Predicting excavation-induced lateral displacement using improved particle swarm optimization and extreme learning machine with sparse measurements

Cheng Chen , Guan-Nian Chen , Song Feng , Xiao-Zhen Fan , Liang-Tong Zhan , Yun-Min Chen

Underground Space ›› 2025, Vol. 23 ›› Issue (4) : 125 -145.

PDF (3895KB)
Underground Space ›› 2025, Vol. 23 ›› Issue (4) :125 -145. DOI: 10.1016/j.undsp.2025.02.004
Research article
research-article

Predicting excavation-induced lateral displacement using improved particle swarm optimization and extreme learning machine with sparse measurements

Author information +
History +
PDF (3895KB)

Abstract

Monitoring lateral displacement in deep excavation projects is crucial for structural stability and safety. Traditional methods, like manual inclinometers, are accurate but costly and labor-intensive. Automated systems provide real-time data but face challenges with dense sensor placement and high costs. This study presents a novel prediction method using an extreme learning machine (ELM) optimized by an improved particle swarm optimization (IPSO) algorithm. The IPSO-ELM approach utilizes sparse automated measurements to accurately predict lateral displacement profiles, minimizing the need for dense sensor deployment. A case study of a 30.2-m-deep excavation project in Hangzhou, China, demonstrates the method’s effectiveness. The results demonstrate that the IPSO-ELM model maintains high prediction accuracy, with low root mean square error (RMSE) and mean absolute error (MAE) values, even under conditions of sparse sensor placement. Across the entire test dataset, with a sensor spacing of 5.0 m, the model achieved maximum RMSE values ranging from 0.94 to 2.79 mm and maximum MAE values ranging from 0.77 to 2.18 mm, thereby showcasing its robustness and reliability in predicting lateral displacement. A detailed discussion was conducted on the errors associated with various sensor spacing intervals when implementing the proposed method. This study underscores the potential of IPSO-ELM as a cost-effective and reliable tool for automatic monitoring in increasingly complex urban excavation projects.

Keywords

Automated monitoring / Extreme learning machine / Lateral displacement / Deep excavation / Particle swarm optimization / Predictive modeling

Cite this article

Download citation ▾
Cheng Chen, Guan-Nian Chen, Song Feng, Xiao-Zhen Fan, Liang-Tong Zhan, Yun-Min Chen. Predicting excavation-induced lateral displacement using improved particle swarm optimization and extreme learning machine with sparse measurements. Underground Space, 2025, 23(4): 125-145 DOI:10.1016/j.undsp.2025.02.004

登录浏览全文

4963

注册一个新账户 忘记密码

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

CRediT authorship contribution statement

Cheng Chen: Writing - review & editing, Writing - original draft, Methodology, Funding acquisition, Conceptualization. Guan-Nian Chen: Writing - review & editing, Writing - original draft, Methodology, Funding acquisition. Song Feng: Writing - original draft, Methodology, Conceptualization. Xiao-Zhen Fan: Writing - review & editing, Methodology. Liang-Tong Zhan: Writing - review & editing, Project administration, Conceptualization. Yun-Min Chen: Supervision, Project administration, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

The financial supports received from the National Natural Science Foundation of China (Grant Nos. 42307210, 42477151 and 52308379), Zhejiang Provincial Natural Science Foundation of China (Grant Nos. LQ24E080016 and LQ23E080002), National Key R&D Program of China (2023YFC3009400), and the Foundation of MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University (Grant No. 2022P01) are gratefully acknowledged.

References

[1]

Bai, J. S., Liu, G. R., Gupta, A., Alzubaidi, L., Feng, X. Q., & Gu, Y. T. (2023). Physics-informed radial basis network (pirbn): a local approximating neural network for solving nonlinear partial differential equations. Computer Methods in Applied Mechanics and Engineering, 415, 116290.

[2]

Bharti Redhu, P., & Kumar, K. (2023). Short-term traffic flow prediction based on optimized deep learning neural network: PSO-BI-LSTM. Physica A: Statistical Mechanics and its Applications, 625, 129001.

