Recent advances in cerebral cavernous malformation research

Akhil Padarti , Jun Zhang

Vessel Plus ›› 2018, Vol. 2 ›› Issue (1) : 21

PDF
Vessel Plus ›› 2018, Vol. 2 ›› Issue (1) :21 DOI: 10.20517/2574-1209.2018.34
Review
Review

Recent advances in cerebral cavernous malformation research

Author information +
History +
PDF

Abstract

Cerebral cavernous malformations (CCM) are manifested by microvascular lesions characterized by leaky endothelial cells with minimal intervening parenchyma predominantly in the central nervous system predisposed to hemorrhagic stroke, resulting in focal neurological defects. Till date, three proteins are implicated in this condition: CCM1 (KRIT1), CCM2 (MGC4607), and CCM3 (PDCD10). These multi-domain proteins form a protein complex via CCM2 that function as a docking site for the CCM signaling complex, which modulates many signaling pathways. Defects in the formation of this signaling complex have been shown to affect a wide range of cellular processes including cell-cell contact stability, vascular angiogenesis, oxidative damage protection and multiple biogenic events. In this review we provide an update on recent advances in structure and function of these CCM proteins, especially focusing on the signaling cascades involved in CCM pathogenesis and the resultant CCM cellular phenotypes in the past decade.

Keywords

Cerebral cavernous malformation / cerebral cavernous malformation signaling complex / angiogenesis / endothelial cells / cellular function / microvessel lesions / protein structure / function domain / motif

Cite this article

Download citation ▾
Akhil Padarti, Jun Zhang. Recent advances in cerebral cavernous malformation research. Vessel Plus, 2018, 2(1): 21 DOI:10.20517/2574-1209.2018.34

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Otten P,Rilliet B.131 cases of cavernous angioma (cavernomas) of the CNS, discovered by retrospective analysis of 24,535 autopsies.Neurochirurgie1989;35:82-3, 128-31

[2]

Cavalcanti DD,Martirosyan NL,Spetzler RF.Cerebral cavernous malformations: from genes to proteins to disease.J Neurosurg2012;116:122-32

[3]

Fisher OS,Li X,Demeler B.Structural studies of cerebral cavernous malformations 2 (CCM2) reveal a folded helical domain at its C-terminus.FEBS Lett2013;587:272-7 PMCID:PMC3558538

[4]

Tanriover G,Seker A,Gunel M.Ultrastructural analysis of vascular features in cerebral cavernous malformations.Clin Neurol Neurosurg2013;115:438-44

[5]

Choquet H,Goitre L,Akers A,Hart BL,Pawlikowska L,Retta SF.Cytochrome P450 and matrix metalloproteinase genetic modifiers of disease severity in cerebral cavernous malformation type 1.Free Radic Biol Med2016;92:100-9 PMCID:PMC4774945

[6]

Trapani E.Cerebral cavernous malformation (CCM) disease: from monogenic forms to genetic susceptibility factors.J Neurosurg Sci2015;59:201-9

[7]

Gunel M,Finberg K,Steinberg GK,Kopitnik TA,Giannotta SL,Lifton RP.A founder mutation as a cause of cerebral cavernous malformation in Hispanic Americans.N Engl J Med1996;334:946-51

[8]

Denier C,Bergametti F,Riant F,Maciazek J,Brunereau L,Neurochirurgie Société Française de.Genotype-phenotype correlations in cerebral cavernous malformations patients.Ann Neurol2006;60:550-6

[9]

Liquori CL,Squitieri F,Sorlie M,Cannella M,Ptacek L,Marchuk DA.Low frequency of PDCD10 mutations in a panel of CCM3 probands: potential for a fourth CCM locus.Hum Mutat2006;27:118

[10]

Liquori CL,Gault J,Tassi L,Awad IA,Johnson EW,Marchuk DA.Different spectra of genomic deletions within the CCM genes between Italian and American CCM patient cohorts.Neurogenetics2008;9:25-31

[11]

Scimone C,Alafaci C,Piva F,Donato L,Sidoti A.Update on novel CCM gene mutations in patients with cerebral cavernous malformations.J Mol Neurosci2017;61:189-98

[12]

Akers AL,Steinberg GK,Marchuk DA.Biallelic somatic and germline mutations in cerebral cavernous malformations (CCMs): evidence for a two-hit mechanism of CCM pathogenesis.Hum Mol Genet2009;18:919-30 PMCID:PMC2640209

[13]

Pagenstecher A,Sure U.A two-hit mechanism causes cerebral cavernous malformations: complete inactivation of CCM1, CCM2 or CCM3 in affected endothelial cells.Hum Mol Genet2009;18:911-8 PMCID:PMC2640205

[14]

Batra S,Recinos PF,Rigamonti D.Cavernous malformations: natural history, diagnosis and treatment.Nat Rev Neurol2009;5:659-70

[15]

Zhang J,Clatterbuck RE,Dietz HC.Pathogenesis of cerebral cavernous malformation: depletion of Krit1 leads to perturbation of 1 integrin-mediated endothelial cell mobility and survival.Am J Hum Genet2004;suppl:S222

[16]

Hilder TL,Bencharit S,Haystead TA,Wu CC.Proteomic identification of the cerebral cavernous malformation signaling complex.J Proteome Res2007;6:4343-55

[17]

