DNA logic programming: Fromconcept to construction

Yi Zhang, Ning Hu, Jiajie Xu, Zhen Wang

PDF
VIEW ›› 2024, Vol. 5 ›› Issue (1) : 20230062. DOI: 10.1002/VIW.20230062
REVIEW

DNA logic programming: Fromconcept to construction

Author information +
History +

Abstract

DNA programming, which is based on the principle of base complementary pairing and Boolean operations, exhibits organizational structures and algorithms similar to those observed in machine language. Consequently, the practical implementation of DNA logic programming can be achieved through the utilization of programming techniques, enabling the discrimination and output generation. In recent years, DNA programming has witnessed a convergence with disciplines, such as life sciences, medicine, and other interdisciplinary areas, thereby giving rise to an advanced research system that yields valuable insights. This development has paved the way for multidisciplinary cutting-edge research. Furthermore, the successful transition from conceptualization to the practical implementation of DNA programming has been accomplished. This review summarizes the recent advances in DNA logic programming within the biomedical fields, specifically emphasizing the conceptualization and execution of DNA logic programming constructs. The benefits and obstacles associated with the adoption of DNA programming in cutting-edge research areas are also highlighted.

Keywords

biological storage / circuit / gene edition / logic programming

Cite this article

Download citation ▾
Yi Zhang, Ning Hu, Jiajie Xu, Zhen Wang. DNA logic programming: Fromconcept to construction. VIEW, 2024, 5(1): 20230062 https://doi.org/10.1002/VIW.20230062

