Unveiling the potential of emerging microRNA panels as diagnostic biomarkers for prostate cancer: A review

Anveshika Manoj , Gautam Prasad , Mohammad Kaleem Ahmad

UroPrecision ›› 2025, Vol. 3 ›› Issue (4) : 201 -209.

PDF (467KB)
UroPrecision ›› 2025, Vol. 3 ›› Issue (4) :201 -209. DOI: 10.1002/uro2.105
REVIEW ARTICLE

Unveiling the potential of emerging microRNA panels as diagnostic biomarkers for prostate cancer: A review

Author information +
History +
PDF (467KB)

Abstract

Prostate cancer (PCa) is a multifaceted disease that envelops 1.41 million new cases globally. It is the second most common cancer reported in men. Its heterogeneity and indolent growth, coupled with incompetent early screening methods such as serum prostate-specific antigen level estimations and digital rectal examinations, contribute to its delayed detection, potentially leading to misdiagnosis or overtreatment. Despite the advancement in surgical methods, better management of PCa requires definitive diagnostics, prognostics, and therapeutics. PCa cells express microRNA (miRNA) on their surface as well as release miRNA into the bloodstream, which enables their noninvasive detection in body fluids like serum, plasma, and urine. miRNA acts as sponge for circulating RNA that regulates gene expression of crucial pathways in PCa progression. In recent years, compelling evidence indicates that the use of miRNAs, individually or in combination, in the form of miRNA panels in both tissue and body fluids, together with clinicopathological parameters, might act as a diagnostic biomarker. This will increase the accuracy of risk stratification and early screening of PCa patients under active surveillance. These findings will help differentiate aggressive PCa from indolent and decipher novel therapeutic findings. We have put together a review of studies that have found and confirmed miRNA panels in PCa tissue and PCa liquid biopsies (serum, plasma, and urine exosomes), with a focus on how they might help patients.

Keywords

biomarker / circulating / microRNA / noninvasive / panel of microRNAs / prostate cancer

Cite this article

Download citation ▾
Anveshika Manoj, Gautam Prasad, Mohammad Kaleem Ahmad. Unveiling the potential of emerging microRNA panels as diagnostic biomarkers for prostate cancer: A review. UroPrecision, 2025, 3(4): 201-209 DOI:10.1002/uro2.105

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sung H , Ferlay J , Siegel RL , Laversanne M , Soerjomataram I , Jemal A , et al. Global Cancer Statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021; 71 (3): 209- 49.

[2]

Schitcu VH , Raduly L , Nutu A , Zanoaga O , Ciocan C , Munteanu VC , et al. MicroRNA dysregulation in prostate cancer. Pharmgenomics Pers Med. 2022; 15: 177- 93.

[3]

Rao AR , Motiwala HG , Karim OMA . The discovery of prostate-specific antigen. BJU Int. 2008; 101 (1): 5- 10.

[4]

Canto EI , Singh H , Shariat SF , Lamb DJ , Mikolajczyk SD , Linton HJ , et al. Serum BPSA outperforms both total PSA and free PSA as a predictor of prostatic enlargement in men without prostate cancer. Urology. 2004; 63 (5): 905- 10.

[5]

Henríquez I , Roach M , Morgan TM , Bossi A , Gómez JA , Abuchaibe O , et al. Current and emerging therapies for metastatic castration-resistant prostate cancer (mCRPC). Biomedicines. 2021; 9 (9): 1247.

[6]

MacFarlane LA , R. Murphy P . MicroRNA: biogenesis, function and role in cancer. Curr Genomics. 2010; 11 (7): 537- 61.

[7]

Damodaran M , Chinambedu Dandapani M , SimonDuraiRaj , SimonDuraiRaj , SandhyaSundaram , VenkatRamanan S , et al. Differentially expressed miR-20, miR-21, miR-100, miR-125a and miR-146a as a potential biomarker for prostate cancer. Mol Biol Rep. 2021; 48 (4): 3349- 56.

[8]

Zedan AH , Osther PJS , Assenholt J , Madsen JS , Hansen TF . Circulating miR-141 and miR-375 are associated with treatment outcome in metastatic castration resistant prostate cancer. Sci Rep. 2020; 10 (1): 227.

[9]

Xie Y , Chen L , Gao Y , Ma X , He W , Zhang Y , et al. miR-363 suppresses the proliferation, migration and invasion of clear cell renal cell carcinoma by downregulating S1PR1. Cancer Cell Int. 2020; 20 (1): 227.

[10]

Ruvkun G . Glimpses of a tiny RNA world. Science. 2001; 294 (5543): 797- 9.

[11]

Grishok A , Pasquinelli AE , Conte D , Li N , Parrish S , Ha I , et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell. 2001; 106 (1): 23- 34.

[12]

Lund E , Gu?ttinger S , Calado A , Dahlberg JE , Kutay U . Nuclear export of microRNA precursors. Science. 2004; 303 (5654): 95- 8.

[13]

Yi R , Qin Y , Macara IG , Cullen BR . Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003; 17 (24): 3011- 6.