Zawistowski JS,Uhlik MT,Ancrile BB,Marchuk DA.CCM1 and CCM2 protein interactions in cell signaling: implications for cerebral cavernous malformations pathogenesis.Hum Mol Genet2005;14:2521-31

[18]

Zhang J,Dietz HC.Interaction between krit1 and malcavernin: implications for the pathogenesis of cerebral cavernous malformations.Neurosurgery2007;60:353-9; discussion 9

[19]

Zhang J,Padarti A,Patel R,Cistola D.Novel functions of CCM1 delimit the relationship of PTB/PH domains.Biochim Biophys Acta2017;1865:1274-86

[20]

Zhang J,Rigamonti D,Dietz HC.Interaction between krit1 and icap1alpha infers perturbation of integrin beta1-mediated angiogenesis in the pathogenesis of cerebral cavernous malformation.Hum Mol Genet2001;10:2953-60

[21]

Ma X,Shan J,Chen Y,Zhang Y,Ma D.PDCD10 interacts with Ste20-related kinase MST4 to promote cell growth and transformation via modulation of the ERK pathway.Mol Biol Cell2007;18:1965-78 PMCID:PMC1877091

[22]

Uhlik MT,Johnson NL,Cuevas BD,Horne EA,Johnson GL.Rac-MEKK3-MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock.Nat Cell Biol2003;5:1104-10

[23]

Zhang J.Molecular biology of cerebral cavernous malformation..In: Rigamonti D, editor. Cavernous malformations of the nervous system.2011;CambridgeCambridge University Press31-40

[24]

Zhang J,Rigamonti D,Clatterbuck RE.Depletion of KRIT1 leads to perturbation of beta 1 integrin-mediated endothelial cell angiogenesis in the pathogenesis of cerebral cavernous malformation.Stroke2005;36:425

[25]

Zhang J,Rigamonti D,Clatterbuck RE.Krit1 modulates beta 1-integrin-mediated endothelial cell proliferation.Neurosurgery2008;63:571-8; discussion 8

[26]

Richardson BT,Borikova AL.Cerebral cavernous malformation is a vascular disease associated with activated RhoA signaling.Biol Chem2013;394:35-42 PMCID:PMC3677706

[27]

Labauge P,Bonerandi JJ,Dandurand M,Tournier-Lasserve E.An association between autosomal dominant cerebral cavernomas and a distinctive hyperkeratotic cutaneous vascular malformation in 4 families.Ann Neurol1999;45:250-4

[28]

Gianfrancesco F,Martino T,Esposito T,Vitale E,Marchuk DA.Highly variable penetrance in subjects affected with cavernous cerebral angiomas (CCM) carrying novel CCM1 and CCM2 mutations.Am J Med Genet B Neuropsychiatr Genet2007;144B:691-5

[29]

Grippaudo FR,Amoroso M,Penco S,Giubettini M.Cutaneous venous malformations related to KRIT1 mutation: case report and literature review.J Mol Neurosci2013;51:442-5

[30]

Toldo I,Mammi I,Carollo C.Vertebral and spinal cavernous angiomas associated with familial cerebral cavernous malformation.Surg Neurol2009;71:167-71

[31]

Riant F,Fournier HD,Michalak-Provost S,Lejeune P,Choe C,Bernreuther C,Denier C,Tournier-Lasserve E.CCM3 mutations are associated with early-onset cerebral hemorrhage and multiple meningiomas.Mol Syndromol2013;4:165-72 PMCID:PMC3666455

[32]

Nikoubashman O,Tournier-Lasserve E,Bourgeois M,Sainte-Rose C,Zerah M.Natural history of cerebral dot-like cavernomas.Clin Radiol2013;68:e453-9

[33]

Fauth C,Rath M,Lederer AG,Zschocke J.Highly variable intrafamilial manifestations of a CCM3 mutation ranging from acute childhood cerebral haemorrhage to late-onset meningiomas.Clin Neurol Neurosurg2015;128:41-3

[34]

Sirvente J,Wassef M,Labauge P.Frequency and phenotypes of cutaneous vascular malformations in a consecutive series of 417 patients with familial cerebral cavernous malformations.J Eur Acad Dermatol Venereol2009;23:1066-72

[35]

Shenkar R,Rebeiz T,McDonald DA,Zhang L,Akers AL,Rorrer A,Min W,Lee C,Awad IA.Exceptional aggressiveness of cerebral cavernous malformation disease associated with PDCD10 mutations.Genet Med2015;17:188-96 PMCID:PMC4329119

[36]

Choquet H,Lawton MT.Genetics of cerebral cavernous malformations: current status and future prospects.J Neurosurg Sci2015;59:211-20 PMCID:PMC4461471

[37]

Rath M,Schwefel K,Kleimeier D,Kaderali L.High-throughput sequencing of the entire genomic regions of CCM1/KRIT1, CCM2 and CCM3/PDCD10 to search for pathogenic deep-intronic splice mutations in cerebral cavernous malformations.Eur J Med Genet2017;60:479-84

[38]

Zhang J,Rigamonti D.Mutations in KRIT1 in familial cerebral cavernous malformations.Neurosurgery2000;46:1272-7; discussion 7

[39]

Riant F,Ayrignac X,Tournier-Lasserve E.Recent insights into cerebral cavernous malformations: the molecular genetics of CCM.FEBS J2010;277:1070-5

[40]

