Tumour vasculature targeted anti-cancer therapy

Debabrata Ghosh Dastidar , Dipanjan Ghosh , Gopal Chakrabarti

Vessel Plus ›› 2020, Vol. 4 ›› Issue (1) : 14

PDF
Vessel Plus ›› 2020, Vol. 4 ›› Issue (1) :14 DOI: 10.20517/2574-1209.2019.36
Review
Review

Tumour vasculature targeted anti-cancer therapy

Author information +
History +
PDF

Abstract

The tumour vasculature plays an important role in tumour growth and metastasis. Tumour angiogenesis provides more oxygen and nutrients to growing tumour cells, is not as tightly regulated as embryonic angiogenesis, and do not follow any hierarchically ordered pattern. The heterogeneity of the vasculature, high interstitial fluid pressure, poor extravasation due to sluggish blood flow, and larger distances between exchange vessels are potential barriers to the delivery of therapeutic agents to tumours. The prevention of angiogenesis, normalization of tumour vasculature, and enhancement of blood perfusion through the use of monoclonal antibodies against receptor proteins that are overexpressed on proangiogenic tumour cells, and improved, tumour-targeted delivery of therapeutic agents can all be achieved using nanocarriers of appropriate size. Nanomedicines such as polymeric nanoparticles, lipid nanoparticles, micelles, mesoporous silica particles, metal nanoparticles, noisomes, and liposomes have been developed for the delivery of anticancer drugs in combination with antiangiogenic agents. Amongst them, liposomal delivery systems are mostly approved by the FDA for clinical use. In this review, the molecular pathways of tumour angiogenesis, the physiology of tumour vasculature, barriers to tumour-targeted delivery of therapeutic agents, and the different strategies to overcome these barriers are discussed.

Keywords

Tumour / angiogenesis / antiangiogenic drug / targeted drug delivery / nanoparticle / normalization of tumour vasculature / sonoporation / hyperthermia

Cite this article

Download citation ▾
Debabrata Ghosh Dastidar, Dipanjan Ghosh, Gopal Chakrabarti. Tumour vasculature targeted anti-cancer therapy. Vessel Plus, 2020, 4(1): 14 DOI:10.20517/2574-1209.2019.36

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Risau W.Mechanisms of angiogenesis..Nature1997;386:671-4

[2]

Krock BL,Simon MC.Hypoxia-induced angiogenesis: good and evil..Genes Cancer2011;2:1117-33 PMCID:PMC3411127

[3]

Nagy JA.Heterogeneity of the tumor vasculature: the need for new tumor blood vessel type-specific targets..Clin Exp Metastasis2012;29:657-62 PMCID:PMC3484269

[4]

Carmeliet P.Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases..Nat Rev Drug Discov2011;10:417-27

[5]

Nagy JA,Vasile E,Shih SC.Permeability properties of tumor surrogate blood vessels induced by VEGF-A..Lab Invest2006;86:767-80

[6]

Hashizume H,Morikawa S,Thurston G.Openings between defective endothelial cells explain tumor vessel leakiness..Am J Pathol2000;156:1363-80 PMCID:PMC1876882

[7]

McDonald DM.Significance of blood vessel leakiness in cancer..Cancer Res2002;62:5381-5

[8]

Liao D.Hypoxia: a key regulator of angiogenesis in cancer..Cancer Metastasis Rev2007;26:281-90

[9]

Kenneth NS.Regulation of gene expression by hypoxia..Bio Chem J2008;414:19-29

[10]

Liu QL,Li ZY,Ou WT.Function and expression of prolyl hydroxylase 3 in cancers..Arch Med Sci2013;9:589-93 PMCID:PMC3776186

[11]

Koh MY,Powis G.Hypoxia-associated factor, a novel E3-ubiquitin ligase, binds and ubiquitinates hypoxia-inducible factor 1alpha, leading to its oxygen-independent degradation..Mol Cell Biol2008;28:7081-95 PMCID:PMC2593390

[12]

Buckley DL,Gareiss PC,Michel J.Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1α interaction..J Am Chem Soc2012;134:4465-8 PMCID:PMC3448299

[13]

Abboud MI,Leung IKH,Jorgensen C.2-Oxoglutarate regulates binding of hydroxylated hypoxia-inducible factor to prolyl hydroxylase domain 2..Chem Commun (Camb)2018;54:3130-3 PMCID:PMC5885369

[14]

Mandl M.Hypoxia-inducible aryl hydrocarbon receptor nuclear translocator (ARNT) (HIF-1β): is it a rare exception?.Mol Med2014;20:215-20 PMCID:PMC4069271

[15]

Arany Z,Eckner R,Jiang C.An essential role for p300/CBP in the cellular response to hypoxia..Proc Natl Acad Sci U S A1996;93:12969-73 PMCID:PMC24030

[16]

Van Hove CE,Herman AG,Fransen P.Vasodilator efficacy of nitric oxide depends on mechanisms of intracellular calcium mobilization in mouse aortic smooth muscle cells..Br J Pharmacol2009;158:920-30 PMCID:PMC2765610

[17]

Pereira KM,Viana TS,Costa FW.Oxygen metabolism in oral cancer: HIF and GLUTs (Review)..Oncol Lett2013;6:311-6 PMCID:PMC3789092

[18]

Chaneton B.PGAMgnam style: a glycolytic switch controls biosynthesis..Cancer Cell2012;22:565-6

[19]

Ye F,Xia L,Yang S.Aldolase A overexpression is associated with poor prognosis and promotes tumor progression by the epithelial-mesenchymal transition in colon cancer..Biochem Biophys Res Commun2018;497:639-45

