants in normal physiological functions and human disease..Int J Biochem Cell Biol2007;39:44-84

[53]

Léveillard T.Metabolic and redox signaling in the retina..Cell Mol Life Sci2017;74:3649-65 PMCID:PMC5597695

[54]

Miceli MV,Tate DJ Jr.Vitronectin is responsible for serum-stimulated uptake of rod outer segments by cultured retinal pigment epithelial cells..Invest Ophthalmol Vis Sci1997;38:1588-97

[55]

Finnemann SC,Marmorstein AD.Phagocytosis of rod outer segments by retinal pigment epithelial cells requires alpha(v)beta5 integrin for binding but not for internalization..Proc Natl Acad Sci U S A1997;94:12932-7 PMCID:PMC24241

[56]

Ryeom SW,Silverstein RL.CD36 participates in the phagocytosis of rod outer segments by retinal pigment epithelium..J Cell Sci1996;109:387-95

[57]

Feng W,Matthes MT,Vollrath D.Mertk triggers uptake of photoreceptor outer segments during phagocytosis by cultured retinal pigment epithelial cells..J Biol Chem2002;277:17016-22

[58]

Vives-Bauza C,Shiraz AK.The age lipid A2E and mitochondrial dysfunction synergistically impair phagocytosis by retinal pigment epithelial cells..J Biol Chem2008;283:24770-80 PMCID:PMC2529005

[59]

Sparrow JR.RPE lipofuscin and its role in retinal pathobiology..Exp Eye Res2005;80:595-606

[60]

Moore DJ.The effect of age on the macromolecular permeability of human Bruch’s membrane..Invest Ophthalmol Vis Sci2001;42:2970-5

[61]

Miller YI,Wiesner P.Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity..Circ Res2011;108:235-48 PMCID:PMC3075542

[62]

Holzinger C,Zuckermann A.Effects of interleukin-1, -2, -4, -6, interferon-gamma and granulocyte/macrophage colony stimulating factor on human vascular endothelial cells..Immunol Lett1993;35:109-17

[63]

Jonas JB,Neumaier M.Cytokine concentration in aqueous humour of eyes with exudative age-related macular degeneration..Acta Ophthalmol2012;90:e381-8

[64]

Rezar-Dreindl S,Eibenberger K.The Intraocular Cytokine Profile and Therapeutic Response in Persistent Neovascular Age-Related Macular Degeneration..Invest Ophthalmol Vis Sci2016;57:4144-50

[65]

Henkels KM,Gonzalez-Mejia ME,Gomez-Cambronero J.IL-8-induced neutrophil chemotaxis is mediated by Janus kinase 3 (JAK3)..FEBS Lett2011;585:159-66 PMCID:PMC3021320

[66]

Lechner J,Hogg RE.Peripheral blood mononuclear cells from neovascular age-related macular degeneration patients produce higher levels of chemokines CCL2 (MCP-1) and CXCL8 (IL-8)..J Neuroinflammation2017;14:42 PMCID:PMC5324243

[67]

Martin D,Gutkind JS.CXCL8/IL8 stimulates vascular endothelial growth factor (VEGF) expression and the autocrine activation of VEGFR2 in endothelial cells by activating NFkappaB through the CBM (Carma3/Bcl10/Malt1) complex..J Biol Chem2009;284:6038-42 PMCID:PMC2649103

[68]

Robbie SJ,Barker SE.Enhanced Ccl2-Ccr2 signaling drives more severe choroidal neovascularization with aging..Neurobiol Aging2016;40:110-9

[69]

Dong A,Shen J.Oxidative stress promotes ocular neovascularization..J Cell Physiol2009;219:544-52 PMCID:PMC2905375

[70]

Yamada M,Egashira K.Molecular mechanism and role of endothelial monocyte chemoattractant protein-1 induction by vascular endothelial growth factor..Arterioscler Thromb Vasc Biol2003;23:1996-2001

[71]

Heidenkummer HP.Chirurgische Extraktion subretinaler Pseudotumoren bei altersbezogener Makuladegeneration (AMD). Klinische, morphologische und immunohistochemische Ergebnisse [Surgical extraction of subretinal pseudotumors in age related macular degeneration. Clinical, morphologic and immunohistochemical results]..Ophthalmologe1995;92:631-9

[72]

