PDF
(239KB)
Abstract
Male infertility contributes to 20%-70% of infertile couple cases worldwide. One of the key challenges in this area is asthenozoospermia or reduced sperm motility. A particular subset, known as isolated asthenozoospermia (iASZ), in which low motility occurs without abnormalities in sperm count or shape, often goes unnoticed and is not well understood. This narrative review attempts to compile the state of knowledge regarding the etiology, diagnosis, and treatment of iASZ and to identify knowledge gaps that need further investigation with an emphasis on physiological, genetic, and molecular mechanisms. We conducted a focused literature search using PubMed and Web of Science, covering studies published between 2000 and 2024. We included articles that explored the structure, function, diagnosis, and treatment of iASZ. We find sperm motility is influenced by multiple factors, from structural components like mitochondria and the flagellum, to biochemical signals and genetic mutations. In men with iASZ, issues such as mitochondrial dysfunction, oxidative stress, or specific gene defects may impair motility. While routine semen analysis helps flag low motility, it often fails to explain why it occurs—highlighting the need for advanced tests like DNA fragmentation tests, genetic screening, and high-resolution imaging. As regards treatment, lifestyle changes, varicocele surgery, and antioxidants can offer some benefit. Assisted reproduction techniques, especially intracytoplasmic sperm injection (ICSI), remain central for achieving pregnancy when other options fail. iASZ deserves more attention as a distinct and treatable cause of male infertility. By improving how we diagnose and manage this condition, supported by further research, we can offer better outcomes for affected couples hoping to conceive.
Keywords
asthenozoospermia
/
genetics
/
isolated asthenozoospermia
/
male infertility
/
semen analysis
/
sperm motility
Cite this article
Download citation ▾
Ahmed Eissa, Khaled Almekaty, Ahmed Zoeir, Hussein Mamdoh, Ayman Mousa, Mohammed Abou, Tarek Gameel, Maged Ragab.
Isolated asthenozoospermia: What should we know? A narrative review of literature.
UroPrecision, 2025, 3(2): 73-86 DOI:10.1002/uro2.70015
| [1] |
Vander Borght M, Wyns C. Fertility and infertility: definition and epidemiology. Clin Biochem. 2018; 62: 2- 10.
|
| [2] |
Agarwal A, Mulgund A, Hamada A, Chyatte MR. A unique view on male infertility around the globe. Reprod Biol Endocrinol. 2015; 13 (1): 37.
|
| [3] |
Atmoko W, Savira M, Shah R, Chung E, Agarwal A. Isolated teratozoospermia: revisiting its relevance in male infertility: a narrative review. Transl Androl Urol. 2024; 13 (2): 260- 73.
|
| [4] |
Dcunha R, Hussein RS, Ananda H, Kumari S, Adiga SK, Kannan N, et al. Current insights and latest updates in sperm motility and associated applications in assisted reproduction. Reprod Sci. 2022; 29 (1): 7- 25.
|
| [5] |
World Health Organization. WHO Laboratory manual for the examination and processing of human semen. 6th ed. Geneva, Switzerland: WHO Press; 2021.
|
| [6] |
Cooper TG, Noonan E, von Eckardstein S, Auger J, Baker HWG, Behre HM, et al. World Health Organization reference values for human semen characteristics. Hum Reprod Update. 2010; 16 (3): 231- 45.
|
| [7] |
Brown RL. Rate of transport of spermia in human uterus and tubes. Am J Obstet Gynecol. 1944; 47 (3): 407- 11.
|
| [8] |
McConnell JD. Abnormalities in sperm motility: techniques of evaluation and treatment. In: Lipschulz LI, Howard SS, editors. Infertility in the male. 3rd ed. St. Louis, MO, USA: Mosby; 1997. p. 249- 68.
|
| [9] |
Nallella KP, Sharma RK, Aziz N, Agarwal A. Significance of sperm characteristics in the evaluation of male infertility. Fertil Steril. 2006; 85 (3): 629- 34.
|
| [10] |
Deibert C, Zeeck KM, Sandlow J. Achieving pregnancy in men with isolated asthenospermia. Fertil Steril. 2015; 104 (3): e236.
|
| [11] |
Whitfield M, Thomas L, Bequignon E, Schmitt A, Stouvenel L, Montantin G, et al. Mutations in DNAH17, encoding a sperm-specific axonemal outer dynein arm heavy chain, cause isolated male infertility due to asthenozoospermia. Am J Hum Genet. 2019; 105 (1): 198- 212.
|
| [12] |
Arafa M, Alkabbani M, Elbardisi H, Mahdi M, Al-Malki AH, Alkubaisi KJ, et al. Effect of microsurgical subinguinal varicocele repair in infertile patients with isolated asthenozoospermia. Fertil Steril. 2023; 120 (4): e306- 7.