[20]

Michelakis ED,Webster L,Watson G.Inhibition of pyruvate dehydrogenase kinase improves pulmonary arterial hypertension in genetically susceptible patients..Sci Transl Med2017;9:eaao4583

[21]

Ahmad SS,Bajaeifer K,Lehmann T.Phosphoglycerate kinase 1 as a promoter of metastasis in colon cancer..Int J Oncol2013;43:586-90

[22]

Skuli N,Runge A,Yuan L.Endothelial deletion of hypoxia-inducible factor-2alpha (HIF-2alpha) alters vascular function and tumor angiogenesis..Blood2009;114:469-77 PMCID:PMC2714217

[23]

Takagi H,Seike H,Otani A.Potential role of the angiopoietin/tie2 system in ischemia-induced retinal neovascularization..Invest Ophthalmol Vis Sci2003;44:393-402

[24]

Zhang L,Park JW,Fracchioli S.Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer..Cancer Res2003;63:3403-12

[25]

Gu J,Ogawa M,Danno K.Hypoxia-induced up-regulation of angiopoietin-2 in colorectal cancer..Oncol Rep2006;15:779-83

[26]

Jain RK.Determinants of tumour blood flow: a review..Cancer Res1988;48:2641-58

[27]

Sevick EM.Measurement of capillary filtration coefficient in a solid tumour..Cancer Res1991;51:1352-5

[28]

Gamble J,Spencer PD.Filtration coefficient and osmotic reflection coefficient to albumin in rabbit submandibular gland capillaries..J Physiol1988;398:15-32 PMCID:PMC1191756

[29]

Gerlowski LE.Effect of hyperthermia on microvascular permeability to macromolecules in normal and tumor tissues..Int J Microcirc Clin Exp1985;4:363-72

[30]

Jain RK.Transport of molecules across tumour vasculature..Cancer Metastasis Rev1987;6:559-93

[31]

Dvorak HF,Dvorak JT.Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules..Am J Pathol1988;133:95-109 PMCID:PMC1880651

[32]

Jain RK.Transport of molecules in the tumour interstitium: a review..Cancer Res1987;47:3039-51

[33]

Boucher Y,Jain RK.Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy..Cancer Res1990;50:4478-84

[34]

Wiig H,Hultborn R,Weiss L.Interstitial fluid pressure in DMBA-induced rat mammary tumours..Scand J Clin Lab Invest1982;42:159-64

[35]

Gerlowski LE.Microvascular permeability of normal and neoplastic tissues..Microvasc Res1986;31:288-305

[36]

Khawar IA,Kuh HJ.Improving drug delivery to solid tumors: Priming the tumour microenvironment..J Controll Release2015;201:78-89

[37]

Butler TP,Gullino PM.Bulk transfer of fluid in the interstitial compartment of mammary tumors..Cancer Res1975;35:3084-8

[38]

Braun RD,Bukhari SO.Hemodynamic parameters in blood vessels in choroidal melanoma xenografts and rat choroid..Invest Ophthalmol Vis Sci2002;43:3045-52 PMCID:PMC1945177

[39]

Chary SR.Direct measurement of interstitial convection and diffusion of albumin in normal and neoplastic tissues by fluorescence photobleaching..Proc Natl Acad Sci U S A1989;86:5385-9 PMCID:PMC297627

[40]

Wiig H,Iversen PO,Bjerkvig R.Interstitial fluid: the overlooked component of the tumor microenvironment?.Fibrogenesis Tissue Repair2010;3:12 PMCID:PMC2920231

[41]

Wagner M.Tumour interstitial fluid formation, characterization, and clinical implications..Front Oncol2015;5:115 PMCID:PMC4443729

[42]

Jain RK.Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure..Cancer Res1988;48:7022-32

[43]

Clauss MA.Interstitial transport of rabbit and sheep antibodies in normal and neoplastic tissues..Cancer Res1990;50:3487-92

[44]

Golombek SK,Theek B,Drude N.Tumor targeting via EPR: strategies to enhance patient responses..Adv Drug Deliv Rev2018;130:17-38 PMCID:PMC6130746

[45]

Salvioni L,Bertolini JA,Colombo M.Thirty years of cancer nanomedicine: success, frustration, and hope..Cancers (Basel)2019;11:1855 PMCID:PMC6966668

[46]

Zanotelli MR.Mechanical forces in tumor angiogenesis..Adv Exp Med Biol2018;1092:91-112 PMCID:PMC6986816

[47]

Stylianopoulos T,Chauhan VP,Diop-Frimpong B.Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors..Proc Natl Acad Sci U S A2012;109:15101-8 PMCID:PMC3458380

[48]

Zuo H.iRGD: a promising peptide for cancer imaging and a potential therapeutic agent for various cancers..J Oncol2019;2019:9367845 PMCID:PMC6617877

[49]

Deshpande PP,Torchilin VP.Current trends in the use of liposomes for tumour targeting..Nanomedicine (Lond)2013;8:1509-28 PMCID:PMC3842602

[50]

Weaver BA.How Taxol/paclitaxel kills cancer cells..Mol Biol Cell2014;25:2677-81 PMCID:PMC4161504

[51]

Chen Z,Shi Y.Overcoming tumor cell chemoresistance using nanoparticles: lysosomes are beneficial for (stearoyl) gemcitabine-incorporated solid lipid nanoparticles..Int J Nanomedicine2018;13:319-36 PMCID:PMC5768424

[52]