References

[1]
A. Sgro, P. Blancafort, Nucleic. Acids. Res. 2020, 48, 12453.
CrossRef Google scholar
[2]
J. Larouche, C. A. Aguilar, Trends Biotechnol. 2019, 37, 604.
CrossRef Google scholar
[3]
P. Miao, Y. Tang, B. Wang, F. Meng, Anal. Chem. 2016, 88, 7567.
CrossRef Google scholar
[4]
Y. Peng, W. Zhou, R. Yuan, Y. Xiang, Sensors Actuators B Chem. 2018, 264, 202.
CrossRef Google scholar
[5]
J. Fortin, D. E. Rogge, C. Fellner, D. Flotzinger, J. Grond, K. Lerche, B. Saugel, Nat. Commun. 2021, 12, 1387.
[6]
P. Miggiels, B. Wouters, G. J. P. van Westen, A.-C. Dubbelman, T. Hankemeier, TrAC Trends Anal. Chem. 2019, 120, 115323.
CrossRef Google scholar
[7]
C. Ronco, R. Bellomo, Crit. Care 2022, 26, 135.
[8]
N. P. Pai, A. Karellis, J. Kim, T. Peter, Lancet HIV 2020, 7, e574.
CrossRef Google scholar
[9]
J. Li, Q. Wang, Y. Han, L. Jiang, S. Lu, B. Wang, W. Qian, M. Zhu, H. Huang, P. Qian, J. Hematol. Oncol. 2023, 16, 65.
[10]
J. Ouyang, A. Xie, J. Zhou, R. Liu, L. Wang, H. Liu, N. Kong, W. Tao, Chem. Soc. Rev. 2022, 51, 4996.
CrossRef Google scholar
[11]
J. V Rau, R. De Santis, G. Ciofani, Bioact. Mater 2017, 2, 119.
CrossRef Google scholar
[12]
N. C. Seeman, H. F. Sleiman, Nat. Rev. Mater. 2017, 3, 17068.
[13]
D. Wu, J. Zhou, M. N. Creyer, W. Yim, Z. Chen, P. B. Messersmith, J. V. Jokerst, Chem. Soc. Rev. 2021, 50, 4432.
CrossRef Google scholar
[14]
A. Ebrahimi, H. Ravan, S. Khajouei, TrAC Trends Anal. Chem. 2019, 114, 126.
CrossRef Google scholar
[15]
Q. Hu, H. Li, L. Wang, H. Gu, C. Fan, Chem. Rev. 2019, 119, 6459.
CrossRef Google scholar
[16]
S. Kotani, W. L. Hughes, J. Am. Chem. Soc. 2017, 139, 6363.
CrossRef Google scholar
[17]
V. Kumar, S. Palazzolo, S. Bayda, G. Corona, G. Toffoli, F. Rizzolio, Theranostics 2016, 6, 710.
CrossRef Google scholar
[18]
F. Li, J. Li, B. Dong, F. Wang, C. Fan, X. Zuo, Chem. Soc. Rev. 2021, 50, 5650.
CrossRef Google scholar
[19]
L. M. Adleman, Science 1994, 266, 1021.
[20]
M. N. Stojanovic, T. E. Mitchell, D. Stefanovic, J.Am. Chem. Soc. 2002, 124, 3555.
CrossRef Google scholar
[21]
A. Okamoto, K. Tanaka, I. Saito, J. Am. Chem. Soc. 2004, 126, 9458.
CrossRef Google scholar
[22]
S. Bi, Y. Yan, S. Hao, S. Zhang, Angew. Chemie. Int. Ed. 2010, 49, 4438.
CrossRef Google scholar
[23]
S. Chen, Z. Xu, W. Yang, X. Lin, J. Li, J. Li, H. Yang, Angew. Chemie. Int. Ed. 2019, 58, 18186.
CrossRef Google scholar
[24]
J. Dong, M. Wang, Y. Zhou, C. Zhou, Q. Wang, Angew. Chemie. Int. Ed. 2020, 59, 15038.
CrossRef Google scholar
[25]
A. Lake, S. Shang, D. M. Kolpashchikov, Angew. Chemie. Int. Ed. 2010, 49, 4459.
CrossRef Google scholar
[26]
J. Bonnet, P. Yin, M. E. Ortiz, P. Subsoontorn, D. Endy, Science 2013, 340, 599.
CrossRef Google scholar
[27]
R. Liu, Y. Han, F. Sun, G. Khatri, J. Kwon, C. Nickle, L. Wang, C.-K. Wang, D. Thompson, Z.-L. Li, C. A. Nijhuis, E. del Barco, Adv. Mater. 2022, 34, 2202135.
[28]
G. Seelig, D. Soloveichik, D. Y. Zhang, E. Winfree, Science 2006, 314, 1585.
CrossRef Google scholar
[29]
A. A. K Nielsen, B. S. Der, J. Shin, P. Vaidyanathan, V. Paralanov, E. A. Strychalski, D. Ross, D. Densmore, C. A. Voigt, Science 2016, 352, aac7341.
