Energetic metabolism in cardiomyocytes: molecular basis of heart ischemia and arrhythmogenesis

María Sofía Martínez , Andrés García , Eliana Luzardo , Mervin Chávez-Castillo , Luis Carlos Olivar , Juan Salazar , Manuel Velasco , Joselyn Joanna Rojas Quintero , Valmore Bermúdez

Vessel Plus ›› 2017, Vol. 1 ›› Issue (1) : 130 -41.

PDF
Vessel Plus ›› 2017, Vol. 1 ›› Issue (1) :130 -41. DOI: 10.20517/2574-1209.2017.34
Review
Review

Energetic metabolism in cardiomyocytes: molecular basis of heart ischemia and arrhythmogenesis

Author information +
History +
PDF

Abstract

Cardiac muscle contraction is a strictly regulated process which conjugates a series of electrophysiological, biochemical and mechanic events, resulting in the pumping of blood to all bodily tissues. These phenomena require a very high energetic demand both for generating the necessary mechanical force, and for maintaining cellular homeostasis during the process. In the myocardium, fatty acids (FA) represent the main energy substrate, although other secondary substrates, such as glucose and ketone bodies, may also be used. Nevertheless, under certain conditions such as heart failure or myocardial ischemia, FA metabolism may become deleterious via mechanisms such as oxidative stress and arrhythmogenesis. In an ischemic milieu, various metabolic changes occur as a consequence of hypoxia, favoring cell necrosis, ventricular arrhythmias, and death. Major events in this context include an increase in extracellular K+, a decrease in pH, and accumulation of intracellular calcium. This review includes a detailed description of the molecular basis underlying myocardial contraction and energetic metabolism in cardiomyocytes, aiming to promote an integral understanding of the pathophysiology of heart ischemia. This in turn may aid in the development of future, more satisfactory alternative treatments in the management of acute coronary ischemia episodes.

Keywords

Myocardial metabolism / cardiomyocyte / myocardial infarction / ischemia / arrhythmias

Cite this article

Download citation ▾
María Sofía Martínez, Andrés García, Eliana Luzardo, Mervin Chávez-Castillo, Luis Carlos Olivar, Juan Salazar, Manuel Velasco, Joselyn Joanna Rojas Quintero, Valmore Bermúdez. Energetic metabolism in cardiomyocytes: molecular basis of heart ischemia and arrhythmogenesis. Vessel Plus, 2017, 1(1): 130-41 DOI:10.20517/2574-1209.2017.34

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D'Souza K,Kienesberger P.Lipid metabolism and signaling in cardiac lipotoxicity..Biochim Biophys Acta2016;1861:1513-24

[2]

Gillespie HS,Prutkin JM.Arrhythmias in structural heart disease..Curr Cardiol Rep2014;16:510

[3]

Burton RA,Casero R,Siedlecka U,Kohl P.Three-dimensional histology: tools and application to quantitative assessment of cell-type distribution in rabbit heart..Europace2014;16 Suppl 4:iv86-95 PMCID:PMC4217519

[4]

Maass K,Lu J,See F,Delgado C,Cohen L.Isolation and characterization of embryonic stem cell-derived cardiac Purkinje cells..Stem Cells2015;33:1102-12 PMCID:PMC4418548

[5]

Vigmond EJ.Modeling our understanding of the His-Purkinje system..Prog Biophys Mol Biol2016;120:179-88

[6]

Yin Z,Guo W.Sarcomeric protein isoform transitions in cardiac muscle: a journey to heart failure..Biochim Biophys Acta2015;1852:47-52 PMCID:PMC4268308

[7]

Hu LY,Kontrogianni-Konstantopoulos A.The sarcomeric M-region: a molecular command center for diverse cellular processes..Biomed Res Int2015;2015:714197

[8]

Katz A.Contractile proteins of the heart..Phys Rev2016;50:63-158

[9]

Gazta-aga L,Betensky B.Mechanisms of cardiac arrhythmias..Rev Esp Cardiol (Engl Ed)2012;65:174-85

[10]

