Emerging trends in the management of non-obstructive azoospermia

Mina Saad , Mohamed Alkabeer , Dina Abdelmonim , Sameh Fayek GamalElDin , Mohamed Wael Ragab

UroPrecision ›› 2025, Vol. 3 ›› Issue (2) : 88 -97.

PDF (194KB)
UroPrecision ›› 2025, Vol. 3 ›› Issue (2) : 88 -97. DOI: 10.1002/uro2.70002
REVIEW ARTICLE

Emerging trends in the management of non-obstructive azoospermia

Author information +
History +
PDF (194KB)

Abstract

Ten percent of infertile males have azoospermia, classified into obstructive and nonobstructive types, which require specific medical or surgical treatments. In nonobstructive azoospermia, advancements in microsurgery allow for effective sperm retrieval in about half of cases. This review aimed to highlight the most recent studies utilizing whole exome sequencing (WES) and seminal/serum biomarkers aim to predict micro-dissection testicular sperm extraction (micro-TESE) outcomes and reduce failure rates. WES identifies rare genetic mutations affecting spermatogenesis that could explain micro-TESE failures, improving preoperative assessments. Despite its potential, WES is limited by high costs. Biomarkers such as Anti-Müllerian Hormone and testis-expressed sequence 101 protein can indicate spermatogenic activity, though standardization of these measurements is needed for accuracy. Additionally, microRNAs as non-invasive markers offer potential in assessing spermatogenic reserve and classifying azoospermia types, but their efficacy in identifying specific spermatogenic disorders remains under researched, necessitating further studies on multivariate miRNA models.

Keywords

microRNAs / nonobstructive azoospermia / seminal plasma biomarkers / whole exome sequencing

Cite this article

Download citation ▾
Mina Saad, Mohamed Alkabeer, Dina Abdelmonim, Sameh Fayek GamalElDin, Mohamed Wael Ragab. Emerging trends in the management of non-obstructive azoospermia. UroPrecision, 2025, 3(2): 88-97 DOI:10.1002/uro2.70002

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jarow JP , Espeland MA , Lipshultz LI . Evaluation of the azoospermic patient. J Urol. 1989; 142 (1): 62- 5.

[2]

Cocuzza M , Alvarenga C , Pagani R . The epidemiology and etiology of azoospermia. Clinics. 2013; 68 (Suppl 1): 15- 26.

[3]

Bernie AM , Mata DA , Ramasamy R , Schlegel PN . Comparison of microdissection testicular sperm extraction, conventional testicular sperm extraction, and testicular sperm aspiration for nonobstructive azoospermia: a systematic review and meta-analysis. Fertil Steril. 2015; 104 (5): 1099- 103.e3.

[4]

Schlegel PN , Sigman M , Collura B , De Jonge CJ , Eisenberg ML , Lamb DJ , et al. Diagnosis and Treatment of Infertility in Men: AUA/ASRM guideline PART II. J Urol. 2021; 205 (1): 44- 51.

[5]

Minhas S , Bettocchi C , Boeri L , Capogrosso P , Carvalho J , Cilesiz NC , et al. European Association of Urology Guidelines on Male Sexual and Reproductive Health: 2021 update on male infertility. Eur Urol. 2021; 80 (5): 603- 20.

[6]

Mehmood S , Aldaweesh S , Junejo N , Altaweel W , Kattan S , Alhathal N . Microdissection testicular sperm extraction: Overall results and impact of preoperative testosterone level on sperm retrieval rate in patients with nonobstructive azoospermia. Urol Ann. 2019; 11 (3): 287- 93.

[7]

Bernie AM , Ramasamy R , Schlegel PN . Predictive factors of successful microdissection testicular sperm extraction. Basic Clin Androl. 2013; 23 (1): 5.

[8]

Tang WH , Jiang H , Ma LL , Hong K , Zhao LM , Mao JM , et al. Correlation of testicular volume and reproductive hormone level with the results of testicular sperm aspiration in non-obstructive azoospermia patients. National Journal of Andrology. 2012; 18 (1): 48- 51.

