PDF
(1363KB)
Abstract
Background: Liquid biopsy has emerged as a non-invasive method for real-time cancer monitoring especially in genitourinary (GU) oncology. Most current studies utilize a panel-based molecular profiling ranging from 50-600 genes; however, a comprehensive exome-wide profiling of real-world patient samples has been lacking.
Methods: Over 2000 liquid biopsy samples were analyzed in this study, including urine samples from early-stage bladder cancer and plasma samples from prostate, lung, breast, esophageal, head and neck cancers, among others. Cell-free DNA (cfDNA) was extracted from these samples and analyzed using PredicineWES+TM, a boosted comprehensive whole-exome sequencing (WES) assay with an in-depth coverage of 600 cancer-related genes derived from the PredicineATLASTM panel. Data analysis was conducted in-house using Predicine's DeepSea bioinformatics software.
Results: The PredicineWES+TM assay demonstrated high sensitivity for detecting somatic mutations across the exome and showed comparable tumor mutational burden (TMB) estimates with the PredicineATLASTM panel. Interestingly, the highest tumor TMB score was observed in bladder cancer among the analyzed cancers, which is consistent with literature using tissue-based genomic profiling. The most common cancer variants include TP53, ERBB2, KRAS, PIK3CA, FGFR3, APC, among others.
Conclusion: Liquid biopsy-based genomic profiling across various cancer types provides an in-depth analysis of biomarker discovery for personalized cancer care, setting the foundation for improved cancer diagnosis and personalized treatment strategies for urological diseases.
Keywords
cell free DNA
/
genitourinary oncology
/
liquid biopsy
/
next-generation sequencing (NGS)
Cite this article
Download citation ▾
Eric Jia, Tiantian Zheng, Yong Huang, Pan Du.
Exome-wide molecular insights from blood and urine liquid biopsies in genitourinary cancers.
UroPrecision, 2025, 3(4): 254-262 DOI:10.1002/uro2.114
| [1] |
Alix-Panabières C , Marchetti D , Lang JE . Liquid biopsy:from concept to clinical application. Sci Rep. 2023; 13 (1): 21685.
|
| [2] |
Bronkhorst AJ , Ungerer V , Oberhofer A , Gabriel S , Polatoglou E , Randeu H , et al. New perspectives on the importance of cell-free DNA biology. Diagnostics. 2022; 12 (9): 2147.
|
| [3] |
Fonseca NM , Maurice-Dror C , Herberts C , Tu W , Fan W , Murtha AJ , et al. Prediction of plasma ctDNA fraction and prognostic implications of liquid biopsy in advanced prostate cancer. Nat Commun. 2024; 15 (1): 1828.
|
| [4] |
García-Pardo M , Makarem M , Li JJN , Kelly D , Leighl NB . Integrating circulating-free DNA (cfDNA) analysis into clinical practice:opportunities and challenges. Br J Cancer. 2022; 127 (4): 592- 602.
|
| [5] |
Ignatiadis M , Sledge GW , Jeffrey SS . Liquid biopsy enters the clinic -implementation issues and future challenges. Nat Rev Clin Oncol. 2021; 18 (5): 297- 312.
|
| [6] |
Tivey A , Church M , Rothwell D , Dive C , Cook N . Circulating tumour DNA-looking beyond the blood. Nat Rev Clin Oncol. 2022; 19 (9): 600- 12.
|
| [7] |
Zang J , Zhang R , Jin D , Xie F , Shahatiaili A , Wu G , et al. Integrated longitudinal circulating tumor DNA profiling predicts immunotherapy response of metastatic urothelial carcinoma in the POLARIS-03 trial. J Pathol. 2023; 261 (2): 198- 209.
|
| [8] |
Sivakumar S , Jin DX , Tukachinsky H , Murugesan K , McGregor K , Danziger N , et al. Tissue and liquid biopsy profiling reveal convergent tumor evolution and therapy evasion in breast cancer. Nat Commun. 2022; 13 (1): 7495.
|
| [9] |
Ye L , Chu X , Ni J , Chu L , Yang X , Zhu Z . NGS-based tissue-blood TMB comparison and blood-TMB monitoring in stage-III non-small cell lung cancer treated with concurrent chemoradiotherapy. Cancer Invest. 2024; 42 (2): 165- 75.
