Rapid and sensitive diagnosis of live Mycobacterium tuberculosis using clustered regularly interspaced short palindromic repeat-Cas13a point-of-care RNA testing

Yu Wang, Huihuang Lin, Anqi Yang, Jiaming Huang, Weicong Ren, Jiajun Dong, Shaojie Wang, Wenxue Xu, Yu Pang, Jieming Qu, Jia Liu

VIEW ›› 2024, Vol. 5 ›› Issue (3) : 20230109.

PDF
VIEW ›› 2024, Vol. 5 ›› Issue (3) : 20230109. DOI: 10.1002/VIW.20230109
RESEARCH ARTICLE

Rapid and sensitive diagnosis of live Mycobacterium tuberculosis using clustered regularly interspaced short palindromic repeat-Cas13a point-of-care RNA testing

Author information +
History +

Abstract

Mycobacterium tuberculosis (MTB) is the causal pathogen of tuberculosis (TB). Rapid and accurate detection of live MTB is important for transmission control and patient treatment. Here, we described a clustered regularly interspaced short palindromic repeat (CRISPR)-Cas13a-based molecular diagnosis approach for rapid and specific detection of live MTB. This detection method, which we termed CRISPR-Live-MTB, contained two consecutive reactions including nuclear acid sequence-based amplification (NASBA) and CRISPR-Cas13a collateral cleavage reaction. CRISPR-Live-MTB could efficiently detect MTB single-stranded RNA (ssRNA) in 2 hours with high specificity over double-stranded DNA (dsDNA). Importantly, CRISPR-Live-MTB exhibited a limit of detection of 2.4 copies for MTB ssRNA, which was 1000 times lower than that of the clinically used NASBA method. Moreover, lateral flow was integrated into the CRISPR-Live-MTBmethod to enable point-of-care testing application with a sensitivity of 95% and a specificity of 100%. Overall, our study demonstrated the feasibility of CRISPR-Live-MTB as a rapid, sensitive, and specific approach for live MTB detection.

Keywords

CRISPR-Cas13a / lateral flow / limit of detection (LOD) / livemycobacterium tuberculosis / point-of-care testing / single-stranded RNA (ssRNA)

Cite this article

Download citation ▾
Yu Wang, Huihuang Lin, Anqi Yang, Jiaming Huang, Weicong Ren, Jiajun Dong, Shaojie Wang, Wenxue Xu, Yu Pang, Jieming Qu, Jia Liu. Rapid and sensitive diagnosis of live Mycobacterium tuberculosis using clustered regularly interspaced short palindromic repeat-Cas13a point-of-care RNA testing. VIEW, 2024, 5(3): 20230109 https://doi.org/10.1002/VIW.20230109