[3]

Cheng, K., Xu, R., Ying, H., Gan, X., Zhang, L., & Liu, S. (2021). Observed performance of a 30.2 m deep-large basement excavation in Hangzhou soft clay. Tunnelling and Underground Space Technology, 111, 103872.

[4]

Dashtgoli, D. S., Dehnad, M. H., Mobinipour, S. A., & Giustiniani, M. (2024). Performance comparison of machine learning algorithms for maximum displacement prediction in soldier pile wall excavation. Tunnelling and Underground Space Technology, 16, 301-313.

[5]

Deng, L., Smith, A., Dixon, N., & Yuan, H. (2021). Machine learning prediction of landslide deformation behaviour using acoustic emission and rainfall measurements. Engineering Geology, 293, 106315.

[6]

Deng, Q. X., He, J., Cao, Z. J., Papaioannou, I., Li, D. Q., & Phoon, K. K. (2022). Bayesian learning of gaussian mixture model for calculating debris flow exceedance probability. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 16(1/2), 154-177.

[7]

Deng, W., Yao, R., Zhao, H. M., Yang, X. H., & Li, G. Y. (2019). A novel intelligent diagnosis method using optimal LS-SVM with improved PSO algorithm. Soft Computing, 23(7), 2445-2462.

[8]

Ding, S. F., Zhao, H., Zhang, Y. N., Xu, X. Z., & Nie, R. (2015). Extreme learning machine: algorithm, theory and applications. Artificial Intelligence Review, 44(1), 103-115.

[9]

Dong, Y., Burd, H. J., & Houlsby, G. T. (2017). Finite element study of deep excavation construction processes. Soils and Foundations, 57(6), 965-979.

[10]

Du, H., Song, D. Q., Chen, Z., Shu, H. P., & Guo, Z. Z. (2020). Prediction model oriented for landslide displacement with step-like curve by applying ensemble empirical mode decomposition and the PSO-ELM method. Journal of Cleaner Production, 270, 122248.

[11]

Fan, X., Phoon, K., Xu, C., & Tang, C. (2021). Closed-form solution for excavation-induced ground settlement profile in clay. Computers and Geotechnics, 137, 104266.

[12]

Guo, P. P., Lei, G., Luo, L. A., Gong, X. A., Wang, Y. X., Li, B. J., Hu, X. J., & Hu, H. B. (2022). Soil creep effect on time-dependent deformation of deep braced excavation. Advances in Materials Science and Engineering, 2022(1), 5655592.

[13]

Hsu, C., Wu, C., & Li, Y. (2023). Development of a displacement prediction system for deep excavation using AI technology. Symmetry, 15(11), 2093.

[14]

Hu, H. B., Hu, X. J., & Gong, X. A. (2024). Predicting the strut forces of the steel supporting structure of deep excavation considering various factors by machine learning methods. Underground Space, 18, 114-129.

[15]

Hu, X., Huang, Z., & Geng, P. (2020). Investigation on applied automatic monitoring of deep foundation-pit projects. IOP Conference Series: Earth and Environmental Science, 580(1), 012054.

[16]

Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: theory and applications. Neurocomputing, 70(1/2/3), 489-501.

[17]

Jain, M., Saihjpal, V., Singh, N., & Singh, S. B. (2022). An overview of variants and advancements of PSO algorithm. Applied Sciences, 12(17), 8392.

[18]

Jiang, W. H., Wang, D. Y., Hu, Y. P., Liu, B. K., Zhou, L. J., Qian, G. C., & Li, Z. J. (2024). Fault diagnosis for shielded cables based on MSST algorithm and impedance polar plots. IEEE Transactions on Instrumentation and Measurement, 73, 3535212.

[19]

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN' 95 - International conference on neural networks (4, pp. 1942-1948)..

[20]

Khatti, J., Grover, K. S., Kim, H. J., Mawuntu, K., & Park, T. W. (2024). Prediction of ultimate bearing capacity of shallow foundations on cohesionless soil using hybrid LSTM and RVM approaches: an extended investigation of multicollinearity. Computers and Geotechnics, 165, 105912.

[21]

Kung, G. T., Juang, C. H., Hsiao, E. C., & Hashash, Y. M. (2007). Simplified model for wall deflection and ground-surface settlement caused by braced excavation in clays. Journal of Geotechnical and Geoenvironmental Engineering, 133(6), 731-747.

