Data-driven modeling for evaluating deformation of a deep excavation near existing tunnels

Fengwen Lai , Songyu Liu , Jim Shiau , Mingpeng Liu , Guojun Cai , Ming Huang

Underground Space ›› 2025, Vol. 24 ›› Issue (5) : 162 -179.

PDF (3562KB)
Underground Space ›› 2025, Vol. 24 ›› Issue (5) : 162 -179. DOI: 10.1016/j.undsp.2025.04.003
Research article
research-article

Data-driven modeling for evaluating deformation of a deep excavation near existing tunnels

Author information +
History +
PDF (3562KB)

Abstract

This study explores an integrated framework combining in-situ test-based numerical and data-driven modeling to assess the performance of a deep excavation-tunnel system. To achieve the goal, a case history of deep excavations adjacent to existing tunnels in silt/sand-dominated sediments is introduced to establish a base three-dimensional finite element (3D-FE) model. In-situ tests such as cone penetration test (CPT/CPTU) and seismic dilatometer test (DMT/SDMT), as an alternative to laboratory testing, are used to determine a set of advanced constitutive model parameters. The established excavation-tunnel numerical model is then validated against filed monitoring data. A dataset from numerical simulation is created for training and testing four machine learning models (i.e., artificial neural network (ANN), support vector machines (SVM), random forest (RF), and light gradient boosting machine (LightGBM)), which predict the maximum wall deflection, ground surface settlement, horizontal and vertical displacements of the tunnel. Results show that the ANN model outperforms other models in prediction capacity. Its generalization ability in practice is further enhanced by comparing field measurement data and empirical equations. The findings suggest that, with the integrated in-situ tests, FE and ANN modeling could be used to predict deformation responses of deep excavations close to existing tunnels in soft soil. The present study is useful and valuable for practical risk assessment and mitigation decisions.

Keywords

Numerical modeling / Data-driven modeling / In-situ test / Deep excavation / Tunnel / Soft soil / Deformation response

Cite this article

Download citation ▾
Fengwen Lai, Songyu Liu, Jim Shiau, Mingpeng Liu, Guojun Cai, Ming Huang. Data-driven modeling for evaluating deformation of a deep excavation near existing tunnels. Underground Space, 2025, 24(5): 162-179 DOI:10.1016/j.undsp.2025.04.003

登录浏览全文

4963

注册一个新账户 忘记密码

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

CRediT authorship contribution statement

Fengwen Lai: Writing - original draft, Visualization, Validation, Data curation. Songyu Liu: Writing - review & editing, Resources, Project administration. Jim Shiau: Writing - review & editing, Formal analysis. Mingpeng Liu: Conceptualization, Writing - review & editing, Methodology. Guojun Cai: Supervision. Ming Huang: Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

This study is financially supported by the National Natural Science Foundation of China (Grant Nos. 52408356 and 41972269). The permission of Zhongyifeng Construction Group Co., LTD. to report the case and to use the field monitoring data is gratefully acknowledged.

References

[1]

ACI Committee (2008). Building code requirements for structural concrete (ACI 318-08) and commentary. American Concrete Institute.

[2]

Agaiby S. S., & Mayne P. W. (2019). CPT evaluation of yield stress profiles in soils. Journal of Geotechnical and Geoenvironmental Engineering, 145(12), 04019104.

[3]

Amoroso S., Monaco P., Lehane B., & Marchetti D. (2014). Examination of the potential of the seismic dilatometer (SDMT) to estimate in situ stiffness decay curves in various soil types. Soils and Rocks, 37(3), 177-194.

[4]

Basak D., Pal S., & Patranabis D. C. (2007). Support vector regression. Neural Information Processing-Letters and Reviews, 11(10), 203-224.

[5]

Benz T. (2007). Small-strain stiffness of soils and its numerical consequences. [Doctoral dissertation, University of Stuttgart, Germany].

[6]

Bian X. C., Hu H. Q., Zhao C., Ye J. N., & Chen Y. M. (2021). Protective effect of partition excavations of a large-deep foundation pit on adjacent tunnels in soft soils: A case study. Bulletin of Engineering Geology and the Environment, 80(7), 5693-5707.