Agawa T,Wakabayashi Y.Profile of intraocular immune mediators in patients with age-related macular degeneration and the effect of intravitreal bevacizumab injection..Retina2014;34:1811-8

[73]

Sakurada Y,Yoneyama S.Aqueous humor cytokine levels in patients with polypoidal choroidal vasculopathy and neovascular age-related macular degeneration..Ophthalmic Res2015;53:2-7

[74]

Bai Y,Yu W.Semaphorin 3A blocks the formation of pathologic choroidal neovascularization induced by transforming growth factor beta..Mol Vis2014;20:1258-70 PMCID:PMC4168834

[75]

Zarranz-Ventura J,Recalde S.Transforming growth factor-beta inhibition reduces progression of early choroidal neovascularization lesions in rats: P17 and P144 peptides..PLoS One2013;8:e65434 PMCID:PMC3669249

[76]

Gabrielian K,Sippy BD,Hinton DR.Effect of TGF-beta on interferon-gamma-induced HLA-DR expression in human retinal pigment epithelial cells..Invest Ophthalmol Vis Sci1994;35:4253-9

[77]

Wu Z,Sick A,Campochiaro PA.Oxidative stress modulates complement factor H expression in retinal pigmented epithelial cells by acetylation of FOXO3..J Biol Chem2007;282:22414-25

[78]

Castellino N,Avitabile T.Circulating insulin-like growth factor-1: a new clue in the pathogenesis of age-related macular degeneration..Aging (Albany NY)2018;10:4241-7 PMCID:PMC6326648

[79]

Grant MB,Fitzgerald C,Aboufriekha M.Insulin-like growth factor I acts as an angiogenic agent in rabbit cornea and retina: comparative studies with basic fibroblast growth factor..Diabetologia1993;36:282-91

[80]

Binder CJ,Shaw PX.Innate and acquired immunity in atherogenesis..Nat Med2002;8:1218-26

[81]

Binder CJ,Witztum JL.Innate sensing of oxidation-specific epitopes in health and disease..Nat Rev Immunol2016;16:485-97 PMCID:PMC7097710

[82]

Mullins RF,Anderson DH.Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease..FASEB J2000;14:835-46

[83]

Hageman GS,Victor Chong NH,Anderson DH.An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration..Prog Retin Eye Res2001;20:705-32

[84]

Yang Y.NAD(+) metabolism: Bioenergetics, signaling and manipulation for therapy..Biochim Biophys Acta2016;1864:1787-800 PMCID:PMC5521000

[85]

Masella R,Varì R,Giovannini C.Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes..J Nutr Biochem2005;16:577-86

[86]

Meister A.Glutathione..Annu Rev Biochem1983;52:711-60

[87]

Jones DP,Mody VC,Lynn MJ.Redox state of glutathione in human plasma..Free Radic Biol Med2000;28:625-35

[88]

Kaludercic N,Di Lisa F.Reactive oxygen species and redox compartmentalization..Front Physiol2014;5:285 PMCID:PMC4130307

[89]

Bass R,Klappa P.A major fraction of endoplasmic reticulum-located glutathione is present as mixed disulfides with protein..J Biol Chem2004;279:5257-62

[90]

Hwang C,Lodish HF.Oxidized redox state of glutathione in the endoplasmic reticulum..Science1992;257:1496-502

[91]

Jones DP.Extracellular redox state: refining the definition of oxidative stress in aging..Rejuvenation Res2006;9:169-81

[92]

Banerjee R.Redox outside the box: linking extracellular redox remodeling with intracellular redox metabolism..J Biol Chem2012;287:4397-402 PMCID:PMC3281658

[93]

Cadenas E.Mitochondrial free radical generation, oxidative stress, and aging..Free Radic Biol Med2000;29:222-30

[94]

Murphy MP.How mitochondria produce reactive oxygen species..Biochem J2009;417:1-13 PMCID:PMC2605959

[95]

Wang Y,Noë A.Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling..J Cell Biol2018;217:1915-28 PMCID:PMC5987716

[96]

Marchi S,Suski JM.Mitochondria-ros crosstalk in the control of cell death and aging..J Signal Transduct2012;2012:329635 PMCID:PMC3235816

[97]

Ivanova D,Aoki I,Higashi T.Overproduction of reactive oxygen species - obligatory or not for induction of apoptosis by anticancer drugs..Chin J Cancer Res2016;28:383-96 PMCID:PMC5018533