|
| [13] |
El Taieb MA, Hegazy EM, Ibrahim HM, Ibrahim AK. Seminal and serum leptin levels in male patients with varicocele and isolated asthenozoospermia before and after repair. Aging Male. 2020; 23 (5): 579- 84.
|
| [14] |
Belloc S, Benkhalifa M, Cohen-Bacrie M, Dalleac A, Chahine H, Amar E, et al. Which isolated sperm abnormality is most related to sperm DNA damage in men presenting for infertility evaluation. J Assist Reprod Genet. 2014; 31 (5): 527- 32.
|
| [15] |
Zuccarello D, Ferlin A, Garolla A, Pati MA, Moretti A, Cazzadore C, et al. A possible association of a human tektin-t gene mutation (A229V) with isolated non-syndromic asthenozoospermia: case report. Hum Reprod. 2008; 23 (4): 996- 1001.
|
| [16] |
Nowicka-Bauer K, Lepczynski A, Ozgo M, Kamieniczna M, Fraczek M, Stanski L, et al. Sperm mitochondrial dysfunction and oxidative stress as possible reasons for isolated asthenozoospermia. J Physiol Pharmacol. 2018; 69 (3): 403- 417.
|
| [17] |
Zuccarello D, Ferlin A, Cazzadore C, Pepe A, Garolla A, Moretti A, et al. Mutations in dynein genes in patients affected by isolated non-syndromic asthenozoospermia. Hum Reprod. 2008; 23 (8): 1957- 62.
|
| [18] |
ElShibany AM, Taha EAER, Kamal DT, GamalEl Din SF, Abo El Yamen YM, Hasan HA, et al. Epididymal sonographic findings in infertile males with isolated asthenozoospermia and their correlation with seminal plasma l-carnitine: an observational study. Urologia J. 2025; 92 (1): 126- 33.
|
| [19] |
Murdica V, Cermisoni GC, Zarovni N, Salonia A, Viganò P, Vago R. Proteomic analysis reveals the negative modulator of sperm function glycodelin as over-represented in semen exosomes isolated from asthenozoospermic patients. Hum Reprod. 2019; 34 (8): 1416- 27.
|
| [20] |
Boman JM, Libman J, Zini A. Microsurgical varicocelectomy for isolated asthenospermia. J Urol. 2008; 180 (5): 2129- 32.
|
| [21] |
Tu C, Wang W, Hu T, Lu G, Lin G, Tan YQ. Genetic underpinnings of asthenozoospermia. Best Pract Res Clin Endocrinol Metab. 2020; 34 (6): 101472.
|
| [22] |
Precone V, Cannarella R, Paolacci S, Busetto GM, Beccari T, Stuppia L, et al. Male infertility diagnosis: improvement of genetic analysis performance by the introduction of pre-diagnostic genes in a next-generation sequencing custom-made panel. Front Endocrinol. 2021; 11: 605237.
|
| [23] |
Gill K, Machałowski T, Harasny P, Grabowska M, Duchnik E, Piasecka M. Low human sperm motility coexists with sperm nuclear DNA damage and oxidative stress in semen. Andrology. 2024; 12 (5): 1154- 69.
|
| [24] |
Hashemitabar M, Sabbagh S, Orazizadeh M, Ghadiri A, Bahmanzadeh M. A proteomic analysis on human sperm tail: comparison between normozoospermia and asthenozoospermia. J Assist Reprod Genet. 2015; 32 (6): 853- 63.
|
| [25] |
Vívenes CY, Peralta-Arias RD, Camejo MI, Guerrero K, Fernández VH, Piñero S, et al. Biochemical identification of dynein-ATPase activity in human sperm. Zeitschrift für Naturforschung C. 2009; 64 (9-10): 747- 53.
|
| [26] |
Zhao Y, Wang H, Wiesehoefer C, Shah NB, Reetz E, Hwang JY, et al. 3D structure and in situ arrangements of CatSper channel in the sperm flagellum. Nat Commun. 2022; 13 (1): 3439.
|
| [27] |
Zhang X, Liang M, Song D, Huang R, Chen C, Liu X, et al. Both protein and non-protein components in extracellular vesicles of human seminal plasma improve human sperm function via CatSper-mediated calcium signaling. Hum Reprod. 2024; 39 (4): 658- 73.
|
| [28] |
Darszon A, Treviño CL, Wood C, Galindo B, Rodríguez-Miranda E, Acevedo JJ, et al. Ion channels in sperm motility and capacitation. Soc Reprod Fertil Suppl. 2007; 65: 229- 44.