Kleber AG.Role of the intercalated disc in cardiac propagation and arrhythmogenesis..Front Physiol2014;5:404 PMCID:PMC4201087

[11]

Kurtenbach S,Zoidl G.Gap junction modulation and its implications for heart function..Front Physiol2014;5:82 PMCID:PMC3936571

[12]

Veeraraghavan R,Gourdie RG.Intercellular electrical communication in the heart: a new, active role for the intercalated disk..Cell Commun Adhes2014;21:161-7 PMCID:PMC5146986

[13]

Rider O,Tyler D,Neubauer S.Myocardial substrate metabolism in obesity..Int J Obes (Lond)2012;37:972-9

[14]

Carley AN,Lewandowski ED.Mechanisms linking energy substrate metabolism to the function of the heart..Circ Res2014;114:717-29 PMCID:PMC4410983

[15]

Doenst T,Abel ED.Cardiac metabolism in heart failure - implications beyond ATP production..Circ Res2013;113:709-24 PMCID:PMC3896379

[16]

Rosano G,Spoletini I.Metabolic approach to heart failure: the role of metabolic modulators..Egyptian Heart J2015;67:177-81

[17]

Long Q,Yang Q.Regulation of mitochondrial ATP synthase in cardiac pathophysiology..Am J Cardiovasc Dis2015;5:19-32 PMCID:PMC4447074

[18]

Ingwall JS.Energy metabolism in heart failure and remodelling..Cardiovasc Res2009;81:412-9 PMCID:PMC2639129

[19]

Wang J.Metabolic remodeling in chronic heart failure..J Zhejiang Univ Sci B2013;14:688-95 PMCID:PMC3735968

[20]

Goldberg IJ,Schulze PC.Lipid metabolism and toxicity in the heart..Cell Metabolism2012;15:805-12 PMCID:PMC3387529

[21]

Wolf P,Krššák M.Heart, lipids and hormones..Endocr Connect2017;6:R59-69 PMCID:PMC5632716

[22]

Abumrad NA.CD36 actions in the heart: lipids, calcium, inflammation, repair and more?.Biochim Biophys Acta2016;1860:1442-9

[23]

Fukushima A.Cardiac fatty acid oxidation in heart failure associated with obesity and diabetes..Biochim Biophys Acta2016;1861:1525-34

[24]

Fukushima A,Gupta A.Acetylation control of cardiac fatty acid β-oxidation and energy metabolism in obesity, diabetes, and heart failure..Biochim Biophys Acta2016;1862:2211-20

[25]

Fillmore N,Lopaschuk GD.Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy..Br J Pharmacol2014;171:2080-90 PMCID:PMC3976623

[26]

Glatz JF,Heather LC,Luiken JJ.Regulation of the subcellular trafficking of CD36, a major determinant of cardiac fatty acidutilization..Biochim Biophys Acta2016;1861:1461-71

[27]

Pepino M,Samovski D.Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism..Ann Rev Nutr2014;34:281-303 PMCID:PMC4329921

[28]

Glatz JF.From fat to FAT (CD36/SR-B2): understanding the regulation of cellular fatty acid uptake..Biochimie2017;136:21-6

[29]

Chanda D,Glatz JF.Signaling pathways involved in cardiac energy metabolism..FEBS Lett2016;590:2364-74

[30]

Kim TT.The role of CD36 in the regulation of myocardial lipid metabolism..Biochim Biophys Acta2016;1861:1450-60

[31]

Kim TT.Is AMPK the savior of the failing heart?.Trends Endocrinol Metab2015;26:40-8

[32]

Glatz JF,Steinbusch LK,Luiken JJ.CD36 as a target to prevent cardiac lipotoxicity and insulin resistance..Prostaglandins Leukot Essent Fatty Acids2013;88:71-7

[33]

Samovski D,Xu Y,Stahl P.Insulin and AMPK regulate FA translocase/CD36 plasma membrane recruitment in cardiomyocytes via Rab GAP AS160 and Rab8a RabGTPase..J Lipid Res2012;53:709-17 PMCID:PMC3307647