Haasdijk RA,Maat-Kievit AJ.Cerebral cavernous malformations: from molecular pathogenesis to genetic counselling and clinical management.Eur J Hum Genet2012;20:134-40 PMCID:PMC3260921

[41]

Petersen TA,Schrader RM.Familial versus sporadic cavernous malformations: differences in developmental venous anomaly association and lesion phenotype.AJNR Am J Neuroradiol2010;31:377-82 PMCID:PMC4455949

[42]

Zhang J,Rigamonti D.Cloning of the murine Krit1 cDNA reveals novel mammalian 5' coding exons.Genomics2000;70:392-5

[43]

Gingras AR,Ginsberg MH.The structure of the ternary complex of Krev interaction trapped 1 (KRIT1) bound to both the Rap1 GTPase and the heart of glass (HEG1) cytoplasmic tail.J Biol Chem2013;288:23639-49 PMCID:PMC3745310

[44]

Li X,Draheim KM,Calderwood DA.Structural basis for small G protein effector interaction of Ras-related protein 1 (Rap1) and adaptor protein Krev interaction trapped 1 (KRIT1).J Biol Chem2012;287:22317-27 PMCID:PMC3381192

[45]

Fisher OS.Signaling pathways and the cerebral cavernous malformations proteins: lessons from structural biology.Cell Mol Life Sci2014;71:1881-92 PMCID:PMC3999170

[46]

Faurobert E.Recent insights into cerebral cavernous malformations: a complex jigsaw puzzle under construction.FEBS J2010;277:1084-96 PMCID:PMC3076058

[47]

Francalanci F,De Luca E,Menchise V,Sgrò F,Goitre L,Trabalzini L.Structural and functional differences between KRIT1A and KRIT1B isoforms: a framework for understanding CCM pathogenesis.Exp Cell Res2009;315:285-303

[48]

Beraud-Dufour S,Albiges-Rizo C,Faurobert E.Krit 1 interactions with microtubules and membranes are regulated by Rap1 and integrin cytoplasmic domain associated protein-1.FEBS J2007;274:5518-32 PMCID:PMC2580780

[49]

Goult BT,Anthis NJ,Gingras AR,Barsukov IL,Roberts GC.The structure of an interdomain complex that regulates talin activity.J Biol Chem2009;284:15097-106 PMCID:PMC2685691

[50]

Goult BT,Elliott PR,Patel B,Grossmann JG,Calderwood DA,Barsukov IL.Structure of a double ubiquitin-like domain in the talin head: a role in integrin activation.EMBO J2010;29:1069-80 PMCID:PMC2845276

[51]

Pecqueur L,Dreier B,Wang C,Surrey T,Knossow M.A designed ankyrin repeat protein selected to bind to tubulin caps the microtubule plus end.Proc Natl Acad Sci U S A2012;109:12011-6 PMCID:PMC3409770

[52]

Zhang R,Boggon TJ.Structural analysis of the KRIT1 ankyrin repeat and FERM domains reveals a conformationally stable ARD-FERM interface.J Struct Biol2015;192:449-56 PMCID:PMC4651721

[53]

Bessman MJ,O'Handley SF.The MutT proteins or "Nudix" hydrolases, a family of versatile, widely distributed, "housecleaning" enzymes.J Biol Chem1996;271:25059-62

[54]

Liu W,Zhang R,Boggon TJ.Mechanism for KRIT1 release of ICAP1-mediated suppression of integrin activation.Mol Cell2013;49:719-29 PMCID:PMC3684052

[55]

Petit N,Denier C.Patterns of expression of the three cerebral cavernous malformation (CCM) genes during embryonic and postnatal brain development.Gene Expr Patterns2006;6:495-503

[56]

Seker A,Guclu B,Louvi A.CCM2 expression parallels that of CCM1.Stroke2006;37:518-23

[57]

Zhang J,Badr A.The cardiovascular triad of dysfunctional angiogenesis.Transl Stroke Res2011;2:339-45 PMCID:PMC3165165

[58]

Stockton RA,Awad IA.Cerebral cavernous malformations proteins inhibit Rho kinase to stabilize vascular integrity.J Exp Med2010;207:881-96 PMCID:PMC2856024

[59]

Fisher OS,Zhang R,Ghedia S,Boggon TJ.Structural basis for the disruption of the cerebral cavernous malformations 2 (CCM2) interaction with Krev interaction trapped 1 (KRIT1) by disease-associated mutations.J Biol Chem2015;290:2842-53 PMCID:PMC4317034

[60]

Scimone C,Ruggeri A,Alafaci C,Mucciardi M,Sidoti A.CCM3/SERPINI1 bidirectional promoter variants in patients with cerebral cavernous malformations: a molecular and functional study.BMC Med Genet2016;17:74 PMCID:PMC5064884

[61]

Kean MJ,Goudreault M,Tate S,Gibson LC,Scott IC,Baillie GS,Gingras AC.Structure-function analysis of core STRIPAK Proteins: a signaling complex implicated in Golgi polarization.J Biol Chem2011;286:25065-75 PMCID:PMC3137080

[62]

Dibble CF,Malone MH,Temple B,Barbaro JR,Bencharit S.Defining the functional domain of programmed cell death 10 through its interactions with phosphatidylinositol-3,4,5-trisphosphate.PLoS One2010;5:e11740 PMCID:PMC2909203

[63]