|
| [29] |
Rios M, Carreño DV, Oses C, Barrera N, Kerr B, Villalón M. Low physiological levels of prostaglandins E2 and F2α improve human sperm functions. Reprod Fertil Dev. 2016; 28 (4): 434.
|
| [30] |
Buffone MG, Doncel GF, Calamera JC, Verstraeten SV. Capacitation-associated changes in membrane fluidity in asthenozoospermic human spermatozoa. Int J Androl. 2009; 32 (4): 360- 75.
|
| [31] |
Shan L, Gao L, Chai Y, Li K, Yu J, Liang F, et al. Cordycepin improves hyperactivation and acrosome reaction through adenosine receptors during human sperm capacitation in vitro. Reprod Biol Endocrinol. 2024; 22 (1): 143.
|
| [32] |
Salvolini E, Buldreghini E, Lucarini G, Vignini A, Lenzi A, Di Primio R, et al. Involvement of sperm plasma membrane and cytoskeletal proteins in human male infertility. Fertil Steril. 2013; 99 (3): 697- 704.
|
| [33] |
Hermo L, Oliveira RL, Smith CE, Au CE, Bergeron JJM. Dark side of the epididymis: tails of sperm maturation. Andrology. 2019; 7 (5): 566- 80.
|
| [34] |
Martin-Hidalgo D, Serrano R, Zaragoza C, Garcia-Marin LJ, Bragado MJ. Human sperm phosphoproteome reveals differential phosphoprotein signatures that regulate human sperm motility. J Proteomics. 2020; 215: 103654.
|
| [35] |
Murdica V, Giacomini E, Alteri A, Bartolacci A, Cermisoni GC, Zarovni N, et al. Seminal plasma of men with severe asthenozoospermia contain exosomes that affect spermatozoa motility and capacitation. Fertil Steril. 2019; 111 (5): 897- 908.e2.
|
| [36] |
Tamessar CT, Anderson AL, Bromfield EG, Trigg NA, Parameswaran S, Stanger SJ, et al. The efficacy and functional consequences of interactions between human spermatozoa and seminal fluid extracellular vesicles. Reprod Fertil. 2024; 5 (4): e230088.
|
| [37] |
Boonsimma K, Ngeamvijawat J, Sukcharoen N, Boonla C. Supplementing post-wash asthenozoospermic human spermatozoa with coenzyme Q10 for 1 hr in vitro improves sperm motility, but not oxidative stress. Andrologia. 2020; 52 (11): e13818.
|
| [38] |
Mancini A, Milardi D, Conte G, Bianchi A, Balercia G, De Marinis L, et al. Coenzyme Q10: another biochemical alteration linked to infertility in varicocele patients? Metabolism. 2003; 52 (4): 402- 6.
|
| [39] |
Mancini A, Milardi D, Conte G, Festa R, De Marinis L, Littarru GP. Seminal antioxidants in humans: preoperative and postoperative evaluation of coenzyme Q10 in varicocele patients. Horm Metab Res. 2005; 37 (7): 428- 32.
|
| [40] |
Collodel G, Federico MG, Pascarelli NA, Geminiani M, Renieri T, Moretti E. A case of severe asthenozoospermia: a novel sperm tail defect of possible genetic origin identified by electron microscopy and immunocytochemistry. Fertil Steril. 2011; 95 (1): 289.e11- 6.
|
| [41] |
Visser L, Westerveld GH, Xie F, van Daalen SKM, van der Veen F, Lombardi MP, et al. A comprehensive gene mutation screen in men with asthenozoospermia. Fertil Steril. 2011; 95 (3): 1020.e1- 9.
|
| [42] |
Zhang Z, Zariwala MA, Mahadevan MM, Caballero-Campo P, Shen X, Escudier E, et al. A heterozygous mutation disrupting the SPAG16 gene results in biochemical instability of central apparatus components of the human sperm axoneme1. Biol Reprod. 2007; 77 (5): 864- 71.
|
| [43] |
Zuccarello D, Ferlin A, Garolla A, Pati MA, Moretti A, Cazzadore C, et al. A possible association of a human tektin-t gene mutation (A229V) with isolated non-syndromic asthenozoospermia: case report. Hum Reprod. 2008; 23 (4): 996- 1001.
|
| [44] |
Lorès P, Coutton C, El Khouri E, Stouvenel L, Givelet M, Thomas L, et al. Homozygous missense mutation L673P in adenylate kinase 7 (AK7) leads to primary male infertility and multiple morphological anomalies of the flagella but not to primary ciliary dyskinesia. Hum Mol Gen. 2018; 27 (7): 1196- 211.