[7]

Brinkgreve R., Kumarswamy S., Swolfs W., Waterman D., Chesaru A., & Bonnier P. (2016). PLAXIS 2016. PLAXIS bv, the Netherlands.

[8]

Chang C. T., Sun C. W., Duann S., & Hwang R. N. (2001). Response of a Taipei Rapid Transit System (TRTS) tunnel to adjacent excavation. Tunnelling and Underground Space Technology, 16(3), 151-158.

[9]

Chen R. P., Meng F. Y., Li Z. C., Ye Y. H., & Ye J. N. (2016). Investigation of response of metro tunnels due to adjacent large excavation and protective measures in soft soils. Tunnelling and Underground Space Technology, 58, 224-235.

[10]

Cheng H. Z., Chen R. P., Wu H. N., & Meng F. Y. (2020). A simplified method for estimating the longitudinal and circumferential behaviors of the shield-driven tunnel adjacent to a braced excavation. Computers and Geotechnics, 123, 103595.

[11]

Daxer H. P., Schweiger H., & Tschuchnigg F. (2023). Ultimate limit state design of deep excavation problems according to EC7 using numerical methods (NUMGE 2023). In Proceedings of the 10th European conference on numerical methods in geotechnical engineering (pp.1-6). London: Imperial College London.

[12]

Di Mariano A., Amoroso S., Arroyo M., Monaco P., & Gens A. (2019). SDMT-based numerical analyses of deep excavation in soft soil. Journal of Geotechnical and Geoenvironmental Engineering, 145(1), 04018102.

[13]

Ding Z., Zhang X., Liang F. Y., Cheng D. J., & Wang L. Q. (2021). Research and prospects regarding the effect of foundation pit excavation on an adjacent existing tunnel in soft soil. China Journal of Highway and Transport, 34(3), 50-70 (in Chinese).

[14]

Doležalová M. (2001). Tunnel complex unloaded by a deep excavation. Computers and Geotechnics, 28(6-7), 469-493.

[15]

Fabris C., Schweiger H. F., Pulko B., Woschitz H., & Račanský V. (2021). Numerical simulation of a ground anchor pullout test monitored with fiber optic sensors. Journal of Geotechnical and Geoenvironmental Engineering, 147(2), 04020163.

[16]

Guo H. W., Zhuang X. Y., Fu X. L., Zhu Y. Z., & Rabczuk T. (2023). Physics-informed deep learning for three-dimensional transient heat transfer analysis of functionally graded materials. Computational Mechanics, 72(3), 513-524.

[17]

Hu Z. F., Yue Z. Q., Zhou J., & Tham L. G. (2003). Design and construction of a deep excavation in soft soils adjacent to the Shanghai Metro tunnels. Canadian Geotechnical Journal, 40(5), 933-948.

[18]

Huang X., Schweiger H. F., & Huang H. W. (2013). Influence of deep excavations on nearby existing tunnels. International Journal of Geomechanics, 13(2), 170-180.

[19]

Ke G. L., Meng Q., Finley T., Wang T. F., Chen W., Ma W. D., Ye Q. W., & Liu T. Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. In Proceedings of the 31st international conference on advances in neural information processing systems. Long Beach, United States.

[20]

Khoiri M., & Ou C. Y. (2013). Evaluation of deformation parameter for deep excavation in sand through case histories. Computers and Geotechnics, 47, 57-67.

[21]

Kung G. T., Juang C. H., Hsiao E. C., & Hashash Y. M. (2007). Simplified model for wall deflection and ground-surface settlement caused by braced excavation in clays. Journal of Geotechnical and Geoenvironmental Engineering, 133(6), 731-747.

[22]

Lai F. W., Zhang N. N., Liu S. Y., Sun Y. X., & Li Y. L. (2021). Ground movements induced by installation of twin large diameter deeply-buried caissons: 3D numerical modeling. Acta Geotechnica, 16 (9), 2933-2961.

[23]

Lai F. W., Liu S. Y., Li Y. L., & Sun Y. X. (2022). A new installation technology of large diameter deeply-buried caissons: Practical application and observed performance. Tunnelling and Underground Space Technology, 125, 104507.