[30]
R. Peng, X. Zheng, Y. Lyu, L. Xu, X. Zhang, G. Ke, Q. Liu, C. You, S. Huan, W. Tan, J. Am. Chem. Soc. 2018, 140, 9793.
CrossRef Google scholar
[31]
H. Wang, J. Zheng, Y. Sun, T. Li, Biosens. Bioelectron. 2018, 117, 729.
[32]
B. M. G Janssen, M. van Rosmalen, L. van Beek, M. Merkx, Angew. Chemie. Int. Ed. 2015, 54, 2530.
CrossRef Google scholar
[33]
M. Chen, C. Wang, Z. Ding, H. Wang, Y. Wang, Z. Liu, ACSCent. Sci. 2022, 8, 837.
[34]
Y. Du, P. Peng, T. Li, ACS Nano 2019, 13, 5778.
CrossRef Google scholar
[35]
Y. Guo, J. Ren, E. Wang, Nano Today 2022, 44, 101476.
CrossRef Google scholar
[36]
M. You, G. Zhu, T. Chen, M. J. Donovan, W. Tan, J. Am. Chem. Soc. 2015, 137, 667.
CrossRef Google scholar
[37]
Y. L. Vishweshwaraiah, J. Chen, V. R. Chirasani, E. D. Tabdanov, N. V Dokholyan, Nat. Commun. 2021, 12, 6615.
[38]
H. Pei, L. Liang, G. Yao, J. Li, Q. Huang, C. Fan, Angew. Chemie. Int. Ed. 2012, 51, 9020.
CrossRef Google scholar
[39]
T. Tian, T. Zhang, S. Shi, Y. Gao, X. Cai, Y. Lin, Nat. Protoc. 2023, 18, 1028.
CrossRef Google scholar
[40]
R. M. Zadegan, M. D. E. Jepsen, L. L. Hildebrandt, V. Birkedal, J. Kjems, Small 2015, 11, 1811.
CrossRef Google scholar
[41]
C. Zhou, H. Geng, P. Wang, C. Guo, Small 2019, 15, 1903489.
[42]
A. A. Tregubov, P. I. Nikitin, M. P. Nikitin, Chem. Rev. 2018, 118, 10294.
CrossRef Google scholar
[43]
H. Lv, N. Xie, M. Li, M. Dong, C. Sun, Q. Zhang, L. Zhao, J. Li, X. Zuo, H. Chen, F. Wang, C. Fan, Nature 2023, 622, 292.
CrossRef Google scholar
[44]
B. Shlyahovsky, Y. Li, O. Lioubashevski, J. Elbaz, I. Willner, ACS Nano 2009, 3, 1831.
CrossRef Google scholar
[45]
D. Hartmann, R. Chowdhry, J. M. Smith, M. J. Booth, J. Am. Chem. Soc. 2023, 145, 9471.
CrossRef Google scholar
[46]
M. Massey, I. L. Medintz, M. G. Ancona, W. R. Algar, ACS Sensors 2017, 2, 1205.
CrossRef Google scholar
[47]
A. D’Urso, A. Mammana, M. Balaz, A. E. Holmes, N. Berova, R. Lauceri, R. Purrello, J. Am. Chem. Soc. 2009, 131, 2046.
CrossRef Google scholar
[48]
D. Miyoshi, M. Inoue, N. Sugimoto, Angew. Chemie. Int. Ed. 2006, 45, 7716.
CrossRef Google scholar
[49]
L. Wang, S. Tang, L. Li, K. Jin, X. Xie, Y. Chen, K. Cai, J. Zhang, Adv. Sens. Res. 2023, 2, 2200062.
[50]
Y. Yang, Q. Huang, Z. Xiao, M. Liu, Y. Zhu, Q. Chen, Y. Li, K. Ai, Mater Today Bio. 2022, 13, 100218.
CrossRef Google scholar
[51]
K. Morihiro, N. Ankenbruck, B. Lukasak, A. Deiters, J. Am. Chem. Soc. 2017, 139, 13909.
CrossRef Google scholar
[52]
D. Y. Tam, Z. Dai, M. S. Chan, L. S. Liu, M. C. Cheung, F. Bolze, C. Tin, P. K. Lo, Angew. Chemie. Int. Ed. 2016, 55, 164.
CrossRef Google scholar
[53]
X. Song, C. Yang, R. Yuan, Y. Xiang, Biosens. Bioelectron 2022, 202, 114000.
CrossRef Google scholar
[54]
K. E. Bujold, A. Lacroix, H. F. Sleiman, Chem. 2018, 4, 495.
CrossRef Google scholar
[55]
M. Xiao, W. Lai, T. Man, B. Chang, L. Li, A. R. Chandrasekaran, H. Pei, Chem. Rev. 2019, 119, 11631.
CrossRef Google scholar
[56]
W. Deng, J. Y. Xu, H. Peng, C. Z. Huang, X. C. Le, H. Zhang, Biosens. Bioelectron. 2022, 217, 114704.