Li X,Zhang H,Ji W,Boggon TJ.Crystal structure of CCM3, a cerebral cavernous malformation protein critical for vascular integrity.J Biol Chem2010;285:24099-107 PMCID:PMC2911348

[64]

Lant B,Goudreault M,Knight JD,Zhao L,Wallace E,Gingras AC.CCM-3/STRIPAK promotes seamless tube extension through endocytic recycling.Nat Commun2015;6:6449

[65]

Rehain-Bell K,Werner ME,Yates JR,Maddox AS.A sterile 20 family kinase and its co-factor CCM-3 regulate contractile ring proteins on germline intercellular bridges.Curr Biol2017;27:860-7 PMCID:PMC5367925

[66]

Berman JR.Germ-cell loss extends C.Elegans life span through regulation of DAF-16 by kri-1 and lipophilic-hormone signaling. Cell2006;124:1055-68

[67]

Guzeloglu-Kayisli O,Voorhees J,Lifton RP.KRIT1/cerebral cavernous malformation 1 protein localizes to vascular endothelium, astrocytes, and pyramidal cells of the adult human cerebral cortex.Neurosurgery2004;54:943-9; discussion 9

[68]

Zhang J,Rigamonti D,Dietz HC.Novel insights regarding the pathogenesis of cerebral cavernous malformation (CCM).American Journal of Human Genetics2001;69:178

[69]

Serebriiskii I,Sonoda G,Golemis EA.Association of Krev-1/rap1a with Krit1, a novel ankyrin repeat-containing protein encoded by a gene mapping to 7q21-22.Oncogene1997;15:1043-9

[70]

Frische EW.Rap1, a mercenary among the Ras-like GTPases.Dev Biol2010;340:1-9

[71]

Liu JJ,Gingras AR,Han J,Ginsberg MH.A mechanism of Rap1-induced stabilization of endothelial cell--cell junctions.Mol Biol Cell2011;22:2509-19 PMCID:PMC3135476

[72]

Liu H,Badr A.Ccm1 regulates microvascular morphogenesis during angiogenesis.J Vasc Res2011;48:130-40 PMCID:PMC3219476

[73]

Lakshmikanthan S,Chun C,Dargatz J,Chrzanowska-Wodnicka M.Rap1 promotes VEGFR2 activation and angiogenesis by a mechanism involving integrin alphavbeta(3).Blood2011;118:2015-26 PMCID:PMC3158727

[74]

Chrzanowska-Wodnicka M,Quilliam LA.Small GTPase Rap1 is essential for mouse development and formation of functional vasculature.PLoS One2015;10:e0145689 PMCID:PMC4694701

[75]

Hamada K,Matsui T,Hakoshima T.Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FERM domain.EMBO J2000;19:4449-62 PMCID:PMC302071

[76]

Gingras AR,Ginsberg MH.Structural basis of the junctional anchorage of the cerebral cavernous malformations complex.J Cell Biol2012;199:39-48 PMCID:PMC3461514

[77]

Brütsch R,Wüstehube J,Herberich SE,Telzerow A,Fischer A.Integrin cytoplasmic domain-associated protein-1 attenuates sprouting angiogenesis.Circ Res2010;107:592-601

[78]

Fournier HN,Bouvard D,Degani S,Retta SF.Nuclear translocation of integrin cytoplasmic domain-associated protein 1 stimulates cellular proliferation.Mol Biol Cell2005;16:1859-71 PMCID:PMC1073667

[79]

Calderwood DA,de Pereda JM,Nakamoto T,McGlade CJ,Ginsberg MH.Integrin beta cytoplasmic domain interactions with phosphotyrosine-binding domains: a structural prototype for diversity in integrin signaling.Proc Natl Acad Sci U S A2003;100:2272-7 PMCID:PMC151330

[80]

Bouvard D,Kostka G,Albiges-Rizo C.Defective osteoblast function in ICAP-1-deficient mice.Development2007;134:2615-25 PMCID:PMC2793408

[81]

Brunner M,Chevalier G,Mosher D,Albigès-Rizo C.Osteoblast mineralization requires beta1 integrin/ICAP-1-dependent fibronectin deposition.J Cell Biol2011;194:307-22 PMCID:PMC3144405

[82]

Liu W.Cocrystal structure of the ICAP1 PTB domain in complex with a KRIT1 peptide.Acta Crystallogr Sect F Struct Biol Cryst Commun2013;69:494-8 PMCID:PMC3660885

[83]

Draheim KM,Boggon TJ.Cerebral cavernous malformation proteins at a glance.J Cell Sci2014;127:701-7 PMCID:PMC3924200

[84]

Stiegler AL,Liu W.Structural determinants for binding of sorting nexin 17 (SNX17) to the cytoplasmic adaptor protein Krev interaction trapped 1 (KRIT1).J Biol Chem2014;289:25362-73 PMCID:PMC4155697

[85]

Uhlik MT,Bencharit S,Siderovski DP.Structural and evolutionary division of phosphotyrosine binding (PTB) domains.J Mol Biol2005;345:1-20

[86]

Harel L,Tcherpakov M,Oberthuer A,Vojvodic M,Chen ZY,Avigad S,Shi L,Fischer M,Kaplan DR.CCM2 mediates death signaling by the TrkA receptor tyrosine kinase.Neuron2009;63:585-91

[87]