[24]

Lai F. W., Shiau J., Keawsawasvong S., Chen F. Q., Banyong R., & Seehavong S. (2023). Physics-based and data-driven modeling for stability evaluation of buried structures in natural clays. Journal of Rock Mechanics and Geotechnical Engineering, 15(5), 1248-1262.

[25]

Lai F. W., Tschuchnigg F., Schweiger H. F., Liu S. Y., Shiau J., & Cai G. J. (2025). A numerical study of deep excavations adjacent to existing tunnels: Integrating CPTU and SDMT to calibrate soil constitutive model. Canadian Geotechnical Journal, 62, 1-23.

[26]

Lee J., Eun J., Lee K., Park Y., & Kim M. (2008). In-situ evaluation of strength and dilatancy of sands based on CPT results. Soils and Foundations, 48(2), 255-265.

[27]

Li M. G., Chen J. J., Wang J. H., & Zhu Y. F. (2018). Comparative study of construction methods for deep excavations above shield tunnels. Tunnelling and Underground Space Technology, 71, 329-339.

[28]

Li M. G., Xiao X., Wang J. H., & Chen J. J. (2019). Numerical study on responses of an existing metro line to staged deep excavations. Tunnelling and Underground Space Technology, 85, 268-281.

[29]

Liang R. Z., Wu W. B., Yu F., Jiang G. S., & Liu J. W. (2018). Simplified method for evaluating shield tunnel deformation due to adjacent excavation. Tunnelling and Underground Space Technology, 71, 94-105.

[30]

Liao S. M., Wei S. F., & Shen S. L. (2016). Structural responses of existing metro stations to adjacent deep excavations in Suzhou, China. Journal of Performance of Constructed Facilities, 30(4), 04015089.

[31]

Liu B., Zhang D. W., Yang C., & Zhang Q. B. (2020). Long-term performance of metro tunnels induced by adjacent large deep excavation and protective measures in Nanjing silty clay. Tunnelling and Underground Space Technology, 95, 103147.

[32]

Liu B., Wu W. W., Lu H. P., Chen S., & Zhang D. W. (2024a). Effect and control of foundation pit excavation on existing tunnels: A state-of-the-art review. Tunnelling and Underground Space Technology, 147, 105704.

[33]

Liu G. B., Huang P., Shi J. W., & Ng C. W. W. (2016). Performance of a deep excavation and its effect on adjacent tunnels in shanghai soft clay. Journal of Performance of Constructed Facilities, 30(6), 04016041.

[34]

Liu M. P., Sun E. C., Zhang N. N., Lai F. W., & Fuentes R. (2024b). A virtual calibration chamber for cone penetration test based on deeplearning approaches. Journal of Rock Mechanics and Geotechnical Engineering, 16(12), 5179-5192.

[35]

Liu M. P., Zhuang P. Z., & Lai F. W. (2024c). A Bayesian optimizationgenetic algorithm-based approach for automatic parameter calibration of soil models: Application to clay and sand model. Computers and Geotechnics, 176, 106717.

[36]

Lu T. S., Liu S. Y., Wu K., Cai G. J., & Li Z. (2023a). Semi-analytical approach for the load-settlement response of a pile considering excavation effects. Acta Geotechnica, 18(3), 1179-1197.

[37]

Lu T. S., Wu K., Liu S. Y., & Cai G. J. (2023b). Method for estimating three-dimensional effects on braced excavation in clay. Tunnelling and Underground Space Technology, 141, 105355.

[38]

Lunne T., Powell J. J. M., & Robertson P. K. (2002). Cone penetration testing in geotechnical practice. CRC Press.

[39]

Mahdevari S., Shahriar K., Yagiz S., & Shirazi M. A. (2014). A support vector regression model for predicting tunnel boring machine penetration rates. International Journal of Rock Mechanics and Mining Sciences, 72, 214-229.

[40]

Marchetti S. (1980). In situ tests by flat dilatometer. Journal of the Geotechnical Engineering Division, 106(3), 299-321.

[41]

Marzouk I., Brinkgreve R., Lengkeek A., & Tschuchnigg F. (2024). APD: An automated parameter determination system based on in-situ tests. Computers and Geotechnics, 176, 106799.