[34]

Angin Y,Simons P,Hoebers N,van Zandvoort MA,Wijnen W,Ouwens DM,Luiken JJ.CD36 inhibition prevents lipid accumulation and contractile dysfunction in rat cardiomyocytes..Biochem J2012;448:43-53

[35]

Tate M,Ritchie R.Are targeted therapies for diabetic cardiomyopathy on the horizon?.Clin Sci2017;131:897-915

[36]

Bairwa S,Dyck J.The role of AMPK in cardiomyocyte health and survival..Biochim Biophys Acta2016;1862:2199-210

[37]

Vázquez-Carrera M.Unraveling the effects of PPARβ/δ on insulin resistance and cardiovascular disease..Trends Endocrinol Metab2016;27:319-34

[38]

Lopaschuk GD,Folmes CD,Stanley WC.Myocardial fatty acid metabolism in health and disease..Physiol Rev2010;90:207-58

[39]

Huss JM.Nuclear receptor signaling and cardiac energetics..Circ Res2004;95:568-78

[40]

Barlaka E,Mellidis K,Lazou A.Role of pleiotropic properties of peroxisome proliferator-activated receptors in the heart: focus on the nonmetabolic effects in cardiac protection..Cardiovasc Ther2016;34:37-48

[41]

Barlaka E,Galatou E,Čarnická S,Lazou A.Delayed cardioprotective effects of WY-14643 are associated with inhibition of MMP-2 and modulation of Bcl-2 family proteins through PPAR-α activation in rat hearts subjected to global ischaemia-reperfusion..Can J Physiol Pharmacol2013;91:608-16

[42]

Sun W,Leng J,Li J.The role of pyruvate dehydrogenase complex in cardiovascular diseases..Life Sci2015;121:97-103

[43]

Mueckler M.The SLC2 (GLUT) family of membrane transporters..Mol Asp Med2013;34:121-38 PMCID:PMC4104978

[44]

Deng D.GLUT, SGLT, and SWEET: structural and mechanistic investigations of the glucose transporters..Protein Sci2016;25:546-58 PMCID:PMC4815417

[45]

Szablewski L.Glucose transporters in healthy heart and in cardiac disease..Int J Cardiol2017;230:70-5

[46]

Azevedo PS,Santos PP,Zornoff LA.Energy metabolism in cardiac remodeling and heart failure..Cardiol Rev2013;21:135-40

[47]

Lopaschuk GD.Metabolic modulators in heart disease: past, present, and future..Can J Cardiol2017;33:838-49

[48]

Fillmore N.Targeting mitochondrial oxidative metabolism as an approach to treat heart failure..Biochim Biophys Acta2013;1833:857-65

[49]

Luptak I,Cui L,Liao R.Long-term effects of increased glucose entry on mouse hearts during normal aging and ischemic stress..Circulation2007;116:901-9

[50]

Liao R,Cui L,Aiello F,Ngoy S,Tian R.Cardiac-specific overexpression of GLUT1 prevents the development of heart failure attributable to pressure overload in mice..Circulation2002;106:2125-31

[51]

Domenighetti AA,Curl CL,Proietto J.Targeted GLUT-4 deficiency in the heart induces cardiomyocyte hypertrophy and impaired contractility linked with Ca(2+) and proton flux dysregulation..J Mol Cell Cardiol2010;48:663-72

[52]

Ashrafian H,Opie LH.Metabolic mechanisms in heart failure..Circulation2007;116:434-48

[53]

Varma N,Apstein CS.Increased diastolic chamber stiffness during demand ischemia: response to quick length change differentiates rigor-activated from calcium-activated tension..Circulation2000;101:2185-92

[54]

Guimarães-Ferreira L.Role of the phosphocreatine system on energetic homeostasis in skeletal and cardiac muscles..Einstein2014;12:126-31 PMCID:PMC4898252

[55]

Wallimann T,Schlattner U,Hornemann T,Rück A.Some new aspects of creatine kinase (CK): compartmentation, structure, function and regulation for cellular and mitochondrial bioenergetics and physiology..Biofactors1998;8:229-34