[22]

Li, D. Z., Li, S., Zhang, S. B., Sun, J. R., Wang, L. C., & Wang, K. (2022). Aging state prediction for supercapacitors based on heuristic Kalman filter optimization extreme learning machine. Energy, 250, 123773.

[23]

Li, J. B., Chen, Z. Y., Li, X., Jing, L. J., Zhangf, Y. P., Xiao, H. H., Wang, S. J., Yang, W. K., Wu, L. J., Li, P. Y., Li, H. B., Yao, M., & Fan, L. T. (2023). Feedback on a shared big dataset for intelligent TBM Part I: feature extraction and machine learning methods. Underground Space, 11, 1-25.

[24]

Li, S., Wang, F., Le, Y., Que, Q., Su, Y., & Lin, H. (2024). Design and deformation pattern simulation of deep excavation support structures. Frontiers in Earth Science, 12, 1416957.

[25]

Liu, B. K., Lu, W. Z., Olofsson, T., Zhuang, X., & Rabczuk, T. (2024a). Stochastic interpretable machine learning based multiscale modeling in thermal conductivity of polymeric graphene-enhanced composites. Composite Structures, 327, 117601.

[26]

Liu, B. K., & Lu, W. Z. (2022). Surrogate models in machine learning for computational stochastic multi-scale modelling in composite materials design. International Journal of Hydromechatronics, 5(4), 336-365.

[27]

Liu, B. K., Penaka, S. R., Lu, W. Z., Feng, K. L., Rebbling, A., & Olofsson, T. (2023a). Data-driven quantitative analysis of an integrated open digital ecosystems platform for user-centric energy retrofits: a case study in northern Sweden. Technology in Society, 75, 102347.

[28]

Liu, B. K., Vu-Bac, N., & Rabczuk, T. (2021). A stochastic multiscale method for the prediction of the thermal conductivity of polymer nanocomposites through hybrid machine learning algorithms. Composite Structures, 273, 114269.

[29]

Liu, B. K., Vu-Bac, N., Zhuang, X. Y., Fu, X. L., & Rabczuk, T. (2022a). Stochastic full-range multiscale modeling of thermal conductivity of polymeric carbon nanotubes composites: a machine learning approach. Composite Structures, 289, 115393.

[30]

Liu, B. K., Vu-Bac, N., Zhuang, X. Y., Fu, X. L., & Rabczuk, T. (2022b). Stochastic integrated machine learning based multiscale approach for the prediction of the thermal conductivity in carbon nanotube reinforced polymeric composites. Composites Science and Technology, 224, 109425.

[31]

Liu, B. K., Vu-Bac, N., Zhuang, X. Y., Lu, W. Z., Fu, X. L., & Rabczuk, T. (2023b). Al-DeMat: a web-based expert system platform for computationally expensive models in materials design. Advances in Engineering Software, 176, 103398.

[32]

Liu, B. K., Vu-Bac, N., Zhuang, X. Y., & Rabczuk, T. (2020). Stochastic multiscale modeling of heat conductivity of polymeric clay nanocomposites. Mechanics of Materials, 142, 103280.

[33]

Liu, B. K., Wang, Y. Z., Rabczuk, T., Olofsson, T., & Lu, W. Z. (2024b). Multi-scale modeling in thermal conductivity of polyurethane incor-porated with phase change materials using physics-informed neural networks. Renewable Energy, 220, 119565.

[34]

Liu, N. W., Pan, J., Li, M., & Li, Y. (2023). Deformation characteristics of an ultra-deep and small-scale rectangular excavation in Hangzhou soft clay. Tunnelling and Underground Space Technology, 137, 105117.

[35]

Liu, N. W., Peng, C. X., Li, M. G., & Chen, J. J. (2022). Hydromechanical behavior of a deep excavation with dewatering and recharge in soft deposits. Engineering Geology, 307, 106780.

[36]

Liu, W. B., Wang, Z. D., Yuan, Y., Zeng, N. Y., Hone, K., & Liu, X. H. (2021). A novel sigmoid-function-based adaptive weighted particle swarm optimizer. IEEE Transactions on Cybernetics, 51(2), 1085-1093.

