Integrating artificial intelligence in surgical sperm retrieval techniques: A narrative review

Hussein Kandil

UroPrecision ›› 2025, Vol. 3 ›› Issue (1) : 17 -26.

PDF (657KB)
UroPrecision ›› 2025, Vol. 3 ›› Issue (1) : 17 -26. DOI: 10.1002/uro2.100
REVIEW ARTICLE

Integrating artificial intelligence in surgical sperm retrieval techniques: A narrative review

Author information +
History +
PDF (657KB)

Abstract

Nonobstructive azoospermia (NOA) is a serious form of male infertility with therapeutic options limited to trials of endocrine manipulations and repertoire of surgical interventions, also known as surgical sperm retrieval (SSR) procedures. Despite its invasive nature, SSR remains crucial in the management of NOA, offering infertile males the opportunity of fathering their biological children using assisted reproductive technologies. Success rates of SSR are variably governed by several factors including the genetic background, preoperative endocrine optimization, testicular histopathology, surgeon's microsurgical expertise, and laboratory technological and technical team's capability. This paper explores the significant role of artificial intelligence (AI) in the process of sperm retrieval among NOA patients. The role of AI has evolved from basic predictive models used for outcome assessment and patient counseling, to advanced image processing capabilities for assessing sperm parameters, and now to cutting-edge applications in identifying the rare sperm present in the azoospermic microdissection testicular sperm extraction tissue samples.

Keywords

artificial intelligence / micro-TESE / nonobstructive azoospermia / sperm retrieval

Cite this article

Download citation ▾
Hussein Kandil. Integrating artificial intelligence in surgical sperm retrieval techniques: A narrative review. UroPrecision, 2025, 3(1): 17-26 DOI:10.1002/uro2.100

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ravitsky V , Kimmins S . The forgotten men: rising rates of male infertility urgently require new approaches for its prevention, diagnosis and treatment. Biol Reprod. 2019; 101 (5): 872- 4.

[2]

Levine H , Jørgensen N , Martino-Andrade A , Mendiola J , Weksler-Derri D , Mindlis I , et al. Temporal trends in sperm count: a systematic review and meta-regression analysis. Hum Reprod Update. 2017; 23 (6): 646- 59.

[3]

Caroppo E , Colpi GM . Male infertility: a review of key papers appearing in the reproductive medicine and andrology section of the journal of clinical medicine. J Clin Med. 2023; 12 (6): 2366.

[4]

Sharma M , Leslie S . Azoospermia. StatPearls. Treasure Island: StatPearls Publishing; 2024;

[5]

Flannigan R , Bach PV , Schlegel PN . Microdissection testicular sperm extraction. Transl Androl Urol. 2017; 6 (4): 745- 52.

[6]

Schlegel PN . Testicular sperm extraction: microdissection improves sperm yield with minimal tissue excision. Hum Reprod. 1999; 14 (1): 131- 5.

[7]

Samuel R , Badamjav O , Murphy KE , Patel DP , Son J , Gale BK , et al. Microfluidics: the future of microdissection TESE? Syst Biol Reprod Med. 2016; 62 (3): 161- 70.

[8]

Hamet P , Tremblay J . Artificial intelligence in medicine. Metabolism. 2017; 69S: S36- 40.

[9]

ISO/IEC. ISO/IEC TR 24028:2020. Accessed 25 Oct 2024.

[10]

Panner Selvam MK , Moharana AK , Baskaran S , Finelli R , Hudnall MC , Sikka SC . Current updates on involvement of artificial intelligence and machine learning in semen analysis. Medicina. 2024; 60 (2): 279.

[11]

Lee R , Witherspoon L , Robinson M , Lee JH , Duffy SP , Flannigan R , et al. Automated rare sperm identification from low-magnification microscopy images of dissociated microsurgical testicular sperm extraction samples using deep learning. Fertil Steril. 2022; 118 (1): 90- 9.