[56]

Weiss R,Bottomley P.ATP flux through creatine kinase in the normal, stressed, and failing human heart..Proc Nat Acad Sci U S A2005;102:808-13 PMCID:PMC545546

[57]

Fowler ED,Drinkhill MJ,Helmes M,Stienen GJ,White E.Decreased creatine kinase is linked to diastolic dysfunction in rats with right heart failure induced by pulmonary artery hypertension..J Mol Cell Cardiol2015;86:1-8 PMCID:PMC4564291

[58]

Bottomley PA,Lai S,Wu K,Steinberg A,Weiss RG.Metabolic rates of ATP transfer through creatine kinase (CK Flux) predict clinical heart failure events and death..Sci Transl Med2013;5:215re3 PMCID:PMC4440545

[59]

Kristjansson RP,Helgason H,Arnadottir GA,Jonasdottir A,Bragi Walters G,Oskarsdottir A,Davidsson OB,Magnusson OT,Sigurdardottir O,Eyjolfsson GI,Gudbjartsson DF,Sulem P.Common and rare variants associating with serum levels of creatine kinase and lactate dehydrogenase..Nat Commun2016;7:10572 PMCID:PMC4742860

[60]

Ventura-Clapier R,Veksler V.Energy metabolism in heart failure..J Physiol2003;555:1-13 PMCID:PMC1664831

[61]

Kitzenberg D,Glover LE.Creatine kinase in ischemic and inflammatory disorders..Clin Transl Med2016;5:31 PMCID:PMC4987751

[62]

Neubauer S,Cramer M,Newell JB,Pabst T,Hahn D,Kochsiek K.Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy..Circulation1997;96:2190-6

[63]

Nakae I,Omura T,Tsutamoto T,Takahashi M,Inubushi T,Kinoshita M.Proton magnetic resonance spectroscopy can detect creatine depletion associated with the progression of heart failure in cardiomyopathy..J Am Coll Cardiol2003;42:1587-93

[64]

Hue L.The Randle cycle revisited: a new head for an old hat..Am J Physiol Endocrinol Metab2009;297:E578-91 PMCID:PMC2739696

[65]

Fukushima A,Gupta A.Myocardial energy substrate metabolism in heart failure: from pathways to therapeutic targets..Curr Pharm Des2015;21:3654-64

[66]

Aroor A,Sowers J.Insulin resistance and heart failure: molecular mechanisms..Heart Fail Clin2012;8:609-17 PMCID:PMC3457065

[67]

Breckenridge RA,Ng KE,West JA,Towers N,Kienesberger PC,Siddall HK,Mocanu MM,Dyck JR,Abramov AY,Mohun TJ.Hypoxic regulation of hand1 controls the fetal-neonatal switch in cardiac metabolism..PLoS Biol2013;11:e1001666 PMCID:PMC3782421

[68]

Wende AR,McGinnis GR.Metabolic origins of heart failure..JACC Basic Transl Sci2017;2:297-310 PMCID:PMC5609457

[69]

Wende AR,Holland WL,O'Neill BT,Brahma MK,McCrory MA,Halade GV,Abel ED.Glucose transporter 4 (GLUT4) deficient hearts develop maladaptive hypertrophy in response to physiologic or pathologic stresses..Am J Physiol Heart Circ Physiol2017;313:H1098-108

[70]

Wang J,Wang Y,Zhao W,Han X,Ge J.Qiliqiangxin enhances cardiac glucose metabolism and improves diastolic function in spontaneously hypertensive rats..Evid Based Complement Alternat Med2017;2017:3197320 PMCID:PMC5494577

[71]

Korvald C,Myrmel T.Myocardial substrate metabolism influences left ventricular energetics in vivo..Am J Physiol Heart Circ Physiol2000;278:H1345-51

[72]

Nagoshi T,Rosano GM,Mochizuki S.Optimization of cardiac metabolism in heart failure..Curr Pharm Des2011;17:3846-53 PMCID:PMC3271354

[73]