Duan X,Kron SJ.Nanoparticle formulations of cisplatin for cancer therapy..Wiley Interdiscip Rev Nanomed Nanobiotechnol2016;8:776-91 PMCID:PMC4975677

[53]

Krens SD,Jansman FGA,Lankheet NAG.Dose recommendations for anticancer drugs in patients with renal or hepatic impairment..Lancet Oncol2019;20:e200-7

[54]

De Angelis C.Side effects related to systemic cancer treatment: are we changing the Promethean experience with molecularly targeted therapies?.Curr Oncol2008;15:198-9 PMCID:PMC2528304

[55]

Golombek SK,Theek B,Drude N.Tumor targeting via EPR: strategies to enhance patient responses..Adv Drug Deliv Rev2018;130:17-38 PMCID:PMC6130746

[56]

Danhier F,Vroman B,Marchand-Brynaert J.Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation..J Control Release2009;133:11-7

[57]

Lu Z,Tsai M,Wientjes MG.Paclitaxel-loaded gelatin nanoparticles for intravesical bladder cancer therapy..Clin Cancer Res2004;10:7677-84

[58]

Zamboni WC.Liposomal, nanoparticle, and conjugated formulations of anticancer agents..Clin Cancer Res2005;11:8230-4

[59]

Hu H,Lai C,Zhen Z.iRGD-paclitaxel conjugate nanoparticles for targeted paclitaxel delivery..Drug Dev Res2019;80:1080-8

[60]

Mangaiyarkarasi R,Karthikeyan S,Ganesan S.Paclitaxel conjugated Fe3O4@LaF3:Ce3+,Tb3+ nanoparticles as bifunctional targeting carriers for cancer theranostics application..J Magnetism Magnetic Materials2016;399:207-15

[61]

Dalela M,Kharbanda S.pH-sensitive biocompatible nanoparticles of paclitaxel-conjugated poly(styrene-co-maleic acid) for anticancer drug delivery in solid tumors of syngeneic mice..ACS Appl Mater Interfaces2015;7:26530-48

[62]

Matsumura Y.A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs..Cancer Res1986;46:6387-92

[63]

Laitakari J,Stenbäck F.Size, shape, structure, and direction of angiogenesis in laryngeal tumour development..J Clin Pathol2004;57:394-401 PMCID:PMC1770257

[64]

Hillen F.Tumour vascularization: sprouting angiogenesis and beyond..Cancer Metastasis Rev2007;26:489-502 PMCID:PMC2797856

[65]

Ziyad S.Molecular mechanisms of tumor angiogenesis..Genes Cancer2011;2:1085-96 PMCID:PMC3411131

[66]

Azzopardi EA,Thomas DW.The enhanced permeability retention effect: a new paradigm for drug targeting in infection..J Antimicrob Chemother2013;68:257-74

[67]

Heldin CH,Pietras K.High interstitial fluid pressure - an obstacle in cancer therapy..Nat Rev Cancer2004;4:806-13

[68]

Holdman XB,Rajapakshe K,Coarfa C.Upregulation of EGFR signaling is correlated with tumor stroma remodeling and tumor recurrence in FGFR1-driven breast cancer..Breast Cancer Res2015;17:141 PMCID:PMC4652386

[69]

Dastidar DG,Datta S,Pal M.Paclitaxel-encapsulated core-shell nanoparticle of cetyl alcohol for active targeted delivery through oral route..Nanomedicine (Lond)2019;14:2121-50

[70]

Sun Q,Kiessling F,Shi Y.Enhancing tumor penetration of nanomedicines..Biomacromolecules2017;18:1449-59 PMCID:PMC5424079

[71]

Zhang YR,Li HJ,Du JZ.Strategies to improve tumor penetration of nanomedicines through nanoparticle design..Wiley Interdiscip Rev Nanomed Nanobiotechnol2019;11:e1519

[72]

Nagamitsu A,Maeda H.Elevating blood pressure as a strategy to increase tumor-targeted delivery of macromolecular drug SMANCS: cases of advanced solid tumors..Jpn J Clin Oncol2009;39:756-66

[73]

Leffler CW,Jaggar JH.Carbon monoxide as an endogenous vascular modulator..Am J Physiol Heart Circ Physiol2011;301:H1-11 PMCID:PMC3129910

[74]

Suzuki M,Abe I,Sato H.A new approach to cancer chemotherapy: selective enhancement of tumor blood flow with angiotensin II..J Natl Cancer Inst1981;67:663-9

[75]

Scicinski J,Ning S,Peehl D.NO to cancer: The complex and multifaceted role of nitric oxide and the epigenetic nitric oxide donor, RRx-001..Redox Biol2015;6:1-8 PMCID:PMC4529402

[76]

Frérart F,Rath G,Meqor A.The acidic tumor microenvironment promotes the reconversion of nitrite into nitric oxide: towards a new and safe radiosensitizing strategy..Clin Cancer Res2008;14:2768-74

[77]

Tahara Y,Sato H,Zahangir MH.Encapsulation of a nitric oxide donor into a liposome to boost the enhanced permeation and retention (EPR) effect..Medchemcomm2016;8:415-21 PMCID:PMC6072363

[78]

Wei G,Huang X,Zhao J.Enhancing the accumulation of polymer micelles by selectively dilating tumor blood vessels with no for highly effective cancer treatment..Adv Healthc Mater2018;7:e1801094

[79]

Fang J,Islam W,Subr V.Augmentation of EPR effect and efficacy of anticancer nanomedicine by carbon monoxide generating agents..Pharmaceutics2019;11:343 PMCID:PMC6680399

[80]