[12]

Goss D , Vasilescu S , Vasilescu P , Sacks G , Gardner D , Warkiani M . O-136 artificial intelligence to assist in surgical sperm detection and isolation. Hum Reprod. 2023; 38(Suppl_1): dead093.163.

[13]

Goss DM , Vasilescu SA , Vasilescu PA , Cooke S , Kim SH , Sacks GP , et al. Evaluation of an artificial intelligence-facilitated sperm detection tool in azoospermic samples for use in ICSI. Reprod Biomed Online. 2024; 49 (1): 103910.

[14]

Shah R . Surgical sperm retrieval: techniques and their indications. Indian J Urol. 2011; 27 (1): 102- 9.

[15]

Kresch E , Efimenko I , Gonzalez D , Rizk PJ , Ramasamy R . Novel methods to enhance surgical sperm retrieval: a systematic review. Arab J Urol. 2021; 19 (3): 227- 37.

[16]

Esteves SC , Majzoub A , Agarwal A , Chen R . More good than harm should be expected when Testi-ICSI is applied to oligozoospermic men with post-testicular sperm DNA fragmentation. Transl Androl Urol. 2017; 6 (Suppl 4): S381- 4.

[17]

Coward RM , Mills JN . A step-by-step guide to office-based sperm retrieval for obstructive azoospermia. Transl Androl Urol. 2017; 6 (4): 730- 44.

[18]

Peña VN , Kohn TP , Herati AS . Genetic mutations contributing to non-obstructive azoospermia. Best Pract Res Clin Endocrinol Metab. 2020; 34 (6): 101479.

[19]

Cocuzza M , Alvarenga C , Pagani R . The epidemiology and etiology of azoospermia. Clinics. 2013; 68 Suppl 1 (Suppl 1): 15- 26.

[20]

Ishikawa T . Surgical recovery of sperm in non-obstructive azoospermia. Asian J Androl. 2012; 14 (1): 109- 15.

[21]

Cito G , Coccia ME , Sessa F , Cocci A , Verrienti P , Picone R , et al. Testicular fine-needle aspiration for sperm retrieval in azoospermia: a small step toward the technical standardization. World J Men's Health. 2019; 37 (1): 55- 67.

[22]

Beliveau ME , Turek PJ . The value of testicular “mapping” in men with non-obstructive azoospermia. Asian J Androl. 2011; 13 (2): 225- 30.

[23]

Esteves SC . Microdissection TESE versus conventional TESE for men with nonobstructive azoospermia undergoing sperm retrieval. Int Braz J Urol. 2022; 48 (3): 569- 78.

[24]

World Health Organization . WHO laboratory manual for the examination and processing of human semen. 6th ed. Geneva: World Health Organization; 2021.

[25]

Modarresi T , Sabbaghian M , Shahverdi A , Hosseinifar H , Akhlaghi AA , Sadighi Gilani MA . Enzymatic digestion improves testicular sperm retrieval in non-obstructive azoospermic patients. Iran J Reprod Med. 2013; 11 (6): 447- 52.

[26]

Vloeberghs V , De Munck N , Racca A , Mateizel I , Wouters K , Tournaye H . Enzymatic tissue processing after testicular biopsy in non-obstructive azoospermia enhances sperm retrieval. Human Reproduction Open. 2023; 2023 (4): hoad039.

[27]

Fraietta R . Microdissection is the best way to perform sperm retrieval in men with non-obstructive azoospermy? | Opinion: yes. Int Braz J Urol. 2018; 44 (6): 1063- 6.

[28]

Deruyver Y , Vanderschueren D , Van der Aa F . Outcome of microdissection TESE compared with conventional TESE in non-obstructive azoospermia: a systematic review. Andrology. 2014; 2 (1): 20- 4.

[29]

Bernie AM , Shah K , Halpern JA , Scovell J , Ramasamy R , Robinson B , et al. Outcomes of microdissection testicular sperm extraction in men with nonobstructive azoospermia due to maturation arrest. Fertil Steril. 2015; 104 (3): 569- 73.