Babalis D,Floros G,Kafkas N,Mertzanos G.Effects of ranolazine on left ventricular diastolic and systolic function in patients with chronic coronary disease and stable angina..Hellenic J Cardiol2015;56:237-41

[74]

Burkhoff D,Schulman SP,Wannenburg T.Influence of metabolic substrate on rat heart function and metabolism at different coronary flows..Am J Physiol1991;261:H741-50

[75]

Sabbah HN,Rastogi S.Dysregulation of mitochondria fission and fusion proteins in explanted failure human hearts..J Heart Lung Transplant2011;30:S137

[76]

Carolo dos Santos K,Octavio Barbanera P,Fernandes Junior A.Cardiac energy metabolism and oxidative stress biomarkers in diabetic rat treated with resveratrol..PLoS One2014;9:e102775 PMCID:PMC4106839

[77]

Maulucci G,Cohen O,Sasson S.Hormetic and regulatory effects of lipid peroxidation mediators in pancreatic beta cells..Mol Aspects Med2016;49:49-77

[78]

Ayala A,Argüelles S.Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal..Oxid Med Cell Longev2014;2014:360438 PMCID:PMC4066722

[79]

Gruzdeva O,Dyleva Y,Kashtalap V.Relationship between free fatty acids, insulin resistance markers, and oxidized lipoproteins in myocardial infarction and acute left ventricular failure..Diabetes Metab Syndr Obes2013;6:103-11 PMCID:PMC3579407

[80]

Roy VK,Joshi P,Ahanger AM.Plasma free fatty acid concentrations as a marker for acute myocardial infarction..J Clin Diagn Res2013;7:2432-4

[81]

Ma P,Lv Z,Hu H,Zhou X.In-hospital free fatty acids levels predict the severity of myocardial ischemia of acute coronary syndrome..BMC Cardiovasc Disord2016;16:29 PMCID:PMC4736147

[82]

Styskal J,Richardson A.Oxidative stress and diabetes: what can we learn about insulin resistance from antioxidant mutant mouse models?.Free Radic Biol Med2012;52:46-58 PMCID:PMC3249484

[83]

Abel ED,Ramasamy R.Insulin resistance: metabolic mechanisms and consequences in the heart..Arterioscler Thromb Vasc Biol2012;32:2068-76 PMCID:PMC3646067

[84]

Drosatos K.Cardiaclipotoxicity: molecular pathways and therapeutic implications..Curr Heart Fail Rep2013;10:109-21 PMCID:PMC3647019

[85]

Park TS.Sphingolipids, lipotoxic cardiomyopathy, and cardiac failure..Heart Fail Clin2012;8:633-41 PMCID:PMC4548923

[86]

Steggall A,Lang CC.Targeting metabolic modulation and mitochondrial dysfunction in the treatment of heart failure..Diseases2017;5:14 PMCID:PMC5547981

[87]

Deo R.Epidemiology and genetics of sudden cardiac death..Circulation2012;125:620-37 PMCID:PMC3399522

[88]

Hayashi M,Albert CM.The spectrum of epidemiology underlying sudden cardiac death..Circ Res2015;116:1887-906 PMCID:PMC4929621

[89]

Bhar-Amato J,Agarwal S.Ventricular arrhythmia after acute myocardial infarction: "the perfect storm"..Arrhythm Electrophysiol Rev2017;6:134-9 PMCID:PMC5610731

[90]

Kalogeris T,Krenz M.Cell biology of ischemia/reperfusion injury..Int Rev Cell Mol Biol2012;298:229-317 PMCID:PMC3904795

[91]

Gewirtz H.Myocardial viability: survival mechanisms and molecular imaging targets in acute and chronicischemia..Circ Res2017;120:1197-212

[92]

Baumeister P.Altered calcium handling and ventricular arrhythmias in acute ischemia..Clin Med Insights Cardiol2016;10:61-9

[93]

Bai J,Wang K.Mechanisms underlying the emergence of post-acidosis arrhythmia at the tissue level: a theoretical study..Front Physiol2017;8:195 PMCID:PMC5371659