Motterlini R.The therapeutic potential of carbon monoxide..Nat Rev Drug Discov2010;9:728-43

[81]

Abraham NG.Pharmacological and clinical aspects of heme oxygenase..Pharmacol Rev2008;60:79-127

[82]

Fang J,Maeda H.Antiapoptotic role of heme oxygenase (HO) and the potential of HO as a target in anticancer treatment..Apoptosis2004;9:27-35

[83]

Fang J,Nakamura H,Shin T.Carbon monoxide, generated by heme oxygenase-1, mediates the enhanced permeability and retention effect in solid tumors..Cancer Sci2012;103:535-41

[84]

Jain RK.Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy..Science2005;307:58-62

[85]

Folkman J.Tumour angiogenesis: therapeutic implications..N Engl J Med1971;285:1182-6

[86]

Goedegebuure RSA,Bass AJ,Thijssen VLJL.Combining radiotherapy with anti-angiogenic therapy and immunotherapy; a therapeutic triad for cancer?.Front Immunol2019;9:3107 PMCID:PMC6339950

[87]

Sersa G,Kotnik T,Podkrajsek M.Vascular disrupting action of electroporation and electrochemotherapy with bleomycin in murine sarcoma..Br J Cancer2008;98:388-98 PMCID:PMC2361464

[88]

Teicher BA,Emi Y,Kakeji Y.Increased efficacy of chemo- and radio-therapy by a hemoglobin solution in the 9L gliosarcoma..In Vivo1995;9:11-8

[89]

Czito BG,Willett CG,Blobe GC.Bevacizumab, oxaliplatin, and capecitabine with radiation therapy in rectal cancer: Phase I trial results..Int J Radiat Oncol Biol Phys2007;68:472-8

[90]

Fitzgerald KA,Gearing AJH.Fitzgerald KA.The cytokine factsbook and webfacts.2001;2th ed.LondonAcademic Press139-41

[91]

O’Reilly MS,Shing Y,Vasios G.Endostatin: an endogenous inhibitor of angiogenesis and tumor growth..Cell1997;88:277-85

[92]

Bonneterre J,Boularan C,Heveker N.Handel TM.Chapter Seven - analysis of arrestin recruitment to chemokine receptors by bioluminescence resonance energy transfer..Methods in enzymology.2016;Academic Press131-53

[93]

Kamphaus GD,Panka DJ,Ramchandran R.Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth..J Biol Chem2000;275:1209-15

[94]

Sund M,Eikesdal HP.Endogenous matrix-derived inhibitors of angiogenesis..Pharmaceuticals2010;3:3021-39 PMCID:PMC4034081

[95]

Keith B.Mendelsohn J.17 - Tumour angiogenesis..The molecular basis of cancer2015;4th editionPhiladelphia257-68.e2

[96]

Singhal S.Thalidomide in cancer: potential uses and limitations..Bio Drugs2001;15:163-72

[97]

Kazazi-Hyseni F,Schellens JHM.Bevacizumab..Oncologist2010;15:819-25 PMCID:PMC3228024

[98]

Méndez-Vidal MJ,Anido U,Etxaniz O.Pazopanib: evidence review and clinical practice in the management of advanced renal cell carcinoma..BMC Pharmacol Toxicol2018;19:77 PMCID:PMC6258404

[99]

Yoshida-Ichikawa Y,Tokuda E,Horimoto Y.Overcoming the adverse effects of everolimus to achieve maximum efficacy in the treatment of inoperable breast cancer: a review of 11 cases at our hospital..Case Rep Oncol2018;11:511-20 PMCID:PMC6103349

[100]

Cai X,Zhang Y.Highly efficient and safe delivery of VEGF siRNA by bioreducible fluorinated peptide dendrimers for cancer therapy..ACS Appl Mater Interfaces2017;9:9402-15

[101]

YSaw PE,Nie Y,Xu Y.Tumor-associated fibronectin targeted liposomal nanoplatform for cyclophilin A siRNA delivery and targeted malignant glioblastoma therapy..Front Pharmacol2018;9:1194 PMCID:PMC6199375

[102]

Xu X,Zhao X,Kong X.Calcium phosphate nanoparticles-based systems for siRNA delivery..Regen Biomater2016;3:187-95 PMCID:PMC4881614

[103]

Zheng G,Xu A,Chen X.Co-delivery of sorafenib and siVEGF based on mesoporous silica nanoparticles for ASGPR mediated targeted HCC therapy..Eur J Pharm Sci2018;111:492-502

[104]

Shen J,Meng Q,Zhang Z.Simultaneous inhibition of tumor growth and angiogenesis for resistant hepatocellular carcinoma by co-delivery of sorafenib and survivin small hairpin RNA..Mol Pharm2014;11:3342-51

[105]

Li F,Chen WL,Zhou YJ.Co-delivery of VEGF siRNA and etoposide for enhanced anti-angiogenesis and anti-proliferation effect via multi-functional nanoparticles for orthotopic non-small cell lung cancer treatment..Theranostics2019;9:5886-98 PMCID:PMC6735374

[106]

Fountzilas G,Bobos M,Kotoula V.Paclitaxel and bevacizumab as first line combined treatment in patients with metastatic breast cancer: the Hellenic Cooperative Oncology Group experience with biological marker evaluation..Anticancer Res2011;31:3007-18

[107]

Bartczak D,Sanchez-Elsner T,Millar TM.Manipulation of in vitro angiogenesis using peptide-coated gold nanoparticles..ACS Nano2013;7:5628-36

[108]

Patra CR,Wang E,Lau JS.Targeted delivery of gemcitabine to pancreatic adenocarcinoma using cetuximab as a targeting agent..Cancer Res2008;68:1970-8

