Nanomedicine-encouraged cellular autophagy promoters favor liver fibrosis progression reversal
Cheng Qian , Yan Zhang , Xiaoyang Chen , Chunyan Zhu , Xiulin Dong , Weiwei Chen , Xuejun Ni , Kun Zhang , Yifei Yin
VIEW ›› 2024, Vol. 5 ›› Issue (3) : 20240003
Nanomedicine-encouraged cellular autophagy promoters favor liver fibrosis progression reversal
Liver fibrosis is a major risk factor for hepatocellular carcinoma origin, and its progression not only correlates with oxidative stress and inflammation, but also is encouraged by autophagy hold-up. Therefore, new solutions to effectively attenuate oxidative stress and inflammation and coincidently favor autophagy are highly demanded to reverse liver fibrosis, and even hamper its escalation into hepatocellular carcinoma. Herein, the porous manganese-substituted Prussian blue (PMPB) analogs are harnessed to activate autophagy, scavenge reactive oxygen species (ROS), and suppress inflammation for liver fibrosis therapy. PMPB can effectively inhibit macrophage activation, facilitate macrophage autophagy, eradicate ROS, and blockade cellular cross-talk, thus impeding further inflammation progression. Moreover, the favorable spontaneous capture of PMPB by Kupffer cells allows more PMPB accumulation in liver to significantly attenuate liver injury and collagen deposition, thereby inhibiting the progression of liver fibrosis. PMPB-based nanomedicine shows great potentials in promoting autophagy activation, eliminating ROS, inhibiting inflammation, and protecting hepatocytes from oxidative stress-arised damages, which eventually attenuate the extent of liver fibrosis, holding great promise in clinical translation for treating liver fibrosis.
anti-inflammation / autophagy / liver fibrosis / oxidation stress / Prussian blue analog
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
2024 The Authors. View published by Shanghai Fuji Technology Consulting Co., Ltd, authorized by Professional Community of Experimental Medicine, National Association of Health Industry and Enterprise Management (PCEM) and John Wiley & Sons Australia, Ltd.
/
| 〈 |
|
〉 |