[30]

Caroppo E , Colpi EM , Gazzano G , Vaccalluzzo L , Scroppo FI , D'Amato G , et al. Testicular histology may predict the successful sperm retrieval in patients with non-obstructive azoospermia undergoing conventional TESE: a diagnostic accuracy study. J Assist Reprod Genet. 2017; 34 (1): 149- 54.

[31]

Kavoussi PK , Hunn C , Gilkey MS , Chen SH , Kavoussi KM , Wininger JD , et al. Sertoli cell only syndrome induced by a varicocele. Transl Androl Urol. 2019; 8 (4): 405- 8.

[32]

Bernie AM , Mata DA , Ramasamy R , Schlegel PN . Comparison of microdissection testicular sperm extraction, conventional testicular sperm extraction, and testicular sperm aspiration for nonobstructive azoospermia: a systematic review and meta-analysis. Fertil Steril. 2015; 104 (5): 1099- 103.e3.

[33]

Poalelungi DG , Musat CL , Fulga A , Neagu M , Neagu AI , Piraianu AI , et al. Advancing patient care: how artificial intelligence is transforming healthcare. J Pers Med. 2023; 13 (8): 1214.

[34]

Thomason R . Logic-based artificial intelligence. In: Zalta EN, Nodelman U, editors. The Stanford encyclopedia of philosophy. 2024th ed. Stanford: Metaphysics Research Lab, Stanford University; 2024.

[35]

Ghayda RA , Cannarella R , Calogero AE , Shah R , Rambhatla A , Zohdy W , et al. Artificial intelligence in andrology: from semen analysis to image diagnostics. World J Men's Health. 2024; 42 (1): 39- 61.

[36]

Kaplan A , Haenlein M . Siri, Siri, in my hand: Who's the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Bus Horiz. 2019; 62 (1): 15- 25.

[37]

Sidey-Gibbons JAM , Sidey-Gibbons CJ . Machine learning in medicine: a practical introduction. BMC Med Res Methodol. 2019; 19 (1): 64.

[38]

Rolfes V , Bittner U , Gerhards H , Krüssel JS , Fehm T , Ranisch R , et al. Artificial intelligence in reproductive medicine—an ethical perspective. Geburtshilfe Frauenheilkd. 2023; 83 (1): 106- 15.

[39]

Barbierato E , Gatti A . The challenges of machine learning: a critical review. Electronics. 2024; 13 (2): 416.

[40]

Sarker IH . Machine learning: algorithms, real-world applications and research directions. SN Comput Sci. 2021; 2 (3): 160.

[41]

An Q , Rahman S , Zhou J , Kang JJ . A comprehensive review on machine learning in healthcare industry: classification, restrictions, opportunities and challenges. Sensors. 2023; 23 (9): 4178.

[42]

Krenz H , Sansone A , Fujarski M , Krallmann C , Zitzmann M , Dugas M , et al. Machine learning based prediction models in male reproductive health: development of a proof-of-concept model for Klinefelter syndrome in azoospermic patients. Andrology. 2022; 10 (3): 534- 44.

[43]

Ory J , Tradewell MB , Blankstein U , Lima TF , Nackeeran S , Gonzalez DC , et al. Artificial intelligence based machine learning models predict sperm parameter upgrading after varicocele repair: a multi-institutional analysis. World J Men's Health. 2022; 40 (4): 618- 26.

[44]

Gao F , Huang K , Xing Y . Artificial intelligence in omics. Genomics Insights. 2022; 20 (5): 811- 3.

[45]

Shur JD , Doran SJ , Kumar S , Ap Dafydd D , Downey K , O'Connor JPB , et al. Radiomics in oncology: a practical guide. Radiographics. 2021; 41 (6): 1717- 32.

[46]

Miotto R , Wang F , Wang S , Jiang X , Dudley JT . Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform. 2018; 19 (6): 1236- 46.