[98]

Rohowetz LJ,Koulen P.Reactive Oxygen Species-Mediated Damage of Retinal Neurons: Drug Development Targets for Therapies of Chronic Neurodegeneration of the Retina..Int J Mol Sci2018;19:3362 PMCID:PMC6274960

[99]

Masuda T,Hara H.Retinal Diseases Associated with Oxidative Stress and the Effects of a Free Radical Scavenger (Edaravone)..Oxid Med Cell Longev2017;2017:9208489 PMCID:PMC5286467

[100]

Chakravarthy U,Fletcher A.Clinical risk factors for age-related macular degeneration: a systematic review and meta-analysis..BMC Ophthalmol2010;10:31 PMCID:PMC3009619

[101]

Clemons TE,Klein R,Ferris FL3rd.Risk factors for the incidence of Advanced Age-Related Macular Degeneration in the Age-Related Eye Disease Study (AREDS) AREDS report no. 19..Ophthalmology2005;112:533-9 PMCID:PMC1513667

[102]

Smith W,Klein R.Risk factors for age-related macular degeneration..Ophthalmology2001;108:697-704

[103]

Seddon JM,Rosner B.Cigarette smoking, fish consumption, omega-3 fatty acid intake, and associations with age-related macular degeneration: the US Twin Study of Age-Related Macular Degeneration..Arch Ophthalmol2006;124:995-1001

[104]

Zhao J.Concentration of Reactive Oxygen Species (ROS) in Mainstream and Sidestream Cigarette Smoke..Aerosol Science and Technology2012;46:191-7

[105]

Niven JE.Energy limitation as a selective pressure on the evolution of sensory systems..J Exp Biol2008;211:1792-804

[106]

Wong-Riley MT.Energy metabolism of the visual system..Eye Brain2010;2:99-116 PMCID:PMC3515641

[107]

Andrews RM,Johnson MA.Histochemical localisation of mitochondrial enzyme activity in human optic nerve and retina..Br J Ophthalmol1999;83:231-5 PMCID:PMC1722931

[108]

Hagins W,Yoshikami S.Dark Current and Photocurrent in Retinal Rods..Biophys J1970;10:380-412 PMCID:PMC1367773

[109]

Ames A,Heher E.Energy metabolism of rabbit retina as related to function: high cost of Na+ transport..J Neurosci1992;12:840-53 PMCID:PMC6576058

[110]

Okawa H,Laughlin SB.ATP consumption by mammalian rod photoreceptors in darkness and in light..Curr Biol2008;18:1917-21 PMCID:PMC2615811

[111]

Caldwell RB.Increased cytochrome oxidase activity in the diabetic rat retinal pigment epithelium..Invest Ophthalmol Vis Sci1989;30:591-9

[112]

Kevany BM.Phagocytosis of retinal rod and cone photoreceptors..Physiology (Bethesda)2010;25:8-15 PMCID:PMC2839896

[113]

Wimmers S,Strauss O.Ion channels in the RPE..Prog Retin Eye Res2007;26:263-301

[114]

Klein RJ,Chew EY.Complement factor H polymorphism in age-related macular degeneration..Science2005;308:385-9 PMCID:PMC1512523

[115]

Edwards AO,Abel KJ,Panhuysen C.Complement factor H polymorphism and age-related macular degeneration..Science2005;308:421-4

[116]

Haines JL,Schmidt S.Complement factor H variant increases the risk of age-related macular degeneration..Science2005;308:419-21

[117]

Zareparsi S,Li M.Strong association of the Y402H variant in complement factor H at 1q32 with susceptibility to age-related macular degeneration..Am J Hum Genet2005;77:149-53 PMCID:PMC1226187

[118]

Dewan A,Hartman S.HTRA1 promoter polymorphism in wet age-related macular degeneration..Science2006;314:989-92

[119]

Yang Z,Sun H.A variant of the HTRA1 gene increases susceptibility to age-related macular degeneration..Science2006;314:992-3

[120]

An E,Park SK,Hathout Y.Identification of novel substrates for the serine protease HTRA1 in the human RPE secretome..Invest Ophthalmol Vis Sci2010;51:3379-86 PMCID:PMC2904004

[121]