References

[1]
WHO, WHO webpage. 2021.
[2]
K. Lonnroth, K. G. Castro, J. M. Chakaya, L. S. Chauhan, K. Floyd, P. Glaziou, M. C. Raviglione, Lancet 2010, 375, 1814.
CrossRef Google scholar
[3]
B. Dong, Z. He, Y. Li, X. Xu, C. Wang, J. Zeng, Front. Microbiol. 2022, 13, 924410.
[4]
J. J. Lee, J. Suo, C. B. Lin, J. D. Wang, T. Y. Lin, Y. C. Tsai, Int. J. Tuberc. Lung Dis. 2003, 7, 569.
[5]
D. G. Storla, S. Yimer, G. A. Bjune, BMC Public Health 2008, 8, 15.
[6]
E. Ayubi, A. Doosti-Irani, A. Sanjari Moghaddam, M. Sani, M. Nazarzadeh, E. Mostafavi, PLoS One 2016, 11, e0161983.
CrossRef Google scholar
[7]
WHO, Geneva: World Health Organization 2017.
[8]
E. Aryan, M. Makvandi, A. Farajzadeh, K. Huygen, A. H. Alvandi, M. M. Gouya, A. Sadrizadeh, M. Romano, J. Infect. 2013, 66, 487.
CrossRef Google scholar
[9]
Z. Cui, Y. Wang, L. Fang, R. Zheng, X. Huang, X. Liu, G. Zhang, D. Rui, J. Ju, Z. Hu, J. Clin. Microbiol. 2012, 50, 646.
CrossRef Google scholar
[10]
J. Lu, H. Zheng, P. Chu, S. Han, H. Yang, Z. Wang, J. Shi, Z. Yang, J. Clin. Lab. Anal. 2019, 33, e22716.
[11]
S. Dorn-In, M. Gareis, K. Schwaiger, Food Microbiol. 2019, 84, 103275.
CrossRef Google scholar
[12]
B. M. Babin, G. Fernandez-Cuervo, J. Sheng, O. Green, A. A. Ordonez, M. L. Turner, L. J. Keller, S. K. Jain, D. Shabat, M. Bogyo, ACS Cent. Sci. 2021, 7, 803.
CrossRef Google scholar
[13]
Y. Cheng, J. Xie, K. H. Lee, R. L. Gaur, A. Song, T. Dai, H. Ren, J. Wu, Z. Sun, N. Banaei, D. Akin, J. Rao, Sci. Transl. Med. 2018, 10, eaar4470.
[14]
M. Kamariza, P. Shieh, C. S. Ealand, J. S. Peters, B. Chu, F. P Rodriguez-Rivera, M. R. Babu Sait, W. V. Treuren, N. Martinson, R. Kalscheuer, B. D. Kana, C. R. Bertozzi, Sci. Transl. Med. 2018, 10, eaam6310.
[15]
W. H. Wang, R. Takeuchi, S. H. Jain, Y. H. Jiang, S. Watanuki, Y. Ohtaki, K. Nakaishi, S. Watabe, P. L. Lu, E. Ito, EBioMedicine 2020, 60, 103007.
CrossRef Google scholar
[16]
R. Dinkele, S. Gessner, A. McKerry, B. Leonard, R. Seldon, A. S. Koch, C. Morrow, M. Gqada, M. Kamariza, C. R. Bertozzi, B. Smith, C. McLoud, A. Kamholz, W. Bryden, C. Call, G. Kaplan, V. Mizrahi, R. Wood, D. F. Warner, PLoS Pathog. 2021, 17, e1009262.
CrossRef Google scholar
[17]
J. S. Gootenberg, O. O. Abudayyeh, J. W. Lee, P. Essletzbichler, A. J. Dy, J. Joung, V. Verdine, N. Donghia, N. M. Daringer, C. A. Freije, C. Myhrvold, R. P. Bhattacharyya, J. Livny, A. Regev, E. V. Koonin, D. T. Hung, P. C. Sabeti, J. J. Collins, F. Zhang, Science 2017, 356, 438.
CrossRef Google scholar
[18]
C. Myhrvold, C. A. Freije, J. S. Gootenberg, O. O. Abudayyeh, H. C. Metsky, A. F. Durbin, M. J. Kellner, A. L. Tan, L. M. Paul, L. A. Parham, K. F. Garcia, K. G. Barnes, B. Chak, A. Mondini, M. L. Nogueira, S. Isern, S. F. Michael, I. Lorenzana, N. L. Yozwiak, B. L. MacInnis, I. Bosch, L. Gehrke, F. Zhang, P. C. Sabeti, Science 2018, 360, 444.