[47]

Yamashita R , Nishio M , Do RKG , Togashi K . Convolutional neural networks: an overview and application in radiology. Insights Imaging. 2018; 9 (4): 611- 29.

[48]

Das S , Tariq A , Santos T , Kantareddy SS , Banerjee I . Recurrent neural networks (RNNs): architectures, training tricks, and introduction to influential research. In: Colliot O, editor. Machine learning for brain disorders. New York: Humana; 2023; p. 117- 38.

[49]

Leslie SW , Soon-Sutton TL , Khan MA . Male infertility. Male Infertility. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan.

[50]

Wang C , Swerdloff RS . Limitations of semen analysis as a test of male fertility and anticipated needs from newer tests. Fertil Steril. 2014; 102 (6): 1502- 7.

[51]

Kandil H , Farkouh A , Saleh R , Boitrelle F , Agarwal A . Sperm DNA fragmentation and male infertility. In: Dahan MH, Fatemi HM, Polyzos NP, Garcia-Velasco JA, editors. Handbook of current and novel protocols for the treatment of infertility, Amsterdam, Netherlands: Academic Press; 2024; p. 29- 52.

[52]

Linn E , Ghanem L , Bhakta H , Greer C , Avella M . Genes regulating spermatogenesis and sperm function associated with rare disorders. Front Cell Dev Biol. 2021; 9: 634536.

[53]

Kasimanickam V , Kasimanickam R . MicroRNAs and their associated genes regulating the acrosome reaction in sperm of high-versus low-fertility holstein bulls. Animals. 2024; 14 (6): 833.

[54]

Shamsi M , Kumar K , Dada R . Genetic and epigenetic factors: role in male infertility. Indian Journal of Urology. 2011; 27 (1): 110.

[55]

Santi D , Crépieux P , Reiter E , Spaggiari G , Brigante G , Casarini L , et al. Follicle-stimulating hormone (FSH) action on spermatogenesis: a focus on physiological and therapeutic roles. J Clin Med. 2020; 9 (4): 1014.

[56]

Kaufmann SJ , Eastaugh JL , Snowden S , Smye SW , Sharma V . The application of neural networks in predicting the outcome of in-vitro fertilization. Hum Reprod. 1997; 12 (7): 1454- 7.

[57]

Vogiatzi P , Pouliakis A , Siristatidis C . An artificial neural network for the prediction of assisted reproduction outcome. J Assist Reprod Genet. 2019; 36 (7): 1441- 8.

[58]

Yi WJ , Park KS , Paick JS . Morphological classification of sperm heads using artificial neural networks. Stud Health Technol Inform. 1998; 52 Pt 2: 1071- 4.

[59]

Wang Y , Riordon J , Kong T , Xu Y , Nguyen B , Zhong J , et al. Prediction of DNA integrity from morphological parameters using a single-sperm DNA fragmentation index assay. Adv Sci. 2019; 6 (15): 1900712.

[60]

Kandel ME , Rubessa M , He YR , Schreiber S , Meyers S , Matter Naves L , et al. Reproductive outcomes predicted by phase imaging with computational specificity of spermatozoon ultrastructure. Proc Natl Acad Sci USA. 2020; 117 (31): 18302- 9.

[61]

Ramasamy R , Padilla WO , Osterberg EC , Srivastava A , Reifsnyder JE , Niederberger C , et al. A comparison of models for predicting sperm retrieval before microdissection testicular sperm extraction in men with nonobstructive azoospermia. J Urol. 2013; 189 (2): 638- 42.

[62]

Goodson SG , White S , Stevans AM , Bhat S , Kao CY , Jaworski S , et al. CASAnova: a multiclass support vector machine model for the classification of human sperm motility patterns. Biol Reprod. 2017; 97 (5): 698- 708.

[63]

Zeadna A , Khateeb N , Rokach L , Lior Y , Har-Vardi I , Harlev A , et al. Prediction of sperm extraction in non-obstructive azoospermia patients: a machine-learning perspective. Hum Reprod. 2020; 35 (7): 1505- 14.