Tiaden AN,Mirsaidi A.Human serine protease HTRA1 positively regulates osteogenesis of human bone marrow-derived mesenchymal stem cells and mineralization of differentiating bone-forming cells through the modulation of extracellular matrix protein..Stem Cells2012;30:2271-82

[122]

Vierkotten S,Fauser S.Overexpression of HTRA1 leads to ultrastructural changes in the elastic layer of Bruch’s membrane via cleavage of extracellular matrix components..PLoS One2011;6:e22959 PMCID:PMC3149070

[123]

Graham JR,Lin Q.Serine protease HTRA1 antagonizes transforming growth factor-β signaling by cleaving its receptors and loss of HTRA1 in vivo enhances bone formation..PLoS One2013;8:e74094 PMCID:PMC3770692

[124]

Oka C,Kajikawa M.HtrA1 serine protease inhibits signaling mediated by Tgfbeta family proteins..Development2004;131:1041-53

[125]

Launay S,Lebeurrier N.HtrA1-dependent proteolysis of TGF-beta controls both neuronal maturation and developmental survival..Cell Death Differ2008;15:1408-16

[126]

Shiga A,Yokoseki A.Cerebral small-vessel disease protein HTRA1 controls the amount of TGF-β1 via cleavage of proTGF-β1..Hum Mol Genet2011;20:1800-10

[127]

Beaufort N,Kremmer E.Cerebral small vessel disease-related protease HtrA1 processes latent TGF-β binding protein 1 and facilitates TGF-β signaling..Proc Natl Acad Sci U S A2014;111:16496-501 PMCID:PMC4246310

[128]

Baldi A,Morini M.The HtrA1 serine protease is down-regulated during human melanoma progression and represses growth of metastatic melanoma cells..Oncogene2002;21:6684-8

[129]

Chien J,Shridhar V.HtrA serine proteases as potential therapeutic targets in cancer..Curr Cancer Drug Targets2009;9:451-68 PMCID:PMC3905973

[130]

Altobelli E,Morroni M.HtrA1 as a promising tissue marker in cancer: a meta-analysis..BMC Cancer2018;18:143 PMCID:PMC5801749

[131]

Kanda A,Othman M.A variant of mitochondrial protein LOC387715/ARMS2, not HTRA1, is strongly associated with age-related macular degeneration..Proc Natl Acad Sci U S A2007;104:16227-32 PMCID:PMC1987388

[132]

Fritsche LG,Janssen A.Age-related macular degeneration is associated with an unstable ARMS2 (LOC387715) mRNA..Nat Genet2008;40:892-6

[133]

Kortvely E,Duetsch G.ARMS2 is a constituent of the extracellular matrix providing a link between familial and sporadic age-related macular degenerations..Invest Ophthalmol Vis Sci2010;51:79-88

[134]

Kortvely E,Behler J,Ueffing M.The unconventional secretion of ARMS2..Hum Mol Genet2016;25:3143-51

[135]

Micklisch S,Jacob S.Age-related macular degeneration associated polymorphism rs10490924 in ARMS2 results in deficiency of a complement activator..J Neuroinflammation2017;14:4 PMCID:PMC5234120

[136]

Jakobsdottir J,Weeks DE,Ferrell RE.Susceptibility genes for age-related maculopathy on chromosome 10q26..Am J Hum Genet2005;77:389-407 PMCID:PMC1226205

[137]

Wang G,Scott WK.Analysis of the indel at the ARMS2 3’UTR in age-related macular degeneration..Hum Genet2010;127:595-602 PMCID:PMC2934780

[138]

Liao SM,Zhu J.Specific correlation between the major chromosome 10q26 haplotype conferring risk for age-related macular degeneration and the expression of HTRA1..Mol Vis2017;23:318-33 PMCID:PMC5479693

[139]

Clausen T,Ehrmann M.The HtrA Family of Proteases..Molecular Cell2002;10:443-55

[140]

Clausen T,Huber R.HTRA proteases: regulated proteolysis in protein quality control..Nat Rev Mol Cell Biol2011;12:152-62

[141]

Zumbrunn J.Primary structure of a putative serine protease specific for IGF-binding proteins..FEBS Lett1996;398:187-92

[142]

Hu SI,Klein M,Luk D.Human HtrA, an evolutionarily conserved serine protease identified as a differentially expressed gene product in osteoarthritic cartilage..J Biol Chem1998;273:34406-12