[14]

Bhaskaran M , Mohan M . MicroRNAs:history, biogenesis, and their evolving role in animal development and disease. Vet Pathol. 2014; 51 (4): 759- 74.

[15]

Tomari Y , Zamore PD . Perspective: machines for RNAi. Genes Dev. 2005; 19 (5): 517- 29.

[16]

Hutva?gner G , Zamore PD . A microRNA in a multiple-turnover RNAi enzyme complex. Science. 2002; 297 (5589): 2056- 60.

[17]

O'Brien J , Hayder H , Zayed Y , Peng C . Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol. 2018; 9: 402.

[18]

Nam RK , Wallis CJD , Amemiya Y , Benatar T , Seth A . Identification of a novel microRNA panel associated with metastasis following radical prostatectomy for prostate cancer. Anticancer Res. 2018; 38 (9): 5027- 34.

[19]

Strand SH , Schmidt L , Weiss S , Borre M , Kristensen H , Rasmussen AKI , et al. Validation of the four-miRNA biomarker panel MiCaP for prediction of long-term prostate cancer outcome. Sci Rep. 2020; 10 (1): 10704.

[20]

Schmidt L , Fredsøe J , Kristensen H , Strand SH , Rasmussen A , Høyer S , et al. Training and validation of a novel 4-miRNA ratio model (MiCaP) for prediction of postoperative outcome in prostate cancer patients. Ann Oncol. 2018; 29 (9): 2003- 9.

[21]

Kristensen H , Thomsen AR , Haldrup C , Dyrskjøt L , Høyer S , Borre M , et al. Novel diagnostic and prognostic classifiers for prostate cancer identified by genome-wide microRNA profiling. Oncotarget. 2016; 7 (21): 30760- 71.

[22]

Nam RK , Amemiya Y , Benatar T , Wallis CJD , Stojcic-Bendavid J , Bacopulos S , et al. Identification and validation of a five microRNA signature predictive of prostate cancer recurrence and metastasis: a cohort study. J Cancer. 2015; 6 (11): 1160- 71.

[23]

Kumari S , Manoj A , Rungta S , Kumar M , Prasad G , Kumar D , et al. Discovery and validation of novel microRNA panel for non-invasive prediction of prostate cancer. Cureus. 2024; 16: e58207.

[24]

Larne O , Martens-Uzunova E , Hagman Z , Edsjö A , Lippolis G , den Berg MSV , et al. miQ-a novel microRNA based diagnostic and prognostic tool for prostate cancer. Int J Cancer. 2013; 132 (12): 2867- 75.

[25]

Zhang S , Liu C , Zou X , Geng X , Zhou X , Fan X , et al. MicroRNA panel in serum reveals novel diagnostic biomarkers for prostate cancer. PeerJ. 2021; 9: e11441.

[26]

Lin S , Sun C , Li R , Lu C , Li X , Wen Z , et al. The value of a three-microRNA panel in serum for prostate cancer screening. Int J Biol Markers. 2023; 39: 70- 9.

[27]

Liu RSC , Olkhov-Mitsel E , Jeyapala R , Zhao F , Commisso K , Klotz L , et al. Assessment of serum microRNA biomarkers to predict reclassification of prostate cancer in patients on active surveillance. J Urol. 2018; 199 (6): 1475- 81.

[28]

Pastor-Navarro B , García-Flores M , Fernández-Serra A , Blanch-Tormo S , Martínez de Juan F , Martínez-Lapiedra C , et al. A tetra-panel of serum circulating miRNAs for the diagnosis of the four most prevalent tumor types. Int J Mol Sci. 2020; 21 (8): 2783.

[29]

Porzycki P , Ciszkowicz E , Semik M , Tyrka M . Combination of three miRNA (miR-141, miR-21, and miR-375) as potential diagnostic tool for prostate cancer recognition. Int Urol Nephrol. 2018; 50 (9): 1619- 26.

[30]

Lyu J , Zhao L , Wang F , Ji J , Cao Z , Xu H , et al. Discovery and validation of serum MicroRNAs as early diagnostic biomarkers for prostate cancer in Chinese population. BioMed Res Int. 2019; 2019: 1- 9.

[31]

Manoj A , Ahmad MK , Prasad G , Kumar D , Mahdi AA , Kumar M . Screening and validation of novel serum panel of microRNA in stratification of prostate cancer. Prostate Int. 2023; 11 (3): 150- 8.

[32]

Chen S , Lu C , Lin S , Sun C , Wen Z , Ge Z , et al. A panel based on three-miRNAs as diagnostic biomarker for prostate cancer. Front Genet. 2024; 15: 1371441.

[33]

Matin F , Jeet V , Moya L , Selth LA , Chambers S , Yeadon T , et al. A plasma biomarker panel of four microRNAs for the diagnosis of prostate cancer. Sci Rep. 2018; 8 (1): 6653.

[34]

Chen ZH , Zhang GL , Li HR , Luo JD , Li ZX , Chen GM , et al. A panel of five circulating microRNAs as potential biomarkers for prostate cancer. Prostate. 2012; 72 (13): 1443- 52.