Costa B,Ast V,Mett A,Ceccarelli DF,Eils R,Gingras AC.STK25 protein mediates TrkA and CCM2 protein-dependent death in pediatric tumor cells of neural origin.J Biol Chem2012;287:29285-9 PMCID:PMC3436191

[88]

Crose LE,Sciaky N.Cerebral cavernous malformation 2 protein promotes smad ubiquitin regulatory factor 1-mediated RhoA degradation in endothelial cells.J Biol Chem2009;284:13301-5 PMCID:PMC2679429

[89]

Whitehead KJ,Navankasattusas S,London NR,Mayo AH,Jones CA,Marchuk DA,Li DY.The cerebral cavernous malformation signaling pathway promotes vascular integrity via Rho GTPases.Nat Med2009;15:177-84 PMCID:PMC2767168

[90]

Zhou Z,Wong WY,Goddard LM,Zhou S,Wright AC,Arthur JS,Awad IA,Zheng X.Cerebral cavernous malformations arise from endothelial gain of MEKK3-KLF2/4 signalling.Nature2016;532:122-6 PMCID:PMC4864035

[91]

Draheim KM,Zhang R,Villari G,Calderwood DA.CCM2-CCM3 interaction stabilizes their protein expression and permits endothelial network formation.J Cell Biol2015;208:987-1001 PMCID:PMC4384732

[92]

Zheng X,Smith AO,Zou Z,Yuan L,Sen A,Skuli N,Chen M,Davis GE.Dynamic regulation of the cerebral cavernous malformation pathway controls vascular stability and growth.Dev Cell2012;23:342-55 PMCID:PMC3743537

[93]

Rosen JN,Ye LY.Ccm2-like is required for cardiovascular development as a novel component of the Heg-CCM pathway.Dev Biol2013;376:74-85 PMCID:PMC4301579

[94]

Ceccarelli DF,Mulligan VK,Goudreault M,Derry WB,Gingras AC.CCM3/PDCD10 heterodimerizes with germinal center kinase III (GCKIII) proteins using a mechanism analogous to CCM3 homodimerization.J Biol Chem2011;286:25056-64 PMCID:PMC3137079

[95]

Xu X,Zhang Y,Ding J.Structural basis for the unique heterodimeric assembly between cerebral cavernous malformation 3 and germinal center kinase III.Structure2013;21:1059-66

[96]

Ding J,Li DF,Zhang Y.Crystal structure of human programmed cell death 10 complexed with inositol-(1,3,4,5)-tetrakisphosphate: a novel adaptor protein involved in human cerebral cavernous malformation.Biochem Biophys Res Commun2010;399:587-92

[97]

Voss K,Hogan BM,Schleider E,Felbor U.Functional analyses of human and zebrafish 18-amino acid in-frame deletion pave the way for domain mapping of the cerebral cavernous malformation 3 protein.Hum Mutat2009;30:1003-11

[98]

Ridley AJ.The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors.Cell1992;70:389-99

[99]

Zheng X,Di Lorenzo A,Zou Z,Chen M,Xiao J,Pack MA,Kahn ML.CCM3 signaling through sterile 20-like kinases plays an essential role during zebrafish cardiovascular development and cerebral cavernous malformations.J Clin Invest2010;120:2795-804 PMCID:PMC2912181

[100]

Chan AC,Ruiz OE,Gibson CC,Passi SF,Sacharidou A,Grossmann AH,Davis GE,Whitehead KJ.Mutations in 2 distinct genetic pathways result in cerebral cavernous malformations in mice.J Clin Invest2011;121:1871-81 PMCID:PMC3083782

[101]

McDonald DA,Shi C,Akers AL,Kucherlapati R,Ginsberg MH,Marchuk DA.A novel mouse model of cerebral cavernous malformations based on the two-hit mutation hypothesis recapitulates the human disease.Hum Mol Genet2011;20:211-22 PMCID:PMC3005897

[102]

Li X,Zhang R,Min W.Molecular recognition of leucine-aspartate repeat (LD) motifs by the focal adhesion targeting homology domain of cerebral cavernous malformation 3 (CCM3).J Biol Chem2011;286:26138-47 PMCID:PMC3138288

[103]

Lu TJ,Huang CY,Yu JS,Chang WT,Chang WC,Tang MJ,Lu TL.Inhibition of cell migration by autophosphorylated mammalian sterile 20-like kinase 3 (MST3) involves paxillin and protein-tyrosine phosphatase-PEST.J Biol Chem2006;281:38405-17

[104]

Wüstehube J,Liebler SS,Zhu Y,Sure U,Fischer A.Cerebral cavernous malformation protein CCM1 inhibits sprouting angiogenesis by activating DELTA-NOTCH signaling.Proc Natl Acad Sci U S A2010;107:12640-5 PMCID:PMC2906569

[105]

Liu H,Badr A.Ccm1 assures microvascular integrity during angiogenesis.Transl Stroke Res2010;1:146-53 PMCID:PMC3090208

[106]

Goitre L,Degani S,Marchi S,Retta SF.KRIT1 regulates the homeostasis of intracellular reactive oxygen species.PLoS One2010;5:e11786 PMCID:PMC2910502

[107]

Guazzi P,Ferro E,Martino C,Retta SF.Identification of the Kelch family protein Nd1-L as a novel molecular interactor of KRIT1.PLoS One2012;7:e44705 PMCID:PMC3435375