|
| [45] |
Pacheco SE, Houseman EA, Christensen BC, Marsit CJ, Kelsey KT, Sigman M, et al. Integrative DNA methylation and gene expression analyses identify DNA packaging and epigenetic regulatory genes associated with low motility sperm. PLoS One. 2011; 6 (6): e20280.
|
| [46] |
Auguste Y, Delague V, Desvignes JP, Longepied G, Gnisci A, Besnier P, et al. Loss of calmodulin- and radial-spoke-associated complex protein CFAP251 leads to immotile spermatozoa lacking mitochondria and infertility in men. Am J Hum Genet. 2018; 103 (3): 413- 20.
|
| [47] |
Karami Hezarcheshmeh F, Yaghmaei P, Hayati Roodbari N, Yari K. Methylation status of cAMP-responsive element modulator (CREM) gene in infertile men and its association with sperm parameters. Reprod Sci. 2024; 31 (7): 2001- 8.
|
| [48] |
Harris TP, Gomas KP, Weir F, Holyoake AJ, McHugh P, Wu M, et al. Molecular analysis of polymerase gamma gene and mitochondrial polymorphism in fertile and subfertile men. Int J Androl. 2006; 29 (3): 421- 33.
|
| [49] |
Whitfield M, Thomas L, Bequignon E, Schmitt A, Stouvenel L, Montantin G, et al. Mutations in DNAH17, encoding a sperm-specific axonemal outer dynein arm heavy chain, cause isolated male infertility due to asthenozoospermia. Am J Hum Genet. 2019; 105 (1): 198- 212.
|
| [50] |
Levkova M, Radanova M, Angelova L. Potential role of dynein-related genes in the etiology of male infertility: a systematic review and a meta-analysis. Andrology. 2022; 10 (8): 1484- 99.
|
| [51] |
Siva AB, Kameshwari DB, Singh V, Pavani K, Sundaram CS, Rangaraj N, et al. Proteomics-based study on asthenozoospermia: differential expression of proteasome alpha complex. Mol Hum Reprod. 2010; 16 (7): 452- 62.
|
| [52] |
Murdica V, Cermisoni GC, Zarovni N, Salonia A, Viganò P, Vago R. Proteomic analysis reveals the negative modulator of sperm function glycodelin as over-represented in semen exosomes isolated from asthenozoospermic patients. Hum Reprod. 2019; 34 (8): 1416- 27.
|
| [53] |
Jedrzejczak P, Kempisty B, Bryja A, Mostowska M, Depa-Martynow M, Pawelczyk L, et al. Quantitative assessment of transition proteins 1, 2 Spermatid-specific linker histone H1-like protein transcripts in spermatozoa from normozoospermic and asthenozoospermic men. Arch Androl. 2007; 53 (4): 199- 205.
|
| [54] |
Lambard S. Analysis and significance of mRNA in human ejaculated sperm from normozoospermic donors: relationship to sperm motility and capacitation. Mol Hum Reprod. 2004; 10 (7): 535- 41.
|
| [55] |
Gianzo M, Muñoa-Hoyos I, Urizar-Arenaza I, Larreategui Z, Quintana F, Garrido N, et al. Angiotensin II type 2 receptor is expressed in human sperm cells and is involved in sperm motility. Fertil Steril. 2016; 105 (3): 608- 16.
|
| [56] |
Subirán N, Candenas L, Pinto FM, Cejudo-Roman A, Agirregoitia E, Irazusta J. Autocrine regulation of human sperm motility by the met-enkephalin opioid peptide. Fertil Steril. 2012; 98 (3): 617- 25.e3.
|
| [57] |
Shen S, Wang J, Liang J, He D. Comparative proteomic study between human normal motility sperm and idiopathic asthenozoospermia. World J Urol. 2013; 31 (6): 1395- 401.
|
| [58] |
Subirán N, Pinto FM, Agirregoitia E, Candenas L, Irazusta J. Control of APN/CD13 and NEP/CD10 on sperm motility. Asian J Androl. 2010; 12 (6): 899- 902.
|
| [59] |
Hashemitabar M, Heidari E, Orazizadeh M, Sabbagh S, Afrough M, Dastoorpoor M, et al. Cytochrome C oxidase 6B2 reflects the mitochondrial status through the oxidative phosphorylation. Iran Red Crescent Med J. 2018; 20 (12): e81348.
|
| [60] |
Bansal SK, Gupta N, Sankhwar SN, Rajender S. Differential genes expression between fertile and infertile spermatozoa revealed by transcriptome analysis. PLoS One. 2015; 10 (5): e0127007.