[42]

Mayne P. W. (2005). Integrated ground behavior:In-situ and lab tests. In Deformation characteristics of geomaterials (pp.155-177). CRC Press.

[43]

Mayne P. W. (2016). Evaluating effective stress parameters and undrained shear strengths of soft-firm clays from CPT and DMT. Australian Geomechanics Journal, 51(4), 27-55.

[44]

Mayne P. W., & Kulhawy F. H. (1982). Ko-OCR relationships in soil. Journal of the Geotechnical Engineering Division, 108(6), 851-872.

[45]

Mayne P. W. (2007). Synthesisi on Cone penetration testing NCHRP Report. Washington. D. C, the USA: Transportation Research Board.

[46]

Meng F. Y., Chen R. P., Wu H. N., Xie S. W., & Liu Y. (2020). Observed behaviors of a long and deep excavation and collinear underlying tunnels in Shenzhen granite residual soil. Tunnelling and Underground Space Technology, 103, 103504.

[47]

Meng F. Y., Chen R. P., Xu Y., Wu K., Wu H. N., & Liu Y. (2022). Contributions to responses of existing tunnel subjected to nearby excavation: A review. Tunnelling and Underground Space Technology, 119, 104195.

[48]

Meng F. Y., Chen R. P., Xu Y., Wu H. N., & Li Z. C. (2021). Centrifuge modeling of effectiveness of protective measures on existing tunnel subjected to nearby excavation. Tunnelling and Underground Space Technology, 112, 103880.

[49]

Meng F. Y., Hu B., Chen R. P., Cheng H. Z., & Wu H. N. (2025). Characteristics of deformation and defect of shield tunnel in coastal structured soil in China. Underground Space, 21, 131-148.

[50]

Mishra A., Anitescu C., Budarapu P. R., Natarajan S., Vundavilli P. R., & Rabczuk T. (2024). An artificial neural network based deep collocation method for the solution of transient linear and nonlinear partial differential equations. Frontiers of Structural and Civil Engineering, 18(8), 1296-1310.

[51]

Ou C. Y. (2006). Deep excavation: Theory and practice. CRC Press.

[52]

Robertson P. K. (2010). Estimating in-situ soil permeability from CPT & CPTu. In Proceedings of the 2nd international symposium on cone penetration testing. Huntington Beach, CA, USA.

[53]

Robertson P. K., & Cabal K. (2010). Estimating soil unit weight from CPT. In Proceedings of the 2nd international symposium on cone penetration testing. Huntington Beach, CA, USA.

[54]

Robertson P. K. (2016). Cone penetration test (CPT)-based soil behaviour type (SBT) classification system-an update. Canadian Geotechnical Journal, 53(12), 1910-1927.

[55]

Samaniego E., Anitescu C., Goswami S., Nguyen-Thanh V. M., Guo H., Hamdia K., Zhuang X., & Rabczuk T. (2020). An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering, 362, 112790.

[56]

Schanz T., Vermeer P. A., & Bonnier P. G. (1999). The hardening soil model: Formulation and verification. In Beyond 2000 in computational geotechnics (pp. 281-296). London: Routledge.

[57]

Schmüdderich C., Shahrabi M. M., Taiebat M., & Lavasan A. A. (2020). Strategies for numerical simulation of cast-in-place piles under axial loading. Computers and Geotechnics, 125, 103656.

[58]

Schweiger H. F. (2014). Influence of EC7 design approaches on the design of deep excavations with FEM. Geotechnik, 37(3), 169-176.

[59]

Shi J. W., Ng C. W. W., & Chen Y. H. (2015). Three-dimensional numerical parametric study of the influence of basement excavation on existing tunnel. Computers and Geotechnics, 63, 146-158.

[60]

Singh S., & Budarapu P. R. (2024). Deep machine learning approaches for battery health monitoring. Energy, 300, 131540.

[61]

Siruvuri, S. D. V. S. S. V., Budarapu, P. R., & Paggi, M. (2023). Influence of cracks on fracture strength and electric power losses in Silicon solar cells at high temperatures: Deep machine learning and molecular dynamics approach. Applied Physics A, 129(6), 408.