[94]

Kolettis T.Coronary artery disease and ventricular tachyarrhythmia: pathophysiology and treatment..Curr Opin Pharmacol2013;13:210-7

[95]

Thackeray JT,DaSilva JN.Altered sympathetic nervous system signaling in the diabetic heart: emerging targets for molecular imaging..Am J Nucl Med Mol Imaging2012;2:314-34 PMCID:PMC3477737

[96]

Oikonomidis DL,Baltogiannis GG,Xourgia X,Megalou AJ,Papalois A,Kolettis TM.Endothelin-B receptors and ventricular arrhythmogenesis in the rat model of acute myocardial infarction..Basic Res Cardiol2009;105:235-45

[97]

Francis Stuart S,Lindsey M.The crossroads of inflammation, fibrosis, and arrhythmia following myocardial infarction..J Mol Cell Cardiol2016;91:114-22 PMCID:PMC4764395

[98]

Skovsted GF,Berchtold LA,Warfvinge K.Myocardial ischemia-reperfusion enhances transcriptional expression of endothelin-1 and vasoconstrictor ETB receptors via the protein kinase MEK-ERK1/2 signaling pathway in rat..PLoS One2017;12:e0174119 PMCID:PMC5360328

[99]

Streitner F,Veltmann C,Schoene N,Brueckmann M,Borggrefe M.Role of proinflammatory markers and NT-proBNP in patients with an implantable cardioverter-defibrillator and an electrical storm..Cytokine2009;47:166-72

[100]

Maradit-Kremers H,Nicola PJ,Roger VL,Gabriel SE.Increased unrecognized coronary heart disease and sudden deaths in rheumatoid arthritis: a population-based cohort study..Arthritis Rheum2005;52:402-11

[101]

Downar E,Durrer D.The effects of acute coronary artery occlusion on subepicardial transmembrane potentials in the intact porcine heart..Circulation1977;56:217-24

[102]

Biktashev VN,Sarvazyan NA.Evolution of spiral and scroll waves of excitation in a mathematical model of ischaemic border zone..PLoS One2011;6:e24388 PMCID:PMC3174161

[103]

Solovyova O,Kohl P,Tsaturyan A.Mechano-electric heterogeneity of the myocardium as a paradigm of its function..Prog Biophys Mol Biol2016;120:249-54 PMCID:PMC4821177

[104]

Robbers LF,Nijveldt R,Beek AM,van Beurden Y,van der Vleuten PA,Zijlstra F,van Rossum AC.Myocardial infarct heterogeneity assessment by late gadolinium enhancement cardiovascular magnetic resonance imaging shows predictive value for ventricular arrhythmia development after acute myocardial infarction..Eur Heart J Cardiovasc Imaging2013;14:1150-8

[105]

Pertsov AM,Salomonsz R,Jalife J.Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle..Circ Res1993;72:631-50

[106]

Oliver MF.Control of free fatty acids during acute myocardial ischaemia..Heart2010;96:1883-4

[107]

Tse G.Mechanisms of cardiac arrhythmias..J Arrhythm2016;32:75-81 PMCID:PMC4823581

[108]

Oliver MF,Greenwood TW.Relation between serum free fatty acids and arrhythmias and death after acute myocardial infarction..Lancet1968;1:710-4

[109]

Tansey MJ.Relation between plasma free fatty acids and arrhythmias within the first twelve hours of acute myocardial infarction..Lancet1983;2:419-22

[110]

Ouven X,Desnos M.Circulating non-esterified fatty acid level as a predictive risk factor for sudden death in the population..Circulation2001;104:756-61

[111]

Yang KC,Makielski JC.Mechanisms of sudden cardiac death: oxidants and metabolism..Circ Res2015;116:1937-55 PMCID:PMC4458707

[112]

Leach A.Myocardial ischaemia and cardiac pain - a mysterious relationship..Br J Pain2013;7:23-30 PMCID:PMC4590151

[113]