[35]

Farran B , Dyson G , Craig D , Dombkowski A , Beebe-Dimmer JL , Powell IJ , et al. A study of circulating microRNAs identifies a new potential biomarker panel to distinguish aggressive prostate cancer. Carcinogenesis. 2018; 39 (4): 556- 61.

[36]

Watahiki A , Macfarlane R , Gleave M , Crea F , Wang Y , Helgason C , et al. Plasma miRNAs as biomarkers to identify patients with castration-resistant metastatic prostate cancer. Int J Mol Sci. 2013; 14 (4): 7757- 70.

[37]

Sapre N , Hong MKH , Macintyre G , Lewis H , Kowalczyk A , Costello AJ , et al. Curated microRNAs in urine and blood fail to validate as predictive biomarkers for high-risk prostate cancer. PLoS One. 2014; 9 (4): e91729.

[38]

Zhang N , Wang J , Zhang S , Wu H , Li Z , Hu M . Development and validation of a urinary microRNA biomarker panel as a tool for early detection of prostate cancer in a Chinese population. Biomarkers. 2023; 28 (4): 372- 8.

[39]

Konoshenko MY , Lekchnov EA , Bryzgunova OE , Zaporozhchenko IA , Yarmoschuk SV , Pashkovskaya OA , et al. The panel of 12 cell-free microRNAs as potential biomarkers in prostate neoplasms. Diagnostics. 2020; 10 (1): 38.

[40]

Yang L , Zou X , Zou J , Zhang G . Functions of circular RNAs in bladder, prostate and renal cell cancer (review). Mol Med Rep. 2021; 23 (5): 307.

[41]

Yan Z , Xiao Y , Chen Y , Luo G . Screening and identification of epithelial-to-mesenchymal transition-related circRNA and miRNA in prostate cancer. Pathol Res Pract. 2019; 216 (2): 152784.

[42]

Wu G , Sun Y , Xiang Z , Wang K , Liu B , Xiao G , et al. Preclinical study using circular RNA 17 and micro RNA 181c-5p to suppress the enzalutamide-resistant prostate cancer progression. Cell Death Dis. 2019; 10 (2): 37.

[43]

Kang HY , Huang KE , Chang SY , Ma WL , Lin WJ , Chang C . Differential modulation of androgen receptor-mediated transactivation by Smad3 and tumor suppressor Smad4. J Biol Chem. 2002; 277 (46): 43749- 56.

[44]

Jin C , Zhao W , Zhang Z , Liu W . Silencing circular RNA circZNF609 restrains growth, migration and invasion by up-regulating microRNA-186-5p in prostate cancer. Artif Cells Nanomed Biotechnol. 2019; 47 (1): 3350- 8.

[45]

Cai C , Zhi Y , Wang K , Zhang P , Ji Z , Xie C , et al. CircHIPK3 overexpression accelerates the proliferation and invasion of prostate cancer cells through regulating miRNA-338-3p. Onco Targets Ther. 2019; 12: 3363- 72.

[46]

Feng Y , Yang Y , Zhao X , Fan Y , Zhou L , Rong J , et al. Circular RNA circ0005276 promotes the proliferation and migration of prostate cancer cells by interacting with FUS to transcriptionally activate XIAP. Cell Death Dis. 2019; 10 (11): 792.

[47]

Wu YP , Lin XD , Chen SH , Ke ZB , Lin F , Chen DN , et al. Identification of prostate cancer-related circular RNA through bioinformatics analysis. Front Genet. 2020; 11: 892.

[48]

Wang X , Huang R , Yu J , Zhu F , Xi X , Huang Y , et al. Identification of differentially expressed circRNAs in prostate cancer of different clinical stages by RNA sequencing. Sci Rep. 2023; 13 (1): 21175.

[49]

Shen Z , Zhou L , Zhang C , Xu J . Reduction of circular RNA Foxo3 promotes prostate cancer progression and chemoresistance to docetaxel. Cancer Lett. 2020; 468: 88- 101.

[50]

Xia Q , Ding T , Zhang G , Li Z , Zeng L , Zhu Y , et al. Circular RNA expression profiling identifies prostate cancer-specific circRNAs in prostate cancer. Cell Physiol Biochem. 2018; 50 (5): 1903- 15.

[51]

Su K , Yi Q , Dai X , Liu O . Circular RNA ITCH: an emerging multifunctional regulator. Biomolecules. 2022; 12 (3): 359.

[52]

Mao Y , Li W , Hua B , Gu X , Pan W , Chen Q , et al. Circular RNA_PDHX promotes the proliferation and invasion of prostate cancer by sponging MiR-378a-3p. Front Cell Dev Biol. 2021; 8: 602707.

[53]

Xie J , Jiang H , Zhao Y , Jin XR , Li B , Zhu Z , et al. Prognostic and diagnostic value of circRNA expression in prostate cancer: a systematic review and meta-analysis. Front Oncol. 2022; 12: 945143.

RIGHTS & PERMISSIONS

The Author(s). UroPrecision published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (467KB)

44

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/