[9]

Liu YP , Qi L , Zhang NN , Shi H , Su YC . Follicle-stimulating hormone may predict sperm retrieval rate and guide surgical approach in patients with non-obstructive azoospermia. Reprod Biol. 2020; 20 (4): 573- 9.

[10]

Chorev M , Carmel L . The function of introns. Front Genet. 2012; 3: 55.

[11]

Turner EH , Ng SB , Nickerson DA , Shendure J . Methods for genomic partitioning. Annu Rev Genomics Hum Genet. 2009; 10 (1): 263- 84.

[12]

Ng SB , Turner EH , Robertson PD , Flygare SD , Bigham AW , Lee C , et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 2009; 461 (7261): 272- 6.

[13]

Samorodnitsky E , Jewell BM , Hagopian R , Miya J , Wing MR , Lyon E , et al. Evaluation of hybridization capture versus amplicon-based methods for whole-exome sequencing. Hum Mutat. 2015; 36 (9): 903- 14.

[14]

Bentley DR , Balasubramanian S , Swerdlow HP , Smith GP , Milton J , Brown CG , et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008; 456 (7218): 53- 9.

[15]

Seaby EG , Pengelly RJ , Ennis S . Exome sequencing explained: a practical guide to its clinical application. Briefings Funct Genomics. 2016; 15 (5): 374- 84.

[16]

Danecek P , Auton A , Abecasis G , Albers CA , Banks E , DePristo MA , et al. The variant call format and VCFtools. Bioinformatics. 2011; 27 (15): 2156- 8.

[17]

Wang Z , Liu X , Yang BZ , Gelernter J . The role and challenges of exome sequencing in studies of human diseases. Front Genet. 2013; 4: 160.

[18]

Niguidula N , Alamillo C , Shahmirzadi Mowlavi L , Powis Z , Cohen JS , Farwell Hagman KD . Clinical whole-exome sequencing results impact medical management. Mol Genet Genomic Med. 2018; 6 (6): 1068- 78.

[19]

Yang Y , Muzny DM , Xia F , Niu Z , Person R , Ding Y , et al. Molecular findings among patients referred for clinical whole-exome sequencing. JAMA. 2014; 312 (18): 1870- 9.

[20]

Lawrence MS , Stojanov P , Mermel CH , Robinson JT , Garraway LA , Golub TR , et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 2014; 505 (7484): 495- 501.

[21]

Seifert BA , O'Daniel JM , Amin K , Marchuk DS , Patel NM , Parker JS , et al. Germline analysis from tumor-germline sequencing dyads to identify clinically actionable secondary findings. Clin Cancer Res. 2016; 22 (16): 4087- 94.

[22]

Kherraf ZE , Cazin C , Bouker A , Fourati Ben Mustapha S , Hennebicq S , Septier A , et al. Whole-exome sequencing improves the diagnosis and care of men with non-obstructive azoospermia. Am J Hum Genet. 2022; 109 (3): 508- 17.

[23]

Cioppi F , Rosta V , Krausz C . Genetics of azoospermia. Int J Mol Sci. 2021; 22 (6): 3264.

[24]

Capalbo A , Poli M , Riera-Escamilla A , Shukla V , Kudo Høffding M , Krausz C , et al. Preconception genome medicine: current state and future perspectives to improve infertility diagnosis and reproductive and health outcomes based on individual genomic data. Hum Reprod Update. 2021; 27 (2): 254- 79.

[25]

Krausz C , Riera-Escamilla A , Moreno-Mendoza D , Holleman K , Cioppi F , Algaba F , et al. Genetic dissection of spermatogenic arrest through exome analysis: clinical implications for the management of azoospermic men. Genet Med. 2020; 22 (12): 1956- 66.

[26]

Fakhro KA , Elbardisi H , Arafa M , Robay A , Rodriguez-Flores JL , Mezey JG , et al. Point-of-care whole-exome sequencing of idiopathic male infertility. Genet Med. 2018; 20 (11): 1365- 73.

[27]

Krausz C . Editorial for the special issue on the molecular genetics of male infertility. Hum Genet. 2021; 140 (1): 1- 5.

[28]

Schwarze K , Buchanan J , Taylor JC , Wordsworth S . Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature. Genet Med. 2018; 20 (10): 1122- 30.