Ostrowski SR,Jensen JS,Johansson PI.Acute myocardial infarction is associated with endothelial glycocalyx and cell damage and a parallel increase in circulating catecholamines..Crit Care2013;17:R32 PMCID:PMC4057225

[114]

Kalra BS.Efficacy of metabolic modulators in ischemic heart disease: an overview..J Clin Pharmacol2012;52:292-305

[115]

Nielsen TS,Jørgensen JO,Lund S.Dissecting adipose tissue lipolysis: molecular regulation and implications for metabolic disease..J Mol Endocrinol2014;52:R199-222

[116]

Oliver M.Fatty acids and the risk of death during acute myocardial ischaemia..Clin Sci2015;128:349-55

[117]

Fragasso G.Deranged cardiac metabolism and the pathogenesis of heart failure..Card Fail Rev2016;2:8-13

[118]

Geerling JJ,Kooijman S,Havekes LM,Meurs IM.Sympathetic nervous system control of triglyceride metabolism: novel concepts derived from recent studies..J Lipid Res2014;55:180-9 PMCID:PMC3886657

[119]

Opie L.Metabolic management of acute myocardial infarction comes to the fore and extends beyond control of hyperglycemia..Circulation2008;117:2172-7

[120]

Miller N,Oliver M.Relationship of epicardial ST segment elevation to the plasma free fatty acid/albumin ratio during coronary occlusion in dogs..Clin Sci1976;51:209-13

[121]

Selker HP,Massaro JM,D'Agostino RB,Sheehan PR,Rosenberg Y,Vickery EM,Aufderheide TP,Pirrallo RG,Richards ME,Doyle DD,Kosiak DJ,Van Gelder CM,Wayne MA,Beshansky JR.One-year outcomes of out-of-hospital administration of intravenous glucose, insulin, and potassium (GIK) in patients with suspected acute coronary syndromes (from the IMMEDIATE [Immediate Myocardial Metabolic Enhancement During Initial Assessment and Treatment in Emergency Care] Trial)..Am J Cardiol2014;113:1599-605 PMCID:PMC4043184

[122]

Mamas MA,Fath-Ordoubadi F.A meta-analysis of glucose-insulin-potassium therapy for treatment of acute myocardial infarction..Exp Clin Cardiol2010;15:e20-4 PMCID:PMC2898530

[123]

Evans R.The role of triacylglycerol in cardiac energy provision..Biochim Biophys Acta2016;1861:1481-91

[124]

Salazar J,Mejías JC,Ferreira A,Bermúdez V.Epicardial fat: physiological, pathological, and therapeutic implications..Cardiol Res Pract2016;2016:1-15 PMCID:PMC4861775

[125]

Thanassoulis G,O'Donnell CJ,Levy D,Wang TJ,Vasan RS,Benjamin EJ.Pericardial fat is associated with prevalent atrial fibrillation: the framingham heart study..Circ Arrhythm Electrophysiol2010;3:345-50 PMCID:PMC2953855

[126]

Al Chekakie MO,Metoyer R,Shapira AR,Santucci P,Akar JG.Pericardial fat is independently associated with human atrial fibrillation..J Am Coll Cardiol2010;56:784-8

[127]

Hatem SN.Epicardial adipose tissue and atrial fibrillation..Cardiovasc Res2014;102:205-13

[128]

Venteclef N,Balse E,Cotillard A,Amour J,Dutour A,Hatem SN.Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipo-fibrokines..Eur Heart J2014;36:795-805

[129]

Tsao HM,Wu MH,Lin YJ,Lo LW,Tuan TC,Sheu MH,Chen SA.Quantitative analysis of quantity and distribution of epicardial adipose tissue surrounding the left atrium in patients with atrial fibrillation and effect of recurrence after ablation..Am J Cardiol2011;107:1498-503

[130]

Samanta R,Thiagalingam A.Role of adipose tissue in the pathogenesis of cardiac arrhythmias..Heart Rhythm2016;13:311-20

[131]

Taegtmeyer H.Metabolism--the lost child of cardiology..J Am Coll Cardiol2000;36:1386-8

AI Summary AI Mindmap
PDF

45

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/