|
| [61] |
Zhou R, Zhang Y, Du G, Han L, Zheng S, Liang J, et al. Down-regulated let-7b-5p represses glycolysis metabolism by targeting AURKB in asthenozoospermia. Gene. 2018; 663: 83- 7.
|
| [62] |
Bdeir R, Al-Keilani MS, Khamaiseh K. Effects of the neuropeptides pituitary adenylate cyclase activating polypeptide and vasoactive intestinal peptide in male fertility. Medicina. 2024; 60 (4): 652.
|
| [63] |
Song P, Zou S, Chen T, Chen J, Wang Y, Yang J, et al. Endothelial nitric oxide synthase (eNOS) T-786C, 4a4b, and G894T polymorphisms and male infertility: study for idiopathic asthenozoospermia and meta-analysis. Biol Reprod. 2015; 92 (2): 38.
|
| [64] |
Kempisty B, Depa-Martynow M, Lambertini M, Jedrzejczak P, Darul-Wasowicz A, Jagodzinski PP. valuation of protamines 1 and 2 transcript contents in spermatozoa from asthenozoospermic men. Folia Histochem Cytobiol. 2007; 45 (Suppl 1): 109- 13.
|
| [65] |
Subirán N, Agirregoitia E, Valdivia A, Ochoa C, Casis L, Irazusta J. Expression of enkephalin-degrading enzymes in human semen and implications for sperm motility. Fertil Steril. 2008; 89 (5): 1571- 7.
|
| [66] |
Schon SB, Luense LJ, Wang X, Bartolomei MS, Coutifaris C, Garcia BA, et al. Histone modification signatures in human sperm distinguish clinical abnormalities. J Assist Reprod Genet. 2019; 36 (2): 267- 75.
|
| [67] |
Buldreghini E, Hamada A, Macrì ML, Amoroso S, Boscaro M, Lenzi A, et al. Human leucocytes in asthenozoospermic patients: endothelial nitric oxide synthase expression. Andrologia. 2014; 46 (10): 1176- 82.
|
| [68] |
Salvolini E, Buldreghini E, Lucarini G, Vignini A, Di Primio R, Balercia G. Nitric oxide synthase and tyrosine nitration in idiopathic asthenozoospermia: an immunohistochemical study. Fertil Steril. 2012; 97 (3): 554- 60.
|
| [69] |
Netherton JK, Hetherington L, Ogle RA, Velkov T, Baker MA. Proteomic analysis of good- and poor-quality human sperm demonstrates that several proteins are routinely aberrantly regulated. Biol Reprod. 2018; 99 (2): 395- 408.
|
| [70] |
Ghosh I, Bharadwaj A, Datta K. Reduction in the level of hyaluronan binding protein 1 (HABP1) is associated with loss of sperm motility. J Reprod Immunol. 2002; 53 (1-2): 45- 54.
|
| [71] |
Carreau S, Lambard S, Said L, Saad A, Galeraud-Denis I. RNA dynamics of fertile and infertile spermatozoa. Biochem Soc Trans. 2007; 35 (3): 634- 6.
|
| [72] |
Agirregoitia E, Carracedo A, Subirán N, Valdivia A, Agirregoitia N, Peralta L, et al. The CB2 cannabinoid receptor regulates human sperm cell motility. Fertil Steril. 2010; 93 (5): 1378- 87.
|
| [73] |
Burrello N, Salmeri M, Perdichizzi A, Bellanca S, Pettinato G, D'Agata R, et al. Candida albicans experimental infection: effects on human sperm motility, mitochondrial membrane potential and apoptosis. Reprod Biomed Online. 2009; 18 (4): 496- 501.
|
| [74] |
Pan Y, Wang S, Liu L, Liu X. Characteristics of gut microbiota in patients with asthenozoospermia: a Chinese pilot study. BMC Microbiol. 2024; 24 (1): 22.
|
| [75] |
Diemer T, Huwe P, Ludwig M, Schroeder-Printzen I, Michelmann HW, Schiefer HG, et al. Influence of autogenous leucocytes and Escherichia coli on sperm motility parameters in vitro. Andrologia. 2003; 35 (2): 100- 5.
|
| [76] |
Salvolini E, Buldreghini E, Lucarini G, Vignini A, Giulietti A, Lenzi A, et al. Interleukin-1β cyclooxygenase-2, and hypoxia-inducible factor-1α in asthenozoospermia. Histochem Cell Biol. 2014; 142 (5): 569- 75.
|
| [77] |
ElShibany AM, Taha EAER, Kamal DT, GamalEl Din SF, Abo El Yamen YM, Hasan HA, et al. Epididymal sonographic findings in infertile males with isolated asthenozoospermia and their correlation with seminal plasma l-carnitine: An observational study. Urologia J. 2025; 92 (1): 126- 33.