[29]

Azodi M , Kamps R , Heymans S , Robinson EL . The missing “lnc” between genetics and cardiac disease. Non-Coding RNA. 2020; 6 (1): 3.

[30]

Yeo G , Burge CB . Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comput Biol. 2004; 11 (2-3): 377- 94.

[31]

Xu HY , Zhang HX , Xiao Z , Qiao J , Li R . Regulation of anti-Müllerian hormone (AMH) in males and the associations of serum AMH with the disorders of male fertility. Asian J Androl. 2019; 21 (2): 109- 14.

[32]

Sobel V , Zhu YS , Imperato-McGinley J . Fetal hormones and sexual differentiation. Obstet Gynecol Clin North Am. 2004; 31 (4): 837- 856, x-xi.

[33]

Sajjad Y . Development of the genital ducts and external genitalia in the early human embryo. J Obstet Gynaecol Res. 2010; 36 (5): 929- 37.

[34]

Petersen C , Söder O . The sertoli cell—a hormonal target and ‘super’ nurse for germ cells that determines testicular size. Horm Res Paediatr. 2006; 66 (4): 153- 61.

[35]

Chong YH , Dennis NA , Connolly MJ , Teh R , Jones GT , van Rij AM , et al. Elderly men have low levels of anti-müllerian hormone and inhibin B, but with high interpersonal variation: a cross-sectional study of the sertoli cell hormones in 615 community-dwelling men. PLoS One. 2013; 8 (8): e70967.

[36]

Monsivais D , Matzuk MM , Pangas SA . The TGF-β family in the reproductive tract. Cold Spring Harbor Perspect Biol. 2017; 9 (10): a022251.

[37]

Josso N , di Clemente N , Gouédard L . Anti-Müllerian hormone and its receptors. Mol Cell Endocrinol. 2001; 179 (1-2): 25- 32.

[38]

Cate RL . Anti-Mullerian Hormone Signal Transduction involved in Mullerian Duct Regression. Front Endocrinol (Lausanne). 2022; 13: 905324.

[39]

La Marca A , Volpe A . Anti-Müllerian hormone (AMH) in female reproduction: is measurement of circulating AMH a useful tool? Clin Endocrinol. 2006; 64 (6): 603- 10.

[40]

Bedenk J , Vrtačnik-Bokal E , Virant-Klun I . The role of anti-Müllerian hormone (AMH) in ovarian disease and infertility. J Assist Reprod Genet. 2020; 37 (1): 89- 100.

[41]

Esteves SC , Miyaoka R , Agarwal A . An update on the clinical assessment of the infertile male. Clinics. 2011; 66 (4): 691- 700.

[42]

Fénichel P , Rey R , Poggioli S , Donzeau M , Chevallier D , Pointis G . Anti-Mullerian hormone as a seminal marker for spermatogenesis in non-obstructive azoospermia. Hum Reprod. 1999; 14 (8): 2020- 4.

[43]

Pozzi E , Raffo M , Negri F , Boeri L , Saccà A , Belladelli F , et al. Anti-Müllerian hormone predicts positive sperm retrieval in men with idiopathic non-obstructive azoospermia—findings from a multi-centric cross-sectional study. Hum Reprod. 2023; 38 (8): 1464- 72.

[44]

Pozzi E , Corsini C , Belladelli F , Bertini A , Negri F , Raffo M , et al. Role of follicle-stimulating hormone, inhibin B, and anti-müllerian hormone in predicting sperm retrieval from men with nonobstructive azoospermia undergoing microdissection testicular sperm extraction: a systematic review and meta-analysis. Eur UrolOpen Sci. 2024; 65: 3- 12.

[45]

Josso N , Rey RA . What does AMH tell us in pediatric disorders of sex development? Front Endocrinol. 2020; 11: 619.

[46]

Aksglaede L , Christiansen P , Sørensen K , Boas M , Linneberg A , Main KM , et al. Serum concentrations of Anti-Müllerian Hormone (AMH) in 95 patients with Klinefelter syndrome with or without cryptorchidism. Acta Paediatr (Stockholm). 2011; 100 (6): 839- 45.