[108]

Kato Y,Tapping RI,Ulevitch RJ.BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C.EMBO J1997;16:7054-66 PMCID:PMC1170308

[109]

Sohn SJ,Lee LK.Transcriptional regulation of tissue-specific genes by the ERK5 mitogen-activated protein kinase.Mol Cell Biol2005;25:8553-66 PMCID:PMC1265748

[110]

Dekker RJ,Fontijn RD,de Groot PG,Pannekoek H.Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2).Blood2002;100:1689-98

[111]

Ohnesorge N,Schmidt N,Spiering D,Ludwig S,Goebeler M.Erk5 activation elicits a vasoprotective endothelial phenotype via induction of Kruppel-like factor 4 (KLF4).J Biol Chem2010;285:26199-210 PMCID:PMC2924030

[112]

Komaravolu RK,Moonen JR,Goebeler M.Erk5 inhibits endothelial migration via KLF2-dependent down-regulation of PAK1.Cardiovasc Res2015;105:86-95

[113]

Maddaluno L,Cuttano R,Giampietro C,Ferrarini L,Papa E,Tournier-Lasserve E,Richichi C,Lampugnani MG.EndMT contributes to the onset and progression of cerebral cavernous malformations.Nature2013;498:492-6

[114]

Cuttano R,Bravi L,Giampietro C,Morini MF,Baeyens N,Jain MK,Schwartz M,Dejana E.KLF4 is a key determinant in the development and progression of cerebral cavernous malformations.EMBO Mol Med2016;8:6-24 PMCID:PMC4718159

[115]

Zhou Z,Goddard LM,Cao XJ,Zheng H,Arthur JS,Li D,Garcia BA,Kahn ML.The cerebral cavernous malformation pathway controls cardiac development via regulation of endocardial MEKK3 signaling and KLF expression.Dev Cell2015;32:168-80 PMCID:PMC4589864

[116]

Renz M,Faurobert E,Zhu Y,Duchene J,Dietrich AC,Steed E,Benz A,Vermot J,Tournier-Lasserve E,Sure U,Abdelilah-Seyfried S.Regulation of beta1 integrin-Klf2-mediated angiogenesis by CCM proteins.Dev Cell2015;32:181-90

[117]

Zhang X.Thrombospondin-based antiangiogenic therapy.Microvasc Res2007;74:90-9 PMCID:PMC2100421

[118]

Lopez-Ramirez MA,Zeineddine HA,Moore T,Cao Y,de Kreuk BJ,Lawler J,Awad IA.Thrombospondin1 (TSP1) replacement prevents cerebral cavernous malformations.J Exp Med2017;214:3331-46

[119]

Draheim KM,Simon B.Nuclear localization of integrin cytoplasmic domain-associated protein-1 (ICAP1) influences beta1 integrin activation and recruits krev/interaction trapped-1 (KRIT1) to the nucleus.J Biol Chem2017;292:1884-98 PMCID:PMC5290960

[120]

Piedra J,Castaño J,Heisterkamp N,Duñach M.p120 catenin-associated Fer and Fyn tyrosine kinases regulate beta-catenin Tyr-142 phosphorylation and beta-catenin-alpha-catenin interaction.Mol Cell Biol2003;23:2287-97 PMCID:PMC150740

[121]

Potter MD,Cheresh DA.Tyrosine phosphorylation of VE-cadherin prevents binding of p120- and beta-catenin and maintains the cellular mesenchymal state.J Biol Chem2005;280:31906-12

[122]

DiStefano PV,Sarelius IH.KRIT1 protein depletion modifies endothelial cell behavior via increased vascular endothelial growth factor (VEGF) signaling.J Biol Chem2014;289:33054-65 PMCID:PMC4239650

[123]

Hilder TL,Johnson GL.Hyperosmotic induction of mitogen-activated protein kinase scaffolding.Methods Enzymol2007;428:297-312

[124]

Zhou X,Burg MB.Rac1/osmosensing scaffold for MEKK3 contributes via phospholipase C-gamma1 to activation of the osmoprotective transcription factor NFAT5.Proc Natl Acad Sci U S A2011;108:12155-60 PMCID:PMC3141947

[125]

Louvi A,Two AM,Min W.Loss of cerebral cavernous malformation 3 (Ccm3) in neuroglia leads to CCM and vascular pathology.Proc Natl Acad Sci U S A2011;108:3737-42 PMCID:PMC3048113

[126]

You C,Dammann P,Sure U.Loss of CCM3 impairs DLL4-Notch signalling: implication in endothelial angiogenesis and in inherited cerebral cavernous malformations.J Cell Mol Med2013;17:407-18 PMCID:PMC3823022

[127]

Zhu Y,Fass M,You C,Sandalcioglu IE,Sure U.In vitro characterization of the angiogenic phenotype and genotype of the endothelia derived from sporadic cerebral cavernous malformations.Neurosurgery2011;69:722-31; discussion 31-2

[128]

Harrington LS,Williams CK,Shi W,Harris AL.Regulation of multiple angiogenic pathways by Dll4 and Notch in human umbilical vein endothelial cells.Microvasc Res2008;75:144-54

[129]

Kume T.Novel insights into the differential functions of Notch ligands in vascular formation.J Angiogenes Res2009;1:8 PMCID:PMC2794854

[130]