[62]

Tan Y., Li X., Kang Z. J., Liu J. X., & Zhu Y. B. (2015). Zoned excavation of an oversized pit close to an existing metro line in stiff clay: Case study. Journal of Performance of Constructed Facilities, 29 (6), 04014158.

[63]

Van Berkom I. E., Brinkgreve R. B. J., De Jong A. K., & Lengkeek H. J. (2022). An automated system to determine constitutive model parameters from in situ tests. In Proceedings of the 20th international conference on soil mechanics and geotechnical engineering (ICSMGE). Sydney, Australia.

[64]

Varma Siruvuri S. D. V. S. S., Verma H., Javvaji B., & Budarapu P. R. (2022). Fracture strength of Graphene at high temperatures: Data driven investigations supported by MD and analytical approaches. International Journal of Mechanics and Materials in Design, 18(4), 743-767.

[65]

Wei G., Feng F. F., Huang S. Y., Xu T. B., Zhu J. X., Wang X., & Zhu C. W. (2025). Full-scale loading test for shield tunnel segments: Load-bearing performance and failure patterns of lining structures. Underground Space, 20, 197-217.

[66]

Xu J. M., Gao M., Wang Y. K., Yu Z. H., Zhao J. Y., & DeJong M. J. (2025). Numerical investigation of the effects of separated footings on tunnel-soil-structure interaction. Journal of Geotechnical and Geoenvironmental Engineering, 151(7), 04025057.

[67]

Zhang H.-B, Chen J.-J, Fan F., & Wang J.-H. (2015). Deformation monitoring and performance analysis on the shield tunnel influenced by adjacent deep excavations. Journal of Aerospace Engineering, 30(2), B4015002.

[68]

Zhang D. M., Xie X. C., Li Z. L., & Zhang J. (2020a). Simplified analysis method for predicting the influence of deep excavation on existing tunnels. Computers and Geotechnics, 121, 103477.

[69]

Zhang D. M., Shen Y. M., Huang Z. K., & Xie X. C. (2022). Auto machine learning-based modelling and prediction of excavationinduced tunnel displacement. Journal of Rock Mechanics and Geotechnical Engineering, 14(4), 1100-1114.

[70]

Zhang J. F., Chen J. J., Wang J. H., & Zhu Y. F. (2013). Prediction of tunnel displacement induced by adjacent excavation in soft soil. Tunnelling and Underground Space Technology, 36, 24-33.

[71]

Zhang P., Wu H. N., Chen R. P., Dai T., Meng F. Y., & Wang H. B. (2020b). A critical evaluation of machine learning and deep learning in shield-ground interaction prediction. Tunnelling and Underground Space Technology, 106, 103593.

[72]

Zheng G., Yang X. Y., Zhou H. Z., Du Y. M., Sun J. Y., & Yu X. X. (2018). A simplified prediction method for evaluating tunnel displacement induced by laterally adjacent excavations. Computers and Geotechnics, 95, 119-128.

[73]

Zheng G., He X. P., Zhou H. Z., Yang X. Y., Yu X. X., & Zhao J. P. (2020a). Prediction of the tunnel displacement induced by laterally adjacent excavations using multivariate adaptive regression splines. Acta Geotechnica, 15, 2227-2237.

[74]

Zheng G., Pan J., Li Y. L., Cheng X. S., Tan F. L., Du Y. M., & Li X. H. (2020b). Deformation and protection of existing tunnels at an oblique intersection angle to an excavation. International Journal of Geomechanics, 20(8), 05020004.

[75]

Zhuang X. Y., Guo H. W., Alajlan N., Zhu H. H., & Rabczuk T. (2021). Deep autoencoder based energy method for the bending, vibration, and buckling analysis of Kirchhoff plates with transfer learning. European Journal of Mechanics - A/Solids, 87, 104225.

[76]

Zhuang Y., Cui X. Y., & Hu S. L. (2023). Numerical simulation and simplified analytical method to evaluate the displacement of adjacent tunnels caused by excavation. Tunnelling and Underground Space Technology, 132, 104879.

AI Summary AI Mindmap
PDF (3562KB)

277

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/