|
| [10] |
Ji H , Long X , Gu J , Jin J , Mao X , Wang Z , et al. Longitudinal monitoring of plasma circulating tumour DNA enables the prediction of early relapse in patients with non-Hodgkin lymphoma: a case series. Diagnostics. 2021; 11 (11): 2055.
|
| [11] |
Lee H , Han J , Choi YL . Real-world analysis of the EGFR mutation test in tissue and plasma samples from non-small cell lung cancer. Diagnostics. 2021; 11 (9): 1695.
|
| [12] |
Haselmann V , Hedtke M , Neumaier M , Haselmann V , Hedtke M , Neumaier M . Liquid profiling for cancer patient stratification in precision medicine-current status and challenges for successful implementation in standard care. Diagnostics. 2022; 12 (3): 748- 236.
|
| [13] |
Roldan Ruiz J , Fuentes Gago MG , Chinchilla Tabora LM , Gonzalez Morais I , Sayagues JM , Abad Hernández M , et al. The impact of liquid biopsies positive for EGFR mutations on overall survival in non-small cell lung cancer patients. Diagnostics. 2023; 13 (14): 2347.
|
| [14] |
Llueca A , Canete-Mota S , Jaureguí A , Barneo M , Ibañez MV , Neef A , et al. The impact of liquid biopsy in advanced ovarian cancer care. Diagnostics. 2024; 14 (17): 1868.
|
| [15] |
Shitara K , Muro K , Watanabe J , Yamazaki K , Ohori H , Shiozawa M , et al. Baseline ctDNA gene alterations as a biomarker of survival after panitumumab and chemotherapy in metastatic colorectal cancer. Nature Med. 2024; 30 (3): 730- 9.
|
| [16] |
Bailey MH , Meyerson WU , Dursi LJ , Wang LB , Dong G , Liang WW , et al. Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples. Nat Commun. 2020; 11 (1): 4748.
|
| [17] |
Jiang Y , Dong Y , Zhao S , Liu D , Zhang J , Xu X , et al. Multiregion WES of metastatic pancreatic neuroendocrine tumors revealed heterogeneity in genomic alterations, immune microenvironment and evolutionary patterns. Cell Commun Signaling. 2024; 22 (1): 164.
|
| [18] |
Menzel M , Ossowski S , Kral S , Metzger P , Horak P , Marienfeld R , et al. Multicentric pilot study to standardize clinical whole exome sequencing (WES) for cancer patients. npj Precis Oncol. 2023; 7 (1): 106.
|
| [19] |
Van Hout CV , Tachmazidou I , Backman JD , Hoffman JD , Liu D , Pandey AK , et al. Exome sequencing and characterization of 49,960 individuals in the UK Biobank. Nature. 2020; 586 (7831): 749- 56.
|
| [20] |
Yu L , Zhang Y , Wang D , Li L , Zhang R , Li J . Harmonizing tumor mutational burden analysis:Insights from a multicenter study using in silico reference data sets in clinical whole-exome sequencing (WES). Am J Clin Path. 2024; 162 (4): 408- 19.
|
| [21] |
Zhang H , He X , Wang Y , Li C , Jiang H , Hou S , et al. Simultaneous CNV-seq and WES: An effective strategy for molecular diagnosis of unexplained fetal structural anomalies. Heliyon. 2024; 10 (20): e39392.
|
| [22] |
Choi Y , Dharia NV , Jun T , Chang J , Royer-Joo S , Yau KK , et al. Circulating tumor DNA dynamics reveal KRAS G12C mutation heterogeneity and response to treatment with the KRAS G12C inhibitor divarasib in solid tumors. Clin Cancer Res. 2024; 30 (17): 3788- 97.
|
| [23] |
Zhang R , Zang J , Jin D , Xie F , Shahatiaili A , Wu G , et al. Urinary tumor DNA MRD analysis to identify responders to neoadjuvant immunotherapy in muscle-invasive bladder cancer. Clin Cancer Res. 2023; 29 (20): 4040- 6.
|
| [24] |
Sacher A , LoRusso P , Patel MR , Miller WH , Garralda E , Forster MD , et al. Single-agent divarasib (GDC-6036) in solid tumors with a KRAS G12C mutation. N Engl J Med. 2023; 389 (8): 710- 21.
|
| [25] |
Davis AA , Luo J , Zheng T , Dai C , Dong X , Tan L , et al. Genomic complexity predicts resistance to endocrine therapy and CDK4/6 inhibition in hormone receptor-positive (HR+)/HER2-negative metastatic breast cancer. Clin Cancer Res. 2023; 29 (9): 1719- 29.