[109]

Lin YW,Liao WS,Liu KK.Co-delivery of paclitaxel and cetuximab by nanodiamond enhances mitotic catastrophe and tumor inhibition..Sci Rep2017;7:9814 PMCID:PMC5575327

[110]

Li F,Singh S,Mahato RI.Paclitaxel- and lapatinib-loaded lipopolymer micelles overcome multidrug resistance in prostate cancer..Drug Deliv Transl Res2011;1:420-8

[111]

Yang Z,Dong D,Li J.Dual receptor-specific peptides modified liposomes as VEGF siRNA vector for tumor-targeting therapy..Curr Gene Ther2014;14:289-99

[112]

Shein SA,Abakumova TO,Melnikov PA.VEGF- and VEGFR2-targeted liposomes for cisplatin delivery to glioma cells..Mol Pharm2016;13:3712-23

[113]

Yao Y,Liu Y.Co-delivery of sorafenib and VEGF-siRNA via pH-sensitive liposomes for the synergistic treatment of hepatocellular carcinoma..Artif Cells Nanomed Biotechnol2019;47:1374-83

[114]

Chen WH,Fadeev M,Nechushtai R.Targeted VEGF-triggered release of an anti-cancer drug from aptamer-functionalized metal-organic framework nanoparticles..Nanoscale2018;10:4650-7

[115]

Chen J,Shao R,Gao J.VEGF siRNA delivered by polycation liposome-encapsulated calcium phosphate nanoparticles for tumor angiogenesis inhibition in breast cancer..Int J Nanomedicine2017;12:6075-88 PMCID:PMC5573052

[116]

Doddapaneni R,Owaid IH.Tumor neovasculature-targeted cationic PEGylated liposomes of gambogic acid for the treatment of triple-negative breast cancer..Drug Deliv2016;23:1232-41 PMCID:PMC5024788

[117]

Yang ZZ,Wang ZZ,Qi XR.Tumor-targeting dual peptides-modified cationic liposomes for delivery of siRNA and docetaxel to gliomas..Biomaterials2014;35:5226-39

[118]

Yanagisawa M,Kurasawa M,Furugaki K.Bevacizumab improves the delivery and efficacy of paclitaxel..Anticancer Drugs2010;21:687-94

[119]

Dragovich T,Dayyani F,Smith L.Phase II trial of vatalanib in patients with advanced or metastatic pancreatic adenocarcinoma after first-line gemcitabine therapy (PCRT O4-001)..Cancer Chemother Pharmacol2014;74:379-87 PMCID:PMC4461053

[120]

Lei M,Sha S,Feng H.Dual-functionalized liposome by co-delivery of paclitaxel with sorafenib for synergistic antitumor efficacy and reversion of multidrug resistance..Drug Deliv2019;26:262-72 PMCID:PMC6419656

[121]

Yang X,Qian C,Li C.Near-infrared light-activated IR780-loaded liposomes for anti-tumor angiogenesis and Photothermal therapy..Nanomedicine2018;14:2283-94

[122]

He J,Li B,Li X.The programmed site-specific delivery of the angiostatin sunitinib and chemotherapeutic paclitaxel for highly efficient tumor treatment..J Mater Chem B2019;7:4953-62

[123]

Szlachcic A,Zakrzewska M,Wiedlocha A.FGF1-gold nanoparticle conjugates targeting FGFR efficiently decrease cell viability upon NIR irradiation..Int J Nanomedicine2012;7:5915-27 PMCID:PMC3514973

[124]

Dehghan Kelishady P,Ravar F,Dorkoosh F.Pluronic F127 polymeric micelles for co-delivery of paclitaxel and lapatinib against metastatic breast cancer: preparation, optimization and in vitro evaluation..Pharm Dev Technol2015;20:1009-1017

[125]

Zajdel A,Jelonek K,Foryś A.Cytotoxic effect of paclitaxel and lapatinib co-delivered in polylactide-co-poly(ethylene glycol) micelles on HER-2-negative breast cancer cells..Pharmaceutics2019;1:169 PMCID:PMC6523169

[126]

Zhou Z,Sriram V,Lee JY.Delayed sequential co-delivery of gefitinib and doxorubicin for targeted combination chemotherapy..Mol Pharm2017;14:4551-9 PMCID:PMC5714665

[127]

Chun PY,Scheurer AM,Lawrence TS.Synergistic effects of gemcitabine and gefitinib in the treatment of head and neck carcinoma..Cancer Res2006;66:981-8

[128]

Chen D,Wang J,Duan S.Biodegradable nanoparticles mediated co-delivery of erlotinib (ELTN) and fedratinib (FDTN) toward the treatment of ELTN-resistant non-small cell lung cancer (NSCLC) via suppression of the JAK2/STAT3 signaling pathway..Front Pharmacol2018;9:1214 PMCID:PMC6242943

[129]

Zajdel A,Jelonek K,Foryś A.Cytotoxic effect of paclitaxel and lapatinib co-delivered in polylactide-co-poly(ethylene glycol) micelles on HER-2-negative breast cancer cells..Pharmaceutics2019;11:169 PMCID:PMC6523169

[130]

Ravar F,Kelishadi PD.Liposomal formulation for co-delivery of paclitaxel and lapatinib, preparation, characterization and optimization..J Liposome Res2016;26:175-87

[131]

Yang Y,Li J,Huang Y.PLGA porous microspheres dry powders for codelivery of afatinib-loaded solid lipid nanoparticles and paclitaxel: novel therapy for EGFR tyrosine kinase inhibitors resistant nonsmall cell lung cancer..Adv Healthc Mater2019;8:e1900965