[47]

Peigné M , Decanter C . Serum AMH level as a marker of acute and long-term effects of chemotherapy on the ovarian follicular content: a systematic review. Reprod Biol Endocrinol. 2014; 12: 26.

[48]

Xu H , Zhang M , Zhang H , Alpadi K , Wang L , Li R , et al. Clinical applications of serum anti-Müllerian hormone measurements in both males and females: an update. The Innovation. 2021; 2 (1): 100091.

[49]

Levi M , Hasky N , Stemmer SM , Shalgi R , Ben-Aharon I . Anti-Müllerian hormone is a marker for chemotherapy-induced testicular toxicity. Endocrinology. 2015; 156 (10): 3818- 27.

[50]

Edelsztein NY , Grinspon RP , Schteingart HF , Rey RA . Anti-Müllerian hormone as a marker of steroid and gonadotropin action in the testis of children and adolescents with disorders of the gonadal axis. Int J Pediatr Endocrinol. 2016; 2016: 20.

[51]

Adan L , Lechevalier P , Couto-Silva AC , Boissan M , Trivin C , Brailly-Tabard S , et al. Plasma inhibin B and antimullerian hormone concentrations in boys: discriminating between congenital hypogonadotropic hypogonadism and constitutional pubertal delay. Med Sci Monit. 2010; 16 (11): CR511- 7.

[52]

Renault L , Labrune E , Giscard d'Estaing S , Cuzin B , Lapoirie M , Benchaib M , et al. Delaying testicular sperm extraction in 47,XXY Klinefelter patients does not impair the sperm retrieval rate, and AMH levels are higher when TESE is positive. Hum Reprod. 2022; 37 (11): 2518- 31.

[53]

Rodríguez-Martínez H , Kvist U , Ernerudh J , Sanz L , Calvete JJ . Seminal plasma proteins: what role do they play? Am J Reprod Immunol. 2011; 66 (Suppl 1): 11- 22.

[54]

Agarwal A , Sharma RK , Sharma R , Assidi M , Abuzenadah AM , Alshahrani S , et al. Characterizing semen parameters and their association with reactive oxygen species in infertile men. Reprod Biol Endocrinol. 2014; 12: 33.

[55]

Batruch I , Lecker I , Kagedan D , Smith CR , Mullen BJ , Grober E , et al. Proteomic analysis of seminal plasma from normal volunteers and post-vasectomy patients identifies over 2000 proteins and candidate biomarkers of the urogenital system. J Proteome Res. 2011; 10 (3): 941- 53.

[56]

Zheng W , Zhang Y , Sun C , Ge S , Tan Y , Shen H , et al. A multi-omics study of human testis and epididymis. Molecules. 2021; 26 (11): 3345.

[57]

Candenas L , Chianese R . Exosome composition and seminal plasma proteome: a promising source of biomarkers of male infertility. Int J Mol Sci. 2020; 21 (19): 7022.

[58]

Shen CC , Kang YH , Yu L , Cui DD , He Y , Yang JL , et al. Human testis-expressed sequence 101 is limitedly distributed in germinal epithelium of testis and disappears in seminoma. Biol Res. 2014; 47 (1): 52.

[59]

Korbakis D , Schiza C , Brinc D , Soosaipillai A , Karakosta TD , Légaré C , et al. Preclinical evaluation of a TEX101 protein ELISA test for the differential diagnosis of male infertility. BMC Med. 2017; 15 (1): 60.

[60]

Schiza CG , Jarv K , Diamandis EP , Drabovich AP . An emerging role of TEX101 protein as a male infertility biomarker. EJIFCC. 2014; 25 (1): 9- 26.

[61]

Schiza C , Korbakis D , Panteleli E , Jarvi K , Drabovich AP , Diamandis EP . Discovery of a human testis-specific protein complex TEX101-DPEP3 and selection of its disrupting antibodies. Mol Cell Proteomics. 2018; 17 (12): 2480- 95.

[62]

Drabovich AP , Dimitromanolakis A , Saraon P , Soosaipillai A , Batruch I , Mullen B , et al. Differential diagnosis of azoospermia with proteomic biomarkers ECM1 and TEX101 quantified in seminal plasma. Sci Transl Med. 2013; 5 (212): 212ra160.

