Insufficient evidence regarding benefits from sodium-glucose cotransporter-2 inhibitors in heart failure with preserved ejection fraction
Tatyana A. Shamliyan , Anna A. Avanesova , Wilbert S. Aronow
Vessel Plus ›› 2020, Vol. 4 ›› Issue (1) : 35
Insufficient evidence regarding benefits from sodium-glucose cotransporter-2 inhibitors in heart failure with preserved ejection fraction
Aim: Sodium-glucose cotransporter-2 (SGLT2)-inhibitors improve survival in adults with reduced ejection fraction. Clinical outcomes in adults with heart failure (HF) with preserved ejection fraction (HFpEF) have not been systematically reviewed.
Methods: We conducted a systematic rapid literature review and appraised the quality of evidence using the Grading of Recommendations Assessment, Development and Evaluation methodology.
Results: We identified post-hoc subgroup analyses of four randomized controlled clinical trials (RCTs) and unpublished results from 2 RCTs. In 2 RCTs vs. placebo, Canagliflozin reduced the risk of fatal or hospitalized HF in adults with HF and documented or assumed left ventricular ejection fraction (LVEF) ≥ 50% (hazard rate ratio, HR = 0.71, 95%CI: 0.52-0.97) but had no effect in a subpopulation with documented LVEF ≥ 50% (HR = 0.83, 95%CI: 0.55-1.25). Dapagliflozin or ertugliflozin did not improve all-cause or cardiovascular death or hospitalization for HF in adults with HF and LVEF > 45% in two pivotal RCTs vs. placebo. Empagliflozin did not improve exercise ability, patient-reported outcomes or congestion, diuretic use and all-cause healthcare resource utilization in unpublished RCT vs. placebo. Various definitions of HFpEF, post-hoc interaction analyses suggesting outcome improvement regardless of heart failure type, small number of events, and probable publication bias hampered the quality of evidence.
Conclusion: Existing evidence is insufficient to support definitive clinical recommendations for use of SGLT2- inhibitors in adults with HFpEF. Future research should employ consistent definitions of HFpEF and examine the effects from SGLT2- Inhibitors in patients with various HFpEF phenotypes and underlying causes.
Sodium-glucose cotransporter-2 - inhibitors / heart failure with preserved ejection fraction / cardiovascular mortality / heart failure hospitalization / systematic literature review / grading of recommendations assessment / development and evaluation methodology
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
American Diabetes Association Position StatementCardiovascular disease and risk management: standards of medical care in diabetes-2020..Diabetes Care2020;43:S111-34 |
| [6] |
American Diabetes Association Position Statement12. Older Adults: Standards of Medical Care in Diabetes-2020..Diabetes Care2020;43:S152-62 |
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
AstraZeneca Pharmaceuticals LP Wilmington D. FARXIGA- dapagliflozin tablet, film coated FDA label. May 2020. Available from: https://nctr-crs.fda.gov/fdalabel/services/spl/set-ids/01f90c94-71cb-4a1f-81ff-8004b850529b/spl-doc?hl=dapagliflozin. [Last accessed on 16 Nov 2020] |
| [21] |
Boehringer Ingelheim Pharmaceuticals Inc. JARDIANCE- empagliflozin tablet, film coated FDA label. 2014. Available from: https://nctr-crs.fda.gov/fdalabel/services/spl/set-ids/a77214ca-572e-485e-aae9-f7950187e5fb/spl-doc?hl=empagliflozin. [Last accessed on 16 Nov 2020] |
| [22] |
Janssen Pharmaceuticals Inc. INVOKANA- canagliflozin tablet, film coated FDA label. March 2013. Available from: https://nctr-crs.fda.gov/fdalabel/services/spl/set-ids/b9057d3b-b104-4f09-8a61-c61ef9d4a3f3/spl-doc?hl=canagliflozin. [Last accessed on 16 Nov 2020] |
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
Higgins J, Green S, editors. Cochrane handbook for systematic reviews of interventions. Version 5.1.0. London: The Cochrane Collaboration; 2011. Available from: https://training.cochrane.org/handbook/current. [Last accessed on 16 Nov 2020] |
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
Agency for Healthcare Research and Quality. Methods Guide for Effectiveness and Comparative Effectiveness Reviews. AHRQ Publication No 10(14)-EHC063-EF. 2014. Rockville, MD. Available from: https://effectivehealthcare.ahrq.gov/index.cfm/search-for-guides-reviews-and-reports/?pageaction=displayproduct&productid=318. [Last accessed on 16 Nov 2020] |
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