[132]

Gupta B,Regmi S,Ruttala HB.Paclitaxel and erlotinib-co-loaded solid lipid core nanocapsules: assessment of physicochemical characteristics and cytotoxicity in non-small cell lung cancer..Pharm Res2018;35:96

[133]

Vaccaro V,Sperduti I,Moscetti L.First-line erlotinib and fixed dose-rate gemcitabine for advanced pancreatic cancer..World J Gastroenterol2013;19:4511-9 PMCID:PMC3725375

[134]

He Y,Xue L,Zhang C.Co-delivery of erlotinib and doxorubicin by pH-sensitive charge conversion nanocarrier for synergistic therapy..J Control Release2016;229:80-92

[135]

Chen LX,Zhang H,Liu J.Preparation, characterization, in vitro and in vivo anti-tumor effect of thalidomide nanoparticles on lung cancer..Int J Nanomedicine2018;13:2463-76 PMCID:PMC5922239

[136]

Chantarasrivong C,Tsuda M,Hashida M.Sialyl LewisX mimic-decorated liposomes for anti-angiogenic everolimus delivery to E-selectin expressing endothelial cells..RSC Advances2019;9:20518-27

[137]

Houdaihed L,Allen C.Codelivery of paclitaxel and everolimus at the optimal synergistic ratio: a promising solution for the treatment of breast cancer..Mol Pharm2018;15:3672-81

[138]

Guo S,Xu Z,Wang Y.Co-delivery of cisplatin and rapamycin for enhanced anticancer therapy through synergistic effects and microenvironment modulation..ACS Nano2014;8:4996-5009 PMCID:PMC4046782

[139]

US-FDA. FDA broadens afatinib indication to previously untreated, metastatic NSCLC with other non-resistant EGFR mutations. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-broadens-afatinib-indication-previously-untreated-metastatic-nsclc-other-non-resistant-egfr [Last accessed on 12 Apr 2020]

[140]

US-FDA. FDA approves pembrolizumab plus axitinib for advanced renal cell carcinoma. Available from: https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-pembrolizumab-plus-axitinib-advanced-renal-cell-carcinoma [Last accessed on 12 Apr 2020]

[141]

US-FDA. Avastin Approval History. Available from: https://www.drugs.com/history/avastin.html [Last accessed on 12 Apr 2020]

[142]

US-FDA. FDA grants accelerated approval to bosutinib for treatment of newly-diagnosed PH+ CML. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-bosutinib-treatment-newly-diagnosed-ph-cml [Last accessed on 12 Apr 2020]

[143]

US-FDA. FDA Approved Uses of Cabozantinib. Available from: https://www.cancernetwork.com/thyroid-cancer/fda-approved-uses-cabozantinib [Last accessed on 12 Apr 2020]

[144]

US-FDA. FDA approves cabozantinib for hepatocellular carcinoma. Available from: https://www.fda.gov/drugs/fda-approves-cabozantinib-hepatocellular-carcinoma [Last accessed on 12 Apr 2020]

[145]

US-FDA. Information on Cetuximab (marketed as Erbitux). Available from: https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/information-cetuximab-marketed-erbitux [Last accessed on 12 Apr 2020]

[146]

US-FDA. FDA Approves Crizotinib Capsules. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-crizotinib-capsules [Last accessed on 12 Apr 2020]

[147]

US-FDA. FDA approves dasatinib for pediatric patients with CML. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-dasatinib-pediatric-patients-cml [Last accessed on 12 Apr 2020]

[148]

US-FDA. FDA approves Erlotinib (Tarceva) as first-line lung cancer therapy for certain patients. Available from: https://www.cancernetwork.com/lung-cancer/fda-approves-erlotinib-tarceva-first-line-lung-cancer-therapy-certain-patients [Last accessed on 12 Apr 2020]

[149]

US-FDA. Everolimus (Afinitor). Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/everolimus-afinitor [Last accessed on 12 Apr 2020]

[150]

Zeneca A. IRESSA® (gefitinib) approved by the U.S. Food and Drug Administration for first-line treatment of advanced EGFR mutation-positive non-small cell lung cance. Available from: https://https://www.astrazeneca.com/media-centre/press-releases/2015/iressa-fda-approved-non-small-cell-lung-cancer-treatment-13072015.html# [Last accessed on 12 Apr 2020]

[151]

US-FDA. FDA gives fast approval to gleevec in treatment of CML. Available from: https://www.cancernetwork.com/chronic-myeloid-leukemia/fda-gives-fast-approval-gleevec-treatment-cml [Last accessed on 12 Apr 2020]

[152]

Ryan Q,Cohen MH,Ko CW.FDA drug approval summary: lapatinib in combination with capecitabine for previously treated metastatic breast cancer that overexpresses HER-2..Oncologist2008;13:1114-9

[153]

US-FDA. FDA approves lenalidomide for follicular and marginal zone lymphoma. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-lenalidomide-follicular-and-marginal-zone-lymphoma [Last accessed on 12 Apr 2020]

[154]

US-FDA. FDA approves nilotinib for pediatric patients with newly diagnosed or resistant/intolerant Ph+ CML in chronic phase. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-nilotinib-pediatric-patients-newly-diagnosed-or-resistantintolerant-ph-cml-chronic [Last accessed on 12 Apr 2020]

[155]

US-FDA. FDA approves first treatment for patients with rare type of lung disease. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-patients-rare-type-lung-disease [Last accessed on 12 Apr 2020]