[63]

Fujihara Y , Tokuhiro K , Muro Y , Kondoh G , Araki Y , Ikawa M , et al. Expression of TEX101, regulated by ACE, is essential for the production of fertile mouse spermatozoa. Proceedings of the National Academy of Sciences of the United States of America. 2013; 110 (20): 8111- 6.

[64]

Li J , Yang F , Dong L , Chang D , Yu X . Seminal plasma biomarkers for predicting successful sperm retrieval in patients with nonobstructive azoospermia: a narrative review of human studies. Basic Clin Androl. 2023; 33 (1): 9.

[65]

Cannarella R , Barbagallo F , Crafa A , La Vignera S , Condorelli RA , Calogero AE . Seminal plasma transcriptome and proteome: towards a molecular approach in the diagnosis of idiopathic male infertility. Int J Mol Sci. 2020; 21 (19): 7308.

[66]

Freour T , Com E , Barriere P , Bouchot O , Jean M , Masson D , et al. Comparative proteomic analysis coupled with conventional protein assay as a strategy to identify predictors of successful testicular sperm extraction in patients with non-obstructive azoospermia. Andrology. 2013; 1 (3): 414- 20.

[67]

Araujo SC , Bertolla RP . Protein markers of spermatogenesis and their potential use in the management of azoospermia. Expert Rev Proteomics. 2021; 18 (11): 939- 48.

[68]

Bhalerao J , Tylzanowski P , Filie JD , Kozak CA , Merregaert J . Molecular cloning, characterization, and genetic mapping of the cDNA coding for a novel secretory protein of mouse. Demonstration of alternative splicing in skin and cartilage. J Biol Chem. 1995; 270 (27): 16385- 94.

[69]

Johnson MR , Wilkin DJ , Vos HL , Ortiz De Luna RI , Dehejia AM , Polymeropoulos MH , et al. Characterization of the human extracellular matrix protein 1 gene on chromosome 1q21. Matrix Biol. 1997; 16 (5): 289- 92.

[70]

Smits P , Ni J , Feng P , Wauters J , Van Hul W , Boutaibi ME , et al. The human extracellular matrix gene 1 (ECM1): genomic structure, cDNA cloning, expression pattern, and chromosomal localization. Genomics. 1997; 45 (3): 487- 95.

[71]

Zhou T , Zhou ZM , Guo XJ . Bioinformatics for spermatogenesis: annotation of male reproduction based on proteomics. Asian J Androl. 2013; 15 (5): 594- 602.

[72]

Panner Selvam MK , Agarwal A . Update on the proteomics of male infertility: a systematic review. Arab J Urol. 2018; 16 (1): 103- 12.

[73]

Jeseta M , Pospíšilová A , Mekiňová L , Franzová K , Ventruba P , Lousová E , et al. Non-invasive diagnostics of male spermatogenesis from seminal plasma: seminal proteins. Diagnostics (Basel). 2023; 13 (15): 2468.

[74]

Gerena RL , Irikura D , Eguchi N , Urade Y , Killian GJ . Immunocytochemical localization of lipocalin-type prostaglandin D synthase in the bull testis and epididymis and on ejaculated sperm1. Biol Reprod. 2000; 62 (3): 547- 56.

[75]

Leone MG , Haq HA , Saso L . Lipocalin type prostaglandin D-synthase: which role in male fertility? Contraception. 2002; 65 (4): 293- 5.

[76]

Olsson JE . Correlation between the concentration of -trace protein and the number of spermatozoa in human semen. Reproduction. 1975; 42 (1): 149- 51.

[77]

Diamandis EP , Arnett WP , Foussias G , Pappas H , Ghandi S , Melegos DN , et al. Seminal plasma biochemical markers and their association with semen analysis findings. Urology. 1999; 53 (3): 596- 603.

[78]

Chen K , Rajewsky N . The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet. 2007; 8 (2): 93- 103.

[79]

Cheng AM , Byrom MW , Shelton J , Ford LP . Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 2005; 33 (4): 1290- 7.