|
| [78] |
Portela JMD, Tavares RS, Mota PC, Ramalho-Santos J, Amaral S. High glucose concentrations per se do not adversely affect human sperm function in vitro. Reproduction. 2015; 150 (1): 77- 84.
|
| [79] |
Yu X, Zhang X, Wang Q. Sexual dysfunction is more common among men who have high sperm DNA fragmentation or teratozoopermia. Sci Rep. 2022; 12 (1): 22427.
|
| [80] |
Kotwicka M, Jendraszak M, Skibinska I, Jedrzejczak P, Pawelczyk L. Decreased motility of human spermatozoa presenting phosphatidylserine membrane translocation-cells selection with the swim-up technique. Hum Cell. 2013; 26 (1): 28- 34.
|
| [81] |
Gaur DS, Talekar M, Pathak VP. Effect of cigarette smoking on semen quality of infertile men. Singapore Med J. 2007; 48 (2): 119- 23.
|
| [82] |
Cope GF. The in-vitro effects of nicotine and cotinine on sperm motility. Hum Reprod. 1998; 13 (3): 777- 8.
|
| [83] |
Eslamian G, Amirjannati N, Rashidkhani B, Sadeghi MR, Hekmatdoost A. Nutrient patterns and asthenozoospermia: a case-control study. Andrologia. 2017; 49 (3): e12624.
|
| [84] |
Mortimer D. The functional anatomy of the human spermatozoon: relating ultrastructure and function. Mol Hum Reprod. 2018; 24 (12): 567- 592.
|
| [85] |
Leung MR, Zeng J, Wang X, Roelofs MC, Huang W, Zenezini Chiozzi R, et al. Structural specializations of the sperm tail. Cell. 2023; 186 (13): 2880- 96.e17.
|
| [86] |
Cardullo RA, Baltz JM. Metabolic regulation in mammalian sperm: Mitochondrial volume determines sperm length and flagellar beat frequency. Cell Motil. 1991; 19 (3): 180- 8.
|
| [87] |
Dacheux JL, Dacheux F. New insights into epididymal function in relation to sperm maturation. Reproduction. 2014; 147 (2): R27- 42.
|
| [88] |
Chakraborty S, Saha S. Understanding sperm motility mechanisms and the implication of sperm surface molecules in promoting motility. Middle East Fertil Soc J. 2022; 27 (1): 4.
|
| [89] |
Frenette G, Lessard C, Sullivan R. Selected proteins of “prostasome-like particles” from epididymal cauda fluid are transferred to epididymal caput spermatozoa in bull. Biol Reprod. 2002; 67 (1): 308- 13.
|
| [90] |
Park KH, Kim BJ, Kang J, Nam TS, Lim JM, Kim HT, et al. Ca2+ signaling tools acquired from prostasomes are required for progesterone-induced sperm motility. Sci Signal. 2011; 4 (173): ra31.
|
| [91] |
Yeung CH, Woolley DM. Three-dimensional bend propagation in hamster sperm models and the direction of roll in free-swimming cells. Cell Motil. 1984; 4 (3): 215- 26.
|
| [92] |
Serres C, Feneux D, Jouannet P, David G. Influence of the flagellar wave development and propagation on the human sperm movement in seminal plasma. Gamete Res. 1984; 9 (2): 183- 95.
|
| [93] |
Yeung CH, Cooper TG, Oberpenning F, Schulze H, Nieschlag E. Changes in movement characteristics of human spermatozoa along the length of the epididymis. Biol Reprod. 1993; 49 (2): 274- 80.
|
| [94] |
Calvin HI, Bedford JM. Formation of disulphide bonds in the nucleus and accessory structures of mammalian spermatozoa during maturation in the epididymis. J Reprod Fertil Suppl. 1971; 13 (Suppl 13): 13.
|
| [95] |
Lee KH, Hwang JY. Ca2+ homeostasis and male fertility: a target for a new male contraceptive system. Anim Cells Syst. 2024; 28 (1): 171- 83.
|
| [96] |
Sefton BM. Overview of protein phosphorylation. Curr Protoc Cell Biol. 1998; 14.1.1- 14.1.3.
|
| [97] |
Pereira R, Sá R, Barros A, Sousa M. Major regulatory mechanisms involved in sperm motility. Asian J Androl. 2017; 19 (1): 5.
|
| [98] |
Johnson LN. The regulation of protein phosphorylation. Biochem Soc Trans. 2009; 37 (4): 627- 41.
|
| [99] |
de Lamirande E. Capacitation as a regulatory event that primes spermatozoa for the acrosome reaction and fertilization. Mol Hum Reprod. 1997; 3 (3): 175- 94.