CrossRef Google scholar
[57]
E. A. Pumford, J. Lu, I. Spaczai, M. E. Prasetyo, E. M. Zheng, H. Zhang, D. T. Kamei, Biosens. Bioelectron 2020, 170, 112674.
CrossRef Google scholar
[58]
Z. Huang, L. Qiu, T. Zhang, W. Tan, Matter 2021, 4, 461.
[59]
L. Chen, W. Chen, G. Liu, J. Li, C. Lu, J. Li, W. Tan, H. Yang, Chem. Soc. Rev. 2021, 50, 12551.
CrossRef Google scholar
[60]
C. Zhu, F. Zhang, H. Li, Z. Chen, M. Yan, L. Li, F. Qu, TrAC Trends Anal. Chem. 2023, 158, 116775.
CrossRef Google scholar
[61]
H. Chen, Z. Yan, S. Wu, F. Li, Colloids Surfaces B Biointerfaces 2021, 205, 111902.
CrossRef Google scholar
[62]
D. X. Wang, J. Wang, Y. X. Wang, Y. C. Du, Y. Huang, A. N. Tang, Y. X. Cui, D. M. Kong, Chem. Sci. 2021, 12, 7602.
CrossRef Google scholar
[63]
M. Cao, X. Xiong, Y. Zhu, M. Xiao, L. Li, H. Pei, TrAC Trends Anal. Chem. 2023, 159, 116911.
CrossRef Google scholar
[64]
S. Yue, Z. Qiao, X. Wang, S. Bi, Chem. Eng. J. 2022, 446, 136838.
CrossRef Google scholar
[65]
Z. Yang, N. Wang, H. Wen, R. Cui, J. Yu, S. Yang, T. Qu, X. Wang, S. He, J. Qi, J. Wang, Q. Ye, Y. Liu, Sensors Actuators B Chem. 2019, 298, 126901.
CrossRef Google scholar
[66]
S. J. Smith, C. R. Nemr, S. O. Kelley, J. Am. Chem. Soc. 2017, 139, 1020.
CrossRef Google scholar
[67]
A. Bertschi, P. Wang, S. Galvan, A. P. Teixeira, M. Fussenegger, Nat. Chem. Biol. 2023, 19, 767.
CrossRef Google scholar
[68]
F. Deng, J. Pan, Z. Liu, L. Zeng, J. Chen, Biosens. Bioelectron. 2023, 223, 115025.
CrossRef Google scholar
[69]
X. Huang, E. Kon, X. Han, X. Zhang, N. Kong, M. J. Mitchell, D. Peer, W. Tao, Nat. Nanotechnol. 2022, 17, 1027.
CrossRef Google scholar
[70]
T. Masubuchi, M. Endo, R. Iizuka, A. Iguchi, D. H. Yoon, T. Sekiguchi, H. Qi, R. Iinuma, Y. Miyazono, S. Shoji, T. Funatsu, H. Sugiyama, Y. Harada, T. Ueda, H. Tadakuma, Nat. Nanotechnol. 2018, 13, 933.
CrossRef Google scholar
[71]
S. Matsuura, H. Ono, S. Kawasaki, Y. Kuang, Y. Fujita, H. Saito, Nat. Commun. 2018, 9, 4847.
[72]
M. W. Gander, J. D. Vrana, W. E. Voje, J. M. Carothers, E. Klavins, Nat. Commun. 2017, 8, 15459.
[73]
L. Oesinghaus, F. C. Simmel, Nat. Commun. 2019, 10, 2092.
[74]
Y. Hao, J. Li, Q. Li, L. Zhang, J. Shi, X. Zhang, A. Aldalbahi, L. Wang, C. Fan, F. Wang, Angew. Chemie. Int. Ed. 2020, 59, 20612.
CrossRef Google scholar
[75]
W. Zhou, L. Hu, L. Ying, Z. Zhao, P. K. Chu, X.-F. Yu, Nat. Commun. 2018, 9, 5012.
[76]
F. Deng, J. Pan, M. Chen, Z. Liu, J. Chen, C. Liu, Sci. Total Environ. 2023, 881, 163465.
CrossRef Google scholar
[77]
M. J. Mitchell, M. M. Billingsley, R. M. Haley, M. E. Wechsler, N. A. Peppas, R. Langer, Nat. Rev. Drug Discov. 2021, 20, 101.
CrossRef Google scholar
[78]
Q. Liu, H.-B. Cheng, R. Ma, M. Yu, Y. Huang, L. Li, J. Zhao, Nano Today 2023, 48, 101747.
CrossRef Google scholar
[79]
M. Lu, H. Xing, A. Zheng, Y. Huang, X.-J. Liang, Acc. Chem. Res. 2023, 56, 224.
CrossRef Google scholar
[80]
M. Li, G. Yang, Y. Zheng, J. Lv, W. Zhou, H. Zhang, F. You, C. Wu, H. Yang, Y. Liu, J. Nanobiotechnology 2023, 21, 186.
[81]
Z. Liu, Z. Feng, M. Chen, J. Zhan, R. Wu, Y. Shi, Y. Xue, R. Liu, J.-J. Zhu, J. Zhang, Chem. Sci. 2023, 14, 4102.