[80]

Hanson EK , Lubenow H , Ballantyne J . Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Anal Biochem. 2009; 387 (2): 303- 14.

[81]

Lee TL , Pang ALY , Rennert OM , Chan WY . Genomic landscape of developing male germ cells. Birth Defects Res C Embryo Today Rev. 2009; 87 (1): 43- 63.

[82]

Papaioannou MD , Lagarrigue M , Vejnar CE , Rolland AD , Kühne F , Aubry F , et al. Loss of Dicer in Sertoli cells has a major impact on the testicular proteome of mice. Mol Cell Proteomics. 2011; 10 (4): M900587MCP200.

[83]

Tong MH , Mitchell DA , McGowan SD , Evanoff R , Griswold MD . Two miRNA clusters, Mir-17-92 (Mirc1) and Mir-106b-25 (Mirc3), are involved in the regulation of spermatogonial differentiation in mice. Biol Reprod. 2012; 86 (3): 72.

[84]

Linsen SE , de Wit E , de Bruijn E , Cuppen E . Small RNA expression and strain specificity in the rat. BMC Genomics. 2010; 11: 249.

[85]

Ro S , Park C , Sanders KM , McCarrey JR , Yan W . Cloning and expression profiling of testis-expressed microRNAs. Dev Biol. 2007; 311 (2): 592- 602.

[86]

Lian J , Zhang X , Tian H , Liang N , Wang Y , Liang C , et al. Altered microRNA expression in patients with non-obstructive azoospermia. Reprod Biol Endocrinol. 2009; 7: 13.

[87]

Saebnia N , Neshati Z , Bahrami AR . Role of microRNAs in etiology of azoospermia and their application as non-invasive biomarkers in diagnosis of azoospermic patients. J Gynecol Obstet Hum Reprod. 2021; 50 (10): 102207.

[88]

Wang C , Yang C , Chen X , Yao B , Yang C , Zhu C , et al. Altered profile of seminal plasma microRNAs in the molecular diagnosis of male infertility. Clin Chem. 2011; 57 (12): 1722- 31.

[89]

Zhang H , Liu Y , Su D , Yang Y , Bai G , Tao D , et al. A single nucleotide polymorphism in a miR-1302 binding site in CGA increases the risk of idiopathic male infertility. Fertil Steril. 2011; 96 (1): 34- 39 e7.

[90]

Qin Y , Xia Y , Wu W , Han X , Lu C , Ji G , et al. Genetic variants in microRNA biogenesis pathway genes are associated with semen quality in a Han-Chinese population. Reprod Biomed Online. 2012; 24 (4): 454- 61.

[91]

Khazaie Y , Nasr Esfahani MH . MicroRNA and male infertility: a potential for diagnosis. Int J Fertil Steril. 2014; 8 (2): 113- 8.

[92]

Larriba S , Sánchez-Herrero JF , Pluvinet R , López-Rodrigo O , Bassas L , Sumoy L . Seminal extracellular vesicle sncRNA sequencing reveals altered miRNA/isomiR profiles as sperm retrieval biomarkers for azoospermia. Andrology. 2024; 12 (1): 137- 56.

[93]

Doroftei B , Ilie OD , Puiu M , Ciobica A , Ilea C . Mini-Review Regarding the Applicability of Genome Editing Techniques Developed for Studying Infertility. Diagnostics. 2021; 11 (2): 246.

[94]

Hajirasouliha I , Elemento O . Precision medicine and artificial intelligence: overview and relevance to reproductive medicine. Fertil Steril. 2020; 114 (5): 908- 13.

[95]

Wang H-Q , Wang T , Gao F , Ren WZ . Application of CRISPR/Cas technology in spermatogenesis research and male infertility treatment. Genes. 2022; 13 (6): 1000.

[96]

Liu SP , Li YF , Zhang D , Li CY , Dai XF , Lan DF , et al. Pharmacological actions of the bioactive compounds of Epimedium on the male reproductive system: current status and future perspective. Asian J Androl. 2024; 27: 20- 9.

RIGHTS & PERMISSIONS

The Author(s). UroPrecision published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (194KB)

746

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/