|
| [100] |
Leclerc P, de Lamirande E, Gagnon C. Cyclic adenosine 3',5' monophosphate-dependent regulation of protein tyrosine phosphorylation in relation to human sperm capacitation and motility. Biol Reprod. 1996; 55 (3): 684- 92.
|
| [101] |
Cornwall GA. New insights into epididymal biology and function. Hum Reprod Update. 2008; 15 (2): 213- 27.
|
| [102] |
Luconi M. Pathophysiology of sperm motility. Front Biosci. 2006; 11 (1): 1433.
|
| [103] |
Yeung CH, Wagenfeld A, Nieschlag E, Cooper TG. The cause of infertility of male c-ros tyrosine kinase receptor knockout mice. Biol Reprod. 2000; 63 (2): 612- 8.
|
| [104] |
O'Flaherty C, de Lamirande E, Gagnon C. Positive role of reactive oxygen species in mammalian sperm capacitation: triggering and modulation of phosphorylation events. Free Radic Biol Med. 2006; 41 (4): 528- 40.
|
| [105] |
Kothari S, Thompson A, Agarwal A, du Plessis SS. Free radicals: their beneficial and detrimental effects on sperm function. Indian J Exp Biol. 2010; 48 (5): 425- 35.
|
| [106] |
Wagner H, Cheng JW, Ko EY. Role of reactive oxygen species in male infertility: an updated review of literature. Arab J Urol. 2018; 16 (1): 35- 43.
|
| [107] |
Chandramouli K, Qian PY. Proteomics: challenges, techniques and possibilities to overcome biological sample complexity. Hum Genom Proteom. 2009; 239204.
|
| [108] |
Omolaoye TS, Omolaoye VA, Kandasamy RK, Hachim MY, Du Plessis SS. Omics and male infertility: highlighting the application of transcriptomic data. Life. 2022; 12 (2): 280.
|
| [109] |
Lyons HE, Arman BM, Robertson SA, Sharkey DJ. Immune regulatory cytokines in seminal plasma of healthy men: a scoping review and analysis of variance. Andrology. 2023; 11 (7): 1245- 66.
|
| [110] |
Touré A, Martinez G, Kherraf ZE, Cazin C, Beurois J, Arnoult C, et al. The genetic architecture of morphological abnormalities of the sperm tail. Hum Genet. 2021; 140 (1): 21- 42.
|
| [111] |
Turner RMO, Musse MP, Mandal A, Klotz K, Jayes FCL, Herr JC, et al. Molecular genetic analysis of two human sperm fibrous sheath proteins, AKAP4 and AKAP3, in men with dysplasia of the fibrous sheath. J Androl. 2001; 22 (2): 302- 15.
|
| [112] |
Horani A, Ferkol TW. Understanding primary ciliary dyskinesia and other ciliopathies. J Pediatr. 2021; 230: 15- 22.e1.
|
| [113] |
Graziani A, Rocca MS, Vinanzi C, Masi G, Grande G, De Toni L, et al. Genetic causes of qualitative sperm defects: a narrative review of clinical evidence. Genes. 2024; 15 (5): 600.
|
| [114] |
Krausz C, Riera-Escamilla A. Genetics of male infertility. Nat Rev Urol. 2018; 15 (6): 369- 84.
|
| [115] |
Baccetti B, Burrini AG, Capitani S, Collodel G, Moretti E, Piomboni P, et al. Notulae seminologicae. 2. The “short tail” and “stump” defect in human spermatozoa. Andrologia. 1993; 25 (6): 331- 5.
|
| [116] |
Ortega C, Verheyen G, Raick D, Camus M, Devroey P, Tournaye H. Absolute asthenozoospermia and ICSI: what are the options? Hum Reprod Update. 2011; 17 (5): 684- 92.
|
| [117] |
Stahl PJ, Stember DS, Goldstein M. Contemporary management of male infertility. Annu Rev Med. 2012; 63 (1): 525- 40.
|
| [118] |
Gupta S, Sharma R, Agarwal A, Boitrelle F, Finelli R, Farkouh A, et al. Antisperm antibody testing: a comprehensive review of its role in the management of immunological male infertility and results of a global survey of clinical practices. World J Men's Health. 2022; 40 (3): 380.
|
| [119] |
Farkouh A, Salvio G, Kuroda S, Saleh R, Vogiatzi P, Agarwal A. Sperm DNA integrity and male infertility: a narrative review and guide for the reproductive physicians. Transl Androl Urol. 2022; 11 (7): 1023- 44.