CrossRef Google scholar
[82]
N. Xie, M. Li, Y. Wang, H. Lv, J. Shi, J. Li, Q. Li, F. Wang, C. Fan, J. Am. Chem. Soc. 2022, 144, 9479.
CrossRef Google scholar
[83]
Z. Weng, H. Yu, W. Luo, Y. Guo, Q. Liu, L. Zhang, Z. Zhang, T. Wang, L. Dai, X. Zhou, X. Han, L. Wang, J. Li, Y. Yang, G. Xie, ACS Nano 2022, 16, 3135.
CrossRef Google scholar
[84]
X. Wang, Z. Mao, R. Chen, S. Li, S. Ren, J. Liang, Z. Gao, Biosens. Bioelectron. 2022, 211, 114336.
CrossRef Google scholar
[85]
Q. Jiang, S. Yue, K. Yu, T. Tian, J. Zhang, H. Chu, Z. Cui, S. Bi, J Nanobiotechnology 2021, 19, 288.
[86]
P. Miao, X. Ma, L. Xie, Y. Tang, X. Sun, Z. Wen, Z. Wang, Nano Energy 2022, 92, 106781.
CrossRef Google scholar
[87]
F. Pu, J. Ren, X. Qu, Adv. Mater. 2014, 26, 5742.
[88]
F. Yin, F. Wang, C. Fan, X. Zuo, Q. Li, VIEW 2021, 2, 20200038.
[89]
X. Tang, C. Feng, Q. Pan, F. Sun, X. Zhu, TrAC Trends Anal. Chem. 2021, 145, 116456.
CrossRef Google scholar
[90]
L. Li, X. Chen, C. Cui, X. Pan, X. Li, H. S. Yazd, Q. Wu, L. Qiu, J. Li, W. Tan, J. Am. Chem. Soc. 2019, 141, 17174.
CrossRef Google scholar
[91]
W. Ma, Y. Yang, J. Zhu, W. Jia, T. Zhang, Z. Liu, X. Chen, Y. Lin, Adv. Mater. 2022, 34, 2109609.
[92]
J. Chen, S. Fu, C. Zhang, H. Liu, X. Su, Small 2022, 18, 2108008.
[93]
J. Yang, R. Wu, Y. Li, Z. Wang, L. Pan, Q. Zhang, Z. Lu, C. Zhang, Nucleic. Acids. Res. 2018, 46, 8532.
CrossRef Google scholar
[94]
H. Su, J. Xu, Q. Wang, F. Wang, X. Zhou, Nat. Commun. 2019, 10, 5390.
[95]
J. Liu, C. Zhang, J. Song, Q. Zhang, R. Zhang, M. Zhang, D. Han, W. Tan, Adv. Sci. 2023, 10, 2206343.
[96]
A. Doricchi, C. M. Platnich, A. Gimpel, F. Horn, M. Earle, G. Lanzavecchia, A. L. Cortajarena, L. M. Liz-Marzán, N. Liu, R. Heckel, R. N. Grass, R. Krahne, U. F. Keyser, D. Garoli, ACS Nano 2022, 16, 17552.
CrossRef Google scholar
[97]
Y. Hao, Q. Li, C. Fan, F. Wang, Small Struct. 2021, 2, 2000046.
[98]
S. Wang, X. Mao, F. Wang, X. Zuo, C. Fan, Adv.Mater. 2024, 34, 2309840.
[99]
L. Ceze, J. Nivala, K. Strauss, Nat. Rev. Genet. 2019, 20, 456.
CrossRef Google scholar
[100]
B. Cao, X. Zhang, J. Wu, B. Wang, Q. Zhang, X. Wei, IEEE Trans. Nanobioscience 2021, 20, 212.
CrossRef Google scholar
[101]
K. Z. Abram, Z. Udaondo, Microb. Biotechnol. 2023, 16, 1709.
[102]
C. K. Lim, S. Nirantar, W. S. Yew, C. L. Poh, Trends Biotechnol. 2021, 39, 990.
CrossRef Google scholar
[103]
X. Chen, S. M. Argandona, F. Melle, N. Rampal, D. Fairen-Jimenez, Chem. 2023. https://doi.org/10.1016/j.chempr.2023.09.016
[104]
Y. Dong, F. Sun, Z. Ping, Q. Ouyang, L. Qian, Natl. Sci. Rev. 2020, 7, 1092.
CrossRef Google scholar
[105]
L. Anavy, I. Vaknin, O. Atar, R. Amit, Z. Yakhini, Nat. Biotechnol. 2019, 37, 1229.
CrossRef Google scholar
[106]
J. P. L Cox, Trends Biotechnol. 2001, 19, 247.

RIGHTS & PERMISSIONS

2023 2023 The Authors. View published by Shanghai Fuji Technology Consulting Co., Ltd, authorized by Professional Community of Experimental Medicine, National Association of Health Industry and Enterprise Management (PCEM) and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/