Hellstrom M,Gerhardt H.VEGF and Notch signaling: the yin and yang of angiogenic sprouting.Cell Adh Migr2007;1:133-6 PMCID:PMC2634014

[131]

Bheeshmachar G,Sade H,Rangarajan A.Evidence for a role for notch signaling in the cytokine-dependent survival of activated T cells.J Immunol2006;177:5041-50

[132]

Poltorak A,Smirnova I,Van Huffel C,Birdwell D,Silva M,Freudenberg M,Layton B.Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene.Science1998;282:2085-8

[133]

Huang Q,Lin Y,Cheng J,Su B.Differential regulation of interleukin 1 receptor and Toll-like receptor signaling by MEKK3.Nat Immunol2004;5:98-103

[134]

Tang AT,Kotzin JJ,Hong CC,Girard R,Lightle R,Cao Y,Chen M,Yang J,Tanes C,Võsa U,Li DY,Hart B,Henao-Mejia J,Kim H,Zheng X.Endothelial TLR4 and the microbiome drive cerebral cavernous malformations.Nature2017;545:305-10 PMCID:PMC5757866

[135]

He Y,Yu L,Boggon TJ,Min W.Stabilization of VEGFR2 signaling by cerebral cavernous malformation 3 is critical for vascular development.Sci Signal2010;3:ra26 PMCID:PMC3052863

[136]

Fischer A,Faurobert E,Tournier-Lasserve E.Cerebral cavernous malformations: from CCM genes to endothelial cell homeostasis.Trends Mol Med2013;19:302-8

[137]

Herberich SE,Moll I,Wustehube-Lausch J.ANKS1B interacts with the cerebral cavernous malformation protein-1 and controls endothelial permeability but not sprouting angiogenesis.PLoS One2015;10:e0145304 PMCID:PMC4699217

[138]

Vestweber D,Cagna G.Cell adhesion dynamics at endothelial junctions: VE-cadherin as a major player.Trends Cell Biol2009;19:8-15

[139]

Glading A,Stockton RA.KRIT-1/CCM1 is a Rap1 effector that regulates endothelial cell cell junctions.J Cell Biol2007;179:247-54 PMCID:PMC2064761

[140]

Goitre L,Moglia A,Baldini E,Keubel J,Shuvaev VV,Sarelius IH,Glading AJ.Up-regulation of NADPH oxidase-mediated redox signaling contributes to the loss of barrier function in KRIT1 deficient endothelium.Sci Rep2017;7:8296 PMCID:PMC5558000

[141]

Goitre L,Braggion S,Guglielmotto M,Forni M,Trabalzini L.KRIT1 loss of function causes a ROS-dependent upregulation of c-Jun.Free Radic Biol Med2014;68:134-47 PMCID:PMC3994518

[142]

Hsieh HL,Chan HJ,Yang CM.c-Src-dependent EGF receptor transactivation contributes to ET-1-induced COX-2 expression in brain microvascular endothelial cells.J Neuroinflammation2012;9:152 PMCID:PMC3410791

[143]

Corr M,Keubel JM,Misra R,Sarelius IH.Decreased Krev interaction-trapped 1 expression leads to increased vascular permeability and modifies inflammatory responses in vivo.Arterioscler Thromb Vasc Biol2012;32:2702-10 PMCID:PMC3475761

[144]

Retta SF.Oxidative stress and inflammation in cerebral cavernous malformation disease pathogenesis: two sides of the same coin.Int J Biochem Cell Biol2016;81:254-70 PMCID:PMC5155701

[145]

Espinosa-Diez C,Mennerich D,Sánchez-Pérez P,Lamas S.Antioxidant responses and cellular adjustments to oxidative stress.Redox Biol2015;6:183-97 PMCID:PMC4534574

[146]

Dodson M,Rajasekaran NS,Zhang J.KEAP1-NRF2 signalling and autophagy in protection against oxidative and reductive proteotoxicity.Biochem J2015;469:347-55 PMCID:PMC5514546

[147]

Siow RC.Dietary isoflavones and vascular protection: activation of cellular antioxidant defenses by SERMs or hormesis? Mol Aspects Med 2010;31:468-77.Mol Aspects Med2010;31:468-77

[148]

Bryan HK,Goldring CE.The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation.Biochem Pharmacol2013;85:705-17

[149]

Yuan X,Pan Z,Kim JH,Yu S,Ma J.Butylated hydroxyanisole regulates ARE-mediated gene expression via Nrf2 coupled with ERK and JNK signaling pathway in HepG2 cells.Mol Carcinog2006;45:841-50

[150]

Schalkwijk CG,van der Schors RC,Stehouwer CD.Heat-shock protein 27 is a major methylglyoxal-modified protein in endothelial cells.FEBS Lett2006;580:1565-70

[151]

Nomura W.Methylglyoxal activates the target of rapamycin complex 2-protein kinase C signaling pathway in Saccharomyces cerevisiae.Mol Cell Biol2015;35:1269-80 PMCID:PMC4355542

[152]

Antognelli C,Delle Monache S,Daga M,Barrera G,Angelucci A,Talesa VN,Retta SF.KRIT1 loss-of-function induces a chronic Nrf2-mediated adaptive homeostasis that sensitizes cells to oxidative stress: implication for cerebral cavernous malformation disease.Free Radic Biol Med2018;115:202-18 PMCID:PMC5806631

[153]