|
| [120] |
Tang L, Rao M, Yang W, Yao Y, Luo Q, Lu L, et al. Predictive value of the sperm DNA fragmentation index for low or failed IVF fertilization in men with mild-to-moderate asthenozoospermia. J Gynecol Obstet Hum Reprod. 2021; 50 (6): 101868.
|
| [121] |
Elbashir S, Magdi Y, Rashed A, Ibrahim MA, Edris Y, Abdelaziz AM. Relationship between sperm progressive motility and DNA integrity in fertile and infertile men. Middle East Fertil Soc J. 2018; 23 (3): 195- 8.
|
| [122] |
Faja F, Carlini T, Coltrinari G, Finocchi F, Nespoli M, Pallotti F, et al. Human sperm motility: a molecular study of mitochondrial DNA, mitochondrial transcription factor A gene and DNA fragmentation. Mol Biol Rep. 2019; 46 (4): 4113- 21.
|
| [123] |
Mehdi M, Khantouche L, Ajina M, Saad A. Detection of DNA fragmentation in human spermatozoa: correlation with semen parameters. Andrologia. 2009; 41 (6): 383- 6.
|
| [124] |
Bonanno O, Romeo G, Asero P, Pezzino FM, Castiglione R, Burrello N, et al. Sperm of patients with severe asthenozoospermia show biochemical, molecular and genomic alterations. Reproduction. 2016; 152 (6): 695- 704.
|
| [125] |
Moretti E, Sutera G, Collodel G. The importance of transmission electron microscopy analysis of spermatozoa: Diagnostic applications and basic research. Syst Biol Reprod Med. 2016; 62 (3): 171- 83.
|
| [126] |
Perdrix A, Travers A, Chelli MH, Escalier D, Do Rego JL, Milazzo JP, et al. Assessment of acrosome and nuclear abnormalities in human spermatozoa with large vacuoles. Hum Reprod. 2011; 26 (1): 47- 58.
|
| [127] |
Solakidi S, Psarra AMG, Nikolaropoulos S, Sekeris CE. Estrogen receptors α and β (ERα and ERβ) and androgen receptor (AR) in human sperm: localization of ERβ and AR in mitochondria of the midpiece. Hum Reprod. 2005; 20 (12): 3481- 7.
|
| [128] |
Weber K, Waletzky A, Fendl D, Ordóñez P, Takawale P, Hein F, et al. New Method for sperm evaluation by 3-dimensional laser scanning microscopy in different laboratory animal species. Int J Toxicol. 2014; 33 (5): 353- 61.
|
| [129] |
Saikhun J, Kitiyanant Y, Vanadurongwan V, Pavasuthipaisit K. Effects of sauna on sperm movement characteristics of normal men measured by computer-assisted sperm analysis. Int J Androl. 1998; 21 (6): 358- 63.
|
| [130] |
de Jong AME, Menkveld R, Lens JW, Nienhuis SE, Rhemrev JPT. Effect of alcohol intake and cigarette smoking on sperm parameters and pregnancy. Andrologia. 2014; 46 (2): 112- 7.
|
| [131] |
Lv JL, Wu QJ, Wang XB, Du Q, Liu FH, Guo RH, et al. Intake of ultra-processed foods and asthenozoospermia odds: a hospital-based case-control study. Front Nutr. 2022; 9: 941745.
|
| [132] |
Pusch HH, Půstner P, Haas J. Treatment of asthenozoospermia with HCG. Andrologia. 1986; 18 (2): 201- 7.
|
| [133] |
Chen T, Fan D, Wang X, Mao C, Chu Y, Zhang H, et al. ICSI outcomes for infertile men with severe or complete asthenozoospermia. Basic Clin Androl. 2022; 32 (1): 6.
|
| [134] |
Balercia G, Mosca F, Mantero F, Boscaro M, Mancini A, Ricciardo-Lamonica G, et al. Coenzyme Q10 supplementation in infertile men with idiopathic asthenozoospermia: an open, uncontrolled pilot study. Fertil Steril. 2004; 81 (1): 93- 8.
|
| [135] |
Balercia G, Buldreghini E, Vignini A, Tiano L, Paggi F, Amoroso S, et al. Coenzyme Q10 treatment in infertile men with idiopathic asthenozoospermia: a placebo-controlled, double-blind randomized trial. Fertil Steril. 2009; 91 (5): 1785- 92.
|
| [136] |
Wang YX, Yang SW, Qu CB, Huo HX, Li W, Li JD, et al. [L-carnitine: safe and effective for asthenozoospermia]. Zhonghua nan ke xue = Natl J Androl. 2010; 16 (5): 420- 2.
|
RIGHTS & PERMISSIONS
The Author(s). UroPrecision published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.