Grading of Recommendations Assessment Development and Evaluation (GRADE) Workgin Group. GRADE Handbook. Available from: http://gdt.guidelinedevelopment.org/central_prod/_design/client/handbook/handbook.html#h.fueh5iz0cor4. [Last accessed on 16 Nov 2020] |
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
Ponikowski P. Abraham W. Favourable effects of empagliflozin on congestion, diuretic use and all-cause healthcare resource utilisation in the EMPERIAL trials. European Society of Cardiology 365. 2020; HFA Discoveries. Available from: https://esc365.escardio.org/Congress/223730-favourable-effects-of-empagliflozin-on-congestion-diuretic-use-and-all-cause-healthcare-resource-utilisation-in-the-emperial-trials. [Last accessed on 16 Nov 2020] |
| [60] |
Lindenfeld J. Patient-reported outcomes with empagliflozin in the EMPERIAL trials. European Society of Cardiology 365. 2020; HFA Discoveries. Available from: https://esc365.escardio.org/Congress/223722-patient-reported-outcomes-with-empagliflozin-in-the-emperial-trials. [Last accessed on 16 Nov 2020] |
| [61] |
Boehringer Ingelheim. Boehringer Ingelheim and Lilly provide update on Jardiance® phase III exercise ability studies in chronic heart failure. 2019. Available from: https://wwwboehringer-ingelheimus/press-release/boehringer-ingelheim-and-lilly-provide-update-jardiance-phase-iii-exercise-ability. [Last accessed on 16 Nov 2020] |
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
Singh JS, Fathi A, Vickneson K, et al. Research into the effect of sodium-glucose linked transporter inhibition in left ventricular remodelling in patients with heart failure and diabetes mellitus. Eur Heart J 2018;Supplement 1(P905): American Diabetes Association meeting, Orlando. Available from: https://esc365.escardio.org/Congress/ESC-Congress-2018/Poster-Session-1-Chronic-heart-failure-Treatment/177516-research-into-the-effect-of-sodium-glucose-linked-transporter-inhibition-in-left-ventricular-remodelling-in-patients-with-heart-failure-and-diabetes-mellitus. [Last accessed on 16 Nov 2020] |
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
Sakai T, Miura S. Abstract 17041: effect of sodium-glucose cotransporter 2 inhibitor on vascular endothelial function and diastolic function in patients with heart failure with preserved ejection fraction (hfpef). Circulation 2017;136:A17041. Available from: https://www.ahajournals.org/doi/10.1161/circ.136.suppl_1.17041. [Last accessed on 16 Nov 2020] |
| [72] |
Ejiri K, Miyoshi T, Kihara H, Hata Y, Nagano T, et al. Drug effect of luseogliflozin and voglibose on heart failure with preserved ejection fraction in diabetic patients: a multicenter randomized-controlled trial. ESC Congress 2019. Available from: https://esc365.escardio.org/Congress/ESC-CONGRESS-2019/New-treatment-studies-in-heart-failure/196088-drug-effect-of-luseogliflozin-and-voglibose-on-heart-failure-with-preserved-ejection-fraction-in-diabetic-patients-a-multicenter-randomized-controlled-trial#abstract(Abstract: 1407). [Last accessed on 16 Nov 2020] |
| [73] |
U.S. Food and Drug Administration. Sodium-glucose Cotransporter-2 (SGLT2) Inhibitors. Postmarket Drug Safety Information for Patients and Providers 2020. Available from: https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/sodium-glucose-cotransporter-2-sglt2-inhibitors. [Last accessed on 16 Nov 2020] |
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
Zoler ML. SGLT2 Inhibitors, developed for T2D, now ‘belong to cardiologists and nephrologists. MedScape. 2020; Medscape Medical News: Conference News: ADA 2020. Available from: https://www.medscape.com/viewarticle/934107. [Last accessed on 16 Nov 2020] |
| [94] |
American Diabetes Association Position Statement 10Cardiovascular disease and risk management: standards of medical care in diabetes - 2020..Diabetes Care2020;43:S111-34 |
| [95] |
American Diabetes Association Position Statement 4Comprehensive Medical Evaluation and Assessment of Comorbidities: Standards of Medical Care in Diabetes - 2020..Diabetes Care2020;43:S37-47 |
| [96] |
|
| [97] |
|
| [98] |
World Health Organization. 2015 Global Survey on Health Technology Assessment by National Authorities. ISBN 978 92 4 150974 9. 2015. Available from: https://www.who.int/health-technology-assessment/MD_HTA_oct2015_final_web2.pdf?ua=1. [Last accessed on 16 Nov 2020] |
| [99] |
|
| [100] |
|
| [101] |
The International Network of Agencies for Health Technology Assessment. The Uniquiness of INAHTA INAHTA Position Statement. 2020. Available from: https://www.inahta.org/position-statements/. [Last accessed on 16 Nov 2020] |
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
/
| 〈 |
|
〉 |