CrossRef Google scholar
[19]
J. W. Ai, X. Zhou, T. Xu, M. Yang, Y. Chen, G. Q. He, N. Pan, Y. Cai, Y. Li, X. Wang, H. Su, T. Wang, W. Zeng, W. H. Zhang, Emerg. Microbes Infect. 2019, 8, 1361.
CrossRef Google scholar
[20]
I. K. Sam, Y. Y. Chen, J. Ma, S. Y. Li, R. Y. Ying, L. X. Li, P. Ji, S. J. Wang, J. Xu, Y. J. Bao, G. P. Zhao, H. J. Zheng, J. Wang, W. Sha, Y. Wang, J. Infect. 2021, 83, 54.
CrossRef Google scholar
[21]
H. Xu, X. Zhang, Z. Cai, X. Dong, G. Chen, Z. Li, L. Qiu, L. He, B. Liang, X. Liu, J. Liu, J. Mol. Diagn. 2020, 22, 1020.
CrossRef Google scholar
[22]
H. Li, X. Cui, L. Sun, X. Deng, S. Liu, X. Zou, B. Li, C. Wang, Y. Wang, Y. Liu, B. Lu, B. Cao, FASEB J. 2021, 35, e21153.
[23]
Y. Wang, J. Li, S. Li, X. Zhu, X. Wang, J. Huang, X. Yang, J. Tai, Mikrochim. Acta 2021, 188, 347.
[24]
Z. Huang, S. M. LaCourse, A. W. Kay, J. Stern, J. N. Escudero, B. M. Youngquist, W. Zheng, D. Vambe, M. Dlamini, G. Mtetwa, L. M. Cranmer, I. Njuguna, D. C. Wamalwa, E. Maleche-Obimbo, D. G. Catanzaro, C. J. Lyon, G. John-Stewart, A. DiNardo, A. M. Mandalakas, B. Ning, T. Y. Hu, Lancet Microbe 2022, 3, e482.
CrossRef Google scholar
[25]
X. Bai, P. Gao, K. Qian, J. Yang, H. Deng, T. Fu, Y. Hu, M. Han, H. Zheng, X. Cao, Y. Liu, Y. Lu, A. Huang, Q. Long, Front. Microbiol. 2022, 13, 847373.
[26]
L. Bradner, S. Robbe-Austerman, D. C. Beitz, J. R. Stabel, J. Dairy Sci. 2014, 97, 3694.
CrossRef Google scholar
[27]
G. M. Van der Vliet, P. Schepers, R. A. Schukkink, B. vanGemen, P. R. Klatser, Antimicrob. Agents Chemother. 1994, 38, 1959.
CrossRef Google scholar
[28]
H. Lin, W. Zheng, S. Li, Y. Wang, D. Wei, L. Xie, W. Lu, Z. Tian, S. Wang, J. Qu, J. Liu, Front. Microbiol. 2022, 10, 1070940.
[29]
NMPA, National Medical Products Administration 2022.
[30]
C. Jiao, S. Sharma, G. Dugar, N. L. Peeck, T. Bischler, F. Wimmer, Y. Yu, L. Barquist, C. Schoen, O. Kurzai, C. M. Sharma, C. L. Beisel, Science 2021, 372, 941.
CrossRef Google scholar
[31]
J. Joung, A. Ladha, M. Saito, N. G. Kim, A. E. Woolley, M. Segel, R. P. J. Barretto, A. Ranu, R. K. Macrae, G. Faure, E. I. Ioannidi, R. N. Krajeski, R. Bruneau, M. W. Huang, X. G. Yu, J. Z. Li, B. D. Walker, D. T. Hung, A. L. Greninger, K. R. Jerome, J. S. Gootenberg, O. O. Abudayyeh, F. Zhang, N. Engl. J. Med. 2020, 383, 1492.
CrossRef Google scholar
[32]
J. Yang, Y. Song, X. Deng, J. A. Vanegas, Z. You, Y. Zhang, Z. Weng, L. Avery, K. D. Dieckhaus, A. Peddi, Y. Gao, Y. Zhang, X. Gao, Nat Chem Biol 2023, 19, 45.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 2024 The Authors. View published by Shanghai Fuji Technology Consulting Co., Ltd, authorized by Professional Community of Experimental Medicine, National Association of Health Industry and Enterprise Management (PCEM) and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/