[156]

US-FDA. FDA approves osimertinib for first-line treatment of metastatic NSCLC with most common EGFR mutations. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-osimertinib-first-line-treatment-metastatic-nsclc-most-common-egfr-mutations [Last accessed on 12 Apr 2020]

[157]

US-FDA. FDA approves Pazopanib for advanced soft-tissue sarcoma. Available from: https://www.ascopost.com/issues/may-15-2012/fda-approves-pazopanib-for-advanced-soft-tissue-sarcoma/ [Last accessed on 12 Apr 2020]

[158]

US-FDA. Ponatinib (marketed as Iclusig) Informaton. Available from: https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/ponatinib-marketed-iclusig-informaton [Last accessed on 12 Apr 2020]

[159]

US-FDA. FDA approves ramucirumab for hepatocellular carcinoma. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-ramucirumab-hepatocellular-carcinoma [Last accessed on 12 Apr 2020]

[160]

US-FDA. Regorafenib becomes first FDA-approved drug for liver cancer in nearly a decade. Available from: https://www.cancer.gov/news-events/cancer-currents-blog/2017/fda-regorafenib-liver [Last accessed on 12 Apr 2020]

[161]

Kane RC,Saber H,Williams G.Sorafenib for the treatment of advanced renal cell carcinoma..Clin Cancer Res2006;12:7271-8

[162]

US-FDA. FDA approves sunitinib malate for adjuvant treatment of renal cell carcinoma. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-sunitinib-malate-adjuvant-treatment-renal-cell-carcinoma [Last accessed on 12 Apr 2020]

[163]

Kwitkowski VE,Ibrahim A,Justice R.FDA approval summary: temsirolimus as treatment for advanced renal cell carcinoma..Oncologist2010;15:428-35 PMCID:PMC3227966

[164]

US-FDA. Thalidomide OK’d for multiple myeloma: FDA approves thalidomide with strict rules to prevent birth defects. Available from: https://www.webmd.com/cancer/multiple-myeloma/news/20060526/thalidomide-okd-for-multiple-myeloma [Last accessed on 12 Apr 2020]

[165]

US-FDA. Caprelsa Approval History. Available from: https://www.drugs.com/history/caprelsa.html [Last accessed on 12 Apr 2020]

[166]

US-FDA. FDA Approves Zaltrap. Available from: https://www.drugs.com/newdrugs/fda-approves-zaltrap-metastatic-colorectal-cancer-3413.html [Last accessed on 12 Apr 2020]

[167]

Peruzzi G,Silvani G,Casciola CM.Perspectives on cavitation enhanced endothelial layer permeability..Colloids Surf B Biointerfaces2018;168:83-93

[168]

Sutton JT,Pyne-Geithman G.Ultrasound-mediated drug delivery for cardiovascular disease..Expert Opin Drug Deliv2013;10:573-92 PMCID:PMC4026001

[169]

Wu M,Wang Y,Luo Y.Paclitaxel-loaded and A10-3.2 aptamer-targeted poly(lactide-co-glycolic acid) nanobubbles for ultrasound imaging and therapy of prostate cancer..Int J Nanomedicine2017;12:5313-30 PMCID:PMC5536230

[170]

Fan CH,Hsieh YK,Gao Z.Enhancing boron uptake in brain glioma by a boron-polymer/microbubble complex with focused ultrasound..ACS Appl Mater Interfaces2019;11:11144-56

[171]

Cao Y,Yu T,Liu F.Drug release from phase-changeable nanodroplets triggered by low-intensity focused ultrasound..Theranostics2018;8:1327-39 PMCID:PMC5835939

[172]

Zhang C,Zhang Y,Shentu W.Anti-tumor efficacy of ultrasonic cavitation is potentiated by concurrent delivery of anti-angiogenic drug in colon cancer..Cancer Lett2014;347:105-13

[173]

Zhao YZ,Wong HL,Yang W.Glioma-targeted therapy using Cilengitide nanoparticles combined with UTMD enhanced delivery..J Control Release2016;224:112-25

[174]

Park J,Vykhodtseva N,McDannold N.Evaluation of permeability, doxorubicin delivery, and drug retention in a rat brain tumor model after ultrasound-induced blood-tumor barrier disruption..J Control Release2017;250:77-85 PMCID:PMC5384106

[175]

Theek B,Ojha T,Veettil SK.Sonoporation enhances liposome accumulation and penetration in tumors with low EPR..J Control Release2016;231:77-85 PMCID:PMC5404719

[176]

Yan F,Deng Z,Chen J.Paclitaxel-liposome-microbubble complexes as ultrasound-triggered therapeutic drug delivery carriers..J Control Release2013;166:246-55

[177]

Meng M,Wu C,Zang X.Doxorubicin nanobubble for combining ultrasonography and targeted chemotherapy of rabbit with VX2 liver tumor..Tumour Biol2016;37:8673-80 PMCID:PMC4990606

[178]

Kong G.Hyperthermia and liposomes..Int J Hyperthermia1999;15:345-70

[179]

Ghosh Dastidar D.Mohapatra SS,Dasgupta N,Thomas S.Chapter 6 - Thermoresponsive Drug Delivery Systems, Characterization and Application..Applications of Targeted Nano Drugs and Delivery Systems.2019;AmsterdamElsevier133-55

[180]

Elming PB,Oei AL,Crezee J.Hyperthermia: the optimal treatment to overcome radiation resistant hypoxia..Cancers (Basel)2019;11:60 PMCID:PMC6356970

[181]

Kong G,Dewhirst MW.Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size..Cancer Res2000;60:4440-5