[64]

Medina-Rodríguez R , Guzmán-Masías L , Alatrista-Salas H , Beltrán-Castañón C , Andriole G . Sperm cells segmentation in micrographic images through lambertian reflectance model. In: Azzopardi G, Petkov N, editors. Computer analysis of images and patterns. Cham: Springer; 2015. p. 664- 74.

[65]

Hidayatullah P , Zuhdi M . Automatic sperms counting using adaptive local threshold and ellipse detection. 2014 International Conference on Information Technology Systems and Innovation (ICITSI), IEEE; 2014; p. 56- 61.

[66]

Thiermann R , Sandler M , Ahir G , Sauls JT , Schroeder JW , Brown SD , et al. Tools and methods for high-throughput single-cell imaging with the mother machine. bioRxiv. 2024; 12: 1- 24.

[67]

Dobrovolny M , Mls K , Krejcar O , Mambou S , Selamat A . Medical image data upscaling with generative adversarial networks. In: Rojas I, Valenzuela O, Rojas F, Herrera LJ, editors. Bioinformatics and Biomedical Engineering. Cham: Springer. 2020; p. 739- 49.

[68]

Dobrovolny M , Benes J , Langer J , Krejcar O , Selamat A . Study on sperm-cell detection using YOLOv5 architecture with labaled dataset. Genes. 2023; 14 (2): 451.

[69]

Su TW , Choi I , Feng J , Huang K , McLeod E , Ozcan A . Sperm trajectories form chiral ribbons. Sci Rep. 2013; 3 (1): 1664.

[70]

Hidayatullah P , Mengko TLER , Munir R . A survey on multisperm tracking for sperm motility measurement. Int J Mach Learn Comput. 2017; 7 (5): 144- 51.

[71]

Franco G , Scarselli F , Casciani V , De Nunzio C , Dente D , Leonardo C , et al. A novel stepwise micro-TESE approach in non obstructive azoospermia. BMC Urol. 2016; 16 (1): 20.

[72]

Ouitrakul S , Sukprasert M , Treetampinich C , Choktanasiri W , Vallibhakara S , Satirapod C . The effect of different timing after ejaculation on sperm motility and viability in semen analysis at room temperature. J Med Assoc Thai. 2018; 101: 26- 32.

[73]

Anderson RE , Hotaling JM . Inherent difficulties of meta-analysis for surgical techniques in male infertility: an argument for standardizing reporting and outcomes. Fertil Steril. 2015; 104 (5): 1127- 8.

[74]

Ramasamy R , Reifsnyder JE , Bryson C , Zaninovic N , Liotta D , Cook CA , et al. Role of tissue digestion and extensive sperm search after microdissection testicular sperm extraction. Fertil Steril. 2011; 96 (2): 299- 302.

[75]

Cubuk ED , Zoph B , Mane D , Vasudevan V , Le QV . AutoAugment: learning augmentation policies from data. arXiv. 2019: 113- 23.

[76]

Tremblay J , Prakash A , Acuna D , Brophy M , Jampani V , Ani C , et al. Training deep networks with synthetic data: bridging the reality gap by domain randomization. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2018; p. 1082- 90.

[77]

Beltramin D , Lamas E , Bousquet C . Ethical issues in the utilization of black boxes for artificial intelligence in medicine. Stud Health Technol Inform. 2022; 295: 249- 52.

[78]

Chen MM , Golding LP , Nicola GN . Who will pay for AI? Radiol Artif Intell. 2021; 3 (3): e210030.

[79]

Gül M , Russo GI , Kandil H , Boitrelle F , Saleh R , Chung E , et al. Male infertility: new developments, current challenges, and future directions. World J Men's Health. 2024; 42 (3): 502- 17.

RIGHTS & PERMISSIONS

The Author(s). UroPrecision published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (657KB)

1030

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/