Munch J,Gonzalez-Rajal A,de la Pompa JL.Notch signalling restricts inflammation and serpine1 expression in the dynamic endocardium of the regenerating zebrafish heart.Development2017;144:1425-40

[154]

Beis D,Jin SW,D'Amico LA,Verkade H,Field HA,Baier H,Bally-Cuif L,Stainier DY.Genetic and cellular analyses of zebrafish atrioventricular cushion and valve development.Development2005;132:4193-204

[155]

Donat S,Paolini A,Renz M.Heg1 and Ccm1/2 proteins control endocardial mechanosensitivity during zebrafish valvulogenesis.Elife2018;7:pii: e28939 PMCID:PMC5794256

[156]

Yaba A,Tanriover G,Demir N.Expression of CCM2 and CCM3 during mouse gonadogenesis.J Assist Reprod Genet2015;32:1497-507 PMCID:PMC4615919

[157]

Guo S.A non-muscle myosin required for embryonic polarity in Caenorhabditis elegans.Nature1996;382:455-8

[158]

Pal S,Yu B,Tong J,Moran MF,Derry WB.CCM-3 Promotes C.Elegans germline development by regulating vesicle trafficking cytokinesis and polarity. Curr Biol2017;27:868-76

[159]

Fidalgo M,Fraile M,Pombo CM.Adaptor protein cerebral cavernous malformation 3 (CCM3) mediates phosphorylation of the cytoskeletal proteins ezrin/radixin/moesin by mammalian Ste20-4 to protect cells from oxidative stress.J Biol Chem2012;287:11556-65 PMCID:PMC3322875

[160]

Pivot-Pajot C,de Saint Basile G.Munc13-4 regulates granule secretion in human neutrophils.J Immunol2008;180:6786-97

[161]

Boswell KL,Esquibel JM,Shirakawa R,Martin TF.Munc13-4 reconstitutes calcium-dependent SNARE-mediated membrane fusion.J Cell Biol2012;197:301-12 PMCID:PMC3328385

[162]

Zhang M,Shi Z,Zhang Z,Liu G,Feng M,Wang W,Zhao Y,Zhou Z.Structural mechanism of CCM3 heterodimerization with GCKIII kinases.Structure2013;21:680-8

[163]

Fiedler U,Scharpfenecker M,Koidl S,Gale NW,Rosseau S,Sobke A,Preissner KT,Augustin HG.Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation.Nat Med2006;12:235-9

[164]

Lowenstein CJ,Yamakuchi M.Regulation of Weibel-Palade body exocytosis.Trends Cardiovasc Med2005;15:302-8

[165]

Sugden PH,Clerk A.SOcK, MiSTs, MASK and STicKs: the GCKIII (germinal centre kinase III) kinases and their heterologous protein-protein interactions.Biochem J2013;454:13-30

[166]

Fidalgo M,Pires A,Pombo C.CCM3/PDCD10 stabilizes GCKIII proteins to promote Golgi assembly and cell orientation.J Cell Sci2010;123:1274-84

[167]

Maddox AS,Desai A.Distinct roles for two C.Elegans anillins in the gonad and early embryo. Development2005;132:2837-48

[168]

Yamamoto S,Bellen HJ.Protein phosphatase 1ss limits ring canal constriction during Drosophila germline cyst formation.PLoS One2013;8:e70502 PMCID:PMC3723691

[169]

Marchi S,Trapani E,Pittaro A,Ferroni L,Missiroli S,Trabalzini L,Giorgi C,Cassoni P,Retta SF.Defective autophagy is a key feature of cerebral cavernous malformations.EMBO Mol Med2015;7:1403-17 PMCID:PMC4644374

[170]

Yogev O.Jun proteins inhibit autophagy and induce cell death.Autophagy2010;6:566-7

[171]

Liu J,Chen T,Wang SX,Liu GS,Bu P.Shear stress regulates endothelial cell autophagy via redox regulation and Sirt1 expression.Cell Death Dis2015;6:e1827 PMCID:PMC4650738

[172]

Kar S,Baisantry A,Samii A.Genome-Wide sequencing reveals MicroRNAs downregulated in cerebral cavernous malformations.J Mol Neurosci2017;61:178-88

[173]

Clark VE,Serin A,Cotney J,Avşar T,Murray PB,Yilmaz S,Carrión-Grant G,Grady C,Bakircioğlu M,Caglayan AO,Ceyhun E,Bayri Y,Kolb LE,Omay SB,Choi M,Holland EC,State MW,Baehring JM,Piepmeier JM,Brennan CW,Kiliç T,Noonan JP,Günel M.Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO.Science2013;339:1077-80 PMCID:PMC4808587

[174]

Labauge P,Neau JP,Riant F,Marchelli F,Lannuzel A,Olschwang S,Tournier-Lasserve E.Multiple dural lesions mimicking meningiomas in patients with CCM3/PDCD10 mutations.Neurology2009;72:2044-6

[175]

Guerrero A,Raguz S,Gil J,Zalvide J.The cerebral cavernous malformation 3 gene is necessary for senescence induction.Aging Cell2015;14:274-83 PMCID:PMC4364839

[176]

Fu X,Su Y,Wang D.MicroRNA-103 suppresses tumor cell proliferation by targeting PDCD10 in prostate cancer.Prostate2016;76:543-51

PDF

41

Accesses

0

Citation

Detail

Sections
Recommended

/