|
| [26] |
Desai J , Alonso G , Kim SH , Cervantes A , Karasic T , Medina L , et al. Divarasib plus cetuximab in KRAS G12C-positive colorectal cancer: a phase 1b trial. Nature Med. 2024; 30 (1): 271- 8.
|
| [27] |
Singh H , Lowder KE , Kapner K , Kelly RJ , Zheng H , McCleary NJ , et al. Clinical outcomes and ctDNA correlates for CAPOX BETR: a phase II trial of capecitabine, oxaliplatin, bevacizumab, trastuzumab in previously untreated advanced HER2+ gastroesophageal adenocarcinoma. Nat Commun. 2024; 15 (1): 6833.
|
| [28] |
Gu Z , Eils R , Schlesner M . Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016; 32 (18): 2847- 9.
|
| [29] |
Gandara DR , Paul SM , Kowanetz M , Schleifman E , Zou W , Li Y , et al. Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab. Nature Med. 2018; 24 (9): 1441- 8.
|
| [30] |
Kim ES , Velcheti V , Mekhail T , Yun C , Shagan SM , Hu S , et al. Blood-based tumor mutational burden as a biomarker for atezolizumab in non-small cell lung cancer: the phase 2 B-F1RST trial. Nature Med. 2022; 28 (5): 939- 45.
|
| [31] |
Peters S , Dziadziuszko R , Morabito A , Felip E , Gadgeel SM , Cheema P , et al. Atezolizumab versus chemotherapy in advanced or metastatic NSCLC with high blood-based tumor mutational burden:primary analysis of BFAST cohort C randomized phase 3 trial. Nature Med. 2022; 28 (9): 1831- 9.
|
| [32] |
Aparicio J . Precision medicine in metastatic colorectal cancer: targeting KRAS G12C mutation. Transl Gastroenterol Hepatol. 2024; 9: 53.
|
| [33] |
Luo FX , Arter ZL . Adagrasib in KRYSTAL-12 has broken the KRAS (G12C) enigma code in non-small cell lung carcinoma. Lung Cancer (Auckland, N.Z.). 2024; 15: 161- 7.
|
| [34] |
Schmidt JF , Entz D , Brasch F , Goerner M . Sotorasib in KRAS p.G12C-mutated pulmonary sarcomatoid carcinoma: Therapeutic efficacy of a KRAS inhibitor in symptomatic brain metastases. Case Rep Oncol. 2024; 17 (1): 1019- 24.
|
| [35] |
Turner NC , Im SA , Saura C , Juric D , Loibl S , Kalinsky K , et al. Inavolisib-based therapy in PIK3CA-mutated advanced breast cancer. N Engl J Med. 2024; 391 (17): 1584- 96.
|
| [36] |
André F , Ciruelos E , Rubovszky G , Campone M , Loibl S , Rugo HS , et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N Engl J Med. 2019; 380 (20): 1929- 40.
|
| [37] |
Turner NC , Oliveira M , Howell SJ , Dalenc F , Cortes J , Gomez Moreno HL , et al. Capivasertib in hormone receptor-positive advanced breast cancer. N Engl J Med. 2023; 388 (22): 2058- 70.
|
| [38] |
Loriot Y , Matsubara N , Park SH , Huddart RA , Burgess EF , Houede N , et al. Erdafitinib or chemotherapy in advanced or metastatic urothelial carcinoma. N Engl J Med. 2023; 389 (21): 1961- 71.
|
| [39] |
Loriot Y , Necchi A , Park SH , Garcia-Donas J , Huddart R , Burgess E , et al. Erdafitinib in locally advanced or metastatic urothelial carcinoma. N Engl J Med. 2019; 381 (4): 338- 48.
|
| [40] |
Goyal L , Meric-Bernstam F , Hollebecque A , Valle JW , Morizane C , Karasic TB , et al. Futibatinib for FGFR2-rearranged intrahepatic cholangiocarcinoma. N Engl J Med. 2023; 388 (3): 228- 39.
|
| [41] |
Zhu K , Yang X , Tai H , Zhong X , Luo T , Zheng H . HER2. Biomark Res. 2024; 12 (1): 16.
|
RIGHTS & PERMISSIONS
The Author(s). UroPrecision published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.