[182]

Noguchi A,Yamaguchi T,Noguchi A.Enhanced tumor localization of monoclonal antibody by treatment with kininase II inhibitor and angiotensin II..Jpn J Cancer Res1992;83:240-3 PMCID:PMC5918801

[183]

Liu P,Wang S,Zhou W.A thermo-responsive and self-healing liposome-in-hydrogel system as an antitubercular drug carrier for localized bone tuberculosis therapy..Int J Pharm2019;558:101-9

[184]

Dai M,Fang HM,Yan JB.Thermo-responsive magnetic liposomes for hyperthermia-triggered local drug delivery..J Microencapsul2017;34:408-15

[185]

Maekawa-Matsuura M,Maekawa Y,Nagase K.LAT1-targeting thermoresponsive liposomes for effective cellular uptake by cancer cells..ACS Omega2019;4:6443-51

[186]

Zhou Q,Ling Y,Sun B.pH and thermo dual stimulus-responsive liposome nanoparticles for targeted delivery of platinum-acridine hybrid agent..Life Sci2019;217:41-8

[187]

Dai M,Fang HM,Yan JB.Thermo-responsive magnetic liposomes for hyperthermia-triggered local drug delivery..J Microencapsul2017;34:408-15

[188]

Shi D,Shen Y.Glioma-targeted dual functionalized thermosensitive Ferri-liposomes for drug delivery through an in vitro blood-brain barrier..Nanoscale2019;11:15057-71

[189]

Chang R.Fabrication of photothermo-responsive drug-loaded nanogel for synergetic cancer therapy..Polymers (Basel)2018;10:1098 PMCID:PMC6403974

[190]

Singh A,K Verma R.Temperature/pH-triggered PNIPAM-based smart nanogel system loaded with anastrozole delivery for application in cancer chemotherapy..AAPS Pharm Sci Tech2019;20:213

[191]

Chen J,Veroniaina H,Li J.Poly (N-isopropylacrylamide) derived nanogels demonstrated thermosensitive self-assembly and GSH-triggered drug release for efficient tumor therapy..Polymer Chem2019;10:4031-41

[192]

Sreerenganathan M,Rangasamy J.Thermo-responsive fibrinogen nanogels: a viable thermo-responsive drug delivery agent for breast cancer therapy?.Nanomedicine (Lond)2014;9:2721-3

[193]

Kim JH.Thermo-responsive hydrogel-coated nanoshells for in vivo drug delivery..J Biomed Pharmaceutical Engineering2008;21:29-35

[194]

Wang C,Ma Y,Dong D.Thermo responsive polymeric nanoparticles based on poly(2-oxazoline)s and tannic acid. Journal of Polymer Science Part A:.Polymer Chemistry2018;56:1520-7

[195]

Cammas S,Sone C,Kataoka K.Thermo-responsive polymer nanoparticles with a core-shell micelle structure as site-specific drug carriers..J Control Release1997;48:157-64

[196]

Rejinold NS,Divyarani VV,Chennazhi KP.Curcumin-loaded biocompatible thermoresponsive polymeric nanoparticles for cancer drug delivery..J Colloid Interface Sci2011;360:39-51

[197]

Seo HI,Jang J,Cho SW.Thermo-responsive polymeric nanoparticles for enhancing neuronal differentiation of human induced pluripotent stem cells..Nanomedicine2015;11:1861-9

[198]

Arafa MG,Elmazar MM.Thermoresponsive gels containing gold nanoparticles as smart antibacterial and wound healing agents..Sci Rep2018;8:13674 PMCID:PMC6135834

[199]

Kim JH.Thermo- and pH-responsive hydrogel-coated gold nanoparticles..Chem Materials2004;16:3647-51

[200]

Vines JB,Ryu NE,Park H.Gold nanoparticles for photothermal cancer therapy..Front Chem2019;7:167 PMCID:PMC6460051

[201]

Farooq MU,Rozhkova EA,Ali A.Gold nanoparticles-enabled efficient dual delivery of anticancer therapeutics to hela cells..Sci Rep2018;8:2907 PMCID:PMC5811504

[202]

Chandran PR.Thomas S,Ninan N.Chapter 14 - Gold Nanoparticles..Cancer drug delivery, in nanotechnology applications for tissue engineering.2015;OxfordWilliam Andrew Publishing221-37

[203]

Sato I,Mitsudo K,Kim JH.Simultaneous hyperthermia-chemotherapy with controlled drug delivery using single-drug nanoparticles..Sci Rep2016;6:24629

[204]

Kim S,Poilil Surendran S.Biomedical applications of hyaluronic acid-based nanomaterials in hyperthermic cancer therapy..Pharmaceutics2019;11:306 PMCID:PMC6680516

[205]

Zhao T,Peng L,Feng T.Novel hyaluronic acid-modified temperature-sensitive nanoparticles for synergistic chemo-photothermal therapy..Carbohydr Polym2019;214:221-33

[206]

Winslow TB,Ullas S,Repasky EA.A pilot study of the effects of mild systemic heating on human head and neck tumour xenografts: analysis of tumour perfusion, interstitial fluid pressure, hypoxia and efficacy of radiation therapy..Int J Hyperthermia2015;31:693-701 PMCID:PMC4573247

[207]

Xu Y,Hylander B,Evans SS.Fever-range whole body hyperthermia increases the number of perfused tumor blood vessels and therapeutic efficacy of liposomally encapsulated doxorubicin..Int J Hyperthermia2007;23:513-27

PDF

30

Accesses

0

Citation

Detail

Sections
Recommended

/