[143]

Chen CY,Jakob P.N-Terminomics identifies HtrA1 cleavage of thrombospondin-1 with generation of a proangiogenic fragment in the polarized retinal pigment epithelial cell model of age-related macular degeneration..Matrix Biol2018;70:84-101

[144]

Yang Z,Chen Y.Genetic and functional dissection of HTRA1 and LOC387715 in age-related macular degeneration..PLoS Genet2010;6:e1000836 PMCID:PMC2816682

[145]

Zhang L,Du H.High temperature requirement factor A1 (HTRA1) gene regulates angiogenesis through transforming growth factor-β family member growth differentiation factor 6..J Biol Chem2012;287:1520-6 PMCID:PMC3256864

[146]

Kanda A,Chen W,Abecasis GR.Age-related macular degeneration-associated variants at chromosome 10q26 do not significantly alter ARMS2 and HTRA1 transcript levels in the human retina..Mol Vis2010;16:1317-23 PMCID:PMC2905635

[147]

Wang G,Haines JL.Genotype at polymorphism rs11200638 and HTRA1 expression level..Arch Ophthalmol2010;128:1491-3

[148]

Wang G,Kovach JL.Variants at chromosome 10q26 locus and the expression of HTRA1 in the retina..Exp Eye Res2013;112:102-5 PMCID:PMC4070217

[149]

Zurawa-Janicka D,Stefaniak T.Changes in expression of serine proteases HtrA1 and HtrA2 during estrogen-induced oxidative stress and nephrocarcinogenesis in male Syrian hamster..Acta Biochim Pol2008;55:9-19

[150]

Supanji Shimomachi M,Kawaichi M.HtrA1 is induced by oxidative stress and enhances cell senescence through p38 MAPK pathway..Exp Eye Res2013;112:79-92

[151]

Lu Z,May A.HTRA1 synergizes with oxidized phospholipids in promoting inflammation and macrophage infiltration essential for ocular VEGF expression..PLoS One2019;14:e0216808 PMCID:PMC6524793

[152]

Tsuchiya A,Tocharus J.Expression of mouse HtrA1 serine protease in normal bone and cartilage and its upregulation in joint cartilage damaged by experimental arthritis..Bone2005;37:323-36

[153]

Hadfield KD,Inkson CA.HtrA1 inhibits mineral deposition by osteoblasts: requirement for the protease and PDZ domains..J Biol Chem2008;283:5928-38

[154]

Lin MK,Hsu CW.HTRA1, an age-related macular degeneration protease, processes extracellular matrix proteins EFEMP1 and TSP1..Aging Cell2018;17:e12710 PMCID:PMC6052470

[155]

Grau S,Kerr B.The role of human HtrA1 in arthritic disease..J Biol Chem2006;281:6124-9

[156]

Massagué J.TGFβ signalling in context..Nat Rev Mol Cell Biol2012;13:616-30

[157]

Schlecht A,Jägle H,Tamm ER.Deletion of Endothelial Transforming Growth Factor-β Signaling Leads to Choroidal Neovascularization..Am J Pathol2017;187:2570-89

[158]

Fritsche LG,Bailey JN.A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants..Nat Genet2016;48:134-43 PMCID:PMC4745342

[159]

Hollborn M,Steffen A,Kohen L.Positive feedback regulation between MMP-9 and VEGF in human RPE cells..Invest Ophthalmol Vis Sci2007;48:4360-7

[160]

Austin BA,Li Z.Biologically active fibronectin fragments stimulate release of MCP-1 and catabolic cytokines from murine retinal pigment epithelium..Invest Ophthalmol Vis Sci2009;50:2896-902 PMCID:PMC2754868

[161]

Rosenfeld PJ,Heier JS.Ranibizumab for neovascular age-related macular degeneration..N Engl J Med2006;355:1419-31

[162]

Falavarjani KG.Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature..Eye (Lond)2013;27:787-94 PMCID:PMC3709385

[163]

Tom I,Katschke KJ Jr.Development of a therapeutic anti-HtrA1 antibody and the identification of DKK3 as a pharmacodynamic biomarker in geographic atrophy..Proc Natl Acad Sci U S A2020;117:9952-63 PMCID:PMC7211935

PDF

41

Accesses

0

Citation

Detail

Sections
Recommended

/