[37]

Lu, T. S., Wu, K., Liu, S. Y., & Cai, G. J. (2023). Method for estimating three-dimensional effects on braced excavation in clay. Tunnelling and Underground Space Technology, 141, 105355.

[38]

Mustafa, M. R., Rezaur, R. B., Rahardjo, H., & Isa, M. H. (2012). Prediction of pore-water pressure using radial basis function neural network. Engineering Geology, 135, 40-47.

[39]

Mustafa, M. R., Rezaur, R. B., Saiedi, S., Rahardjo, H., & Isa, M. H. (2013). Evaluation of MLP-ANN training algorithms for modeling soil pore-water pressure responses to rainfall. Journal of Hydrologic Engineering, 18(1), 50-57.

[40]

Ng, C., Usman, M., & Guo, H. W. (2023). Spatiotemporal pore-water pressure prediction using multi-input long short-term memory. Engineering Geology, 322, 107194.

[41]

Ng, C., Zheng, G., Ni, J. J., & Zhou, C. (2020). Use of unsaturated smallstrain soil stiffness to the design of wall deflection and ground movement adjacent to deep excavation. Computers and Geotechnics, 119, 103375.

[42]

Peng, C., Liu, N., Li, M., Zhen, L., & Chen, J. (2022). Hydro-mechanical coupled analyses on wall deformations caused by deep excavations and dewatering in a confined aquifer. Acta Geotechnica, 17(6), 2465-2479.

[43]

Phoon, K., & Shuku, T. (2024). Future of machine learning in geotechnics (FOMLIG), 5-6 Dec 2023, Okayama, Japan. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 18(1), 288-303.

[44]

Phoon, K., & Zhang, W. (2023). Future of machine learning in geotechnics. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 17(1), 7-22.

[45]

Ren, B., Shen, Y., Zhao, T., & Li, X. (2023). Deformation monitoring and remote analysis of ultra-deep underground space excavation. Underground Space, 8, 30-44.

[46]

Sheil, B. B. (2021). Hybrid framework for forecasting circular excavation collapse: combining physics-based and data-driven modeling. Journal of Geotechnical and Geoenvironmental Engineering, 147(12), 240575916.

[47]

Taghavi Ganji, H., & Seylabi, E. (2023). An LSTM RNN proposal for surrogate modeling the dynamic response of buried structures to earthquake plane waves in soil half-spaces. Computers and Geotechnics, 164, 105796.

[48]

Tao, Y., He, W., Sun, H., Cai, Y., & Chen, J. (2022a). Multi-objective optimization-based prediction of excavation-induced tunnel displacement. Underground Space, 7(5), 735-747.

[49]

Tao, Y. Q., Sun, H. L., & Cai, Y. Q. (2020). Predicting soil settlement with quantified uncertainties by using ensemble Kalman filtering. Engineering Geology, 276, 105753.

[50]

Tao, Y. Q., Sun, H. L., & Cai, Y. Q. (2021). Bayesian inference of spatially varying parameters in soil constitutive models by using deformation observation data. International Journal for Numerical and Analytical Methods in Geomechanics, 45(11), 1647-1663.

[51]

Tao, Y. Q., Sun, H. L., & Cai, Y. Q. (2022b). Predictions of deep excavation responses considering model uncertainty: integrating BiLSTM neural networks with Bayesian updating. International Journal of Geomechanics, 22(1), 243479170.

[52]

Wan, L., Xie, X. Y., Wang, L. J., Li, P., & Huang, Q. (2023). Modal analysis of subway tunnel in soft soil during operation. Underground Space, 8, 181-195.

[53]

Wang, J. H., Xu, Z. H., & Wang, W. D. (2010). Wall and ground movements due to deep excavations in shanghai soft soils. Journal of Geotechnical and Geoenvironmental Engineering, 136(7), 985-994.

[54]

Wang, N., & Huang, M. (2009). Deformation monitoring artificial neural network model of deep foundation pit considering the excavation effect. Journal of Shanghai Jiaotong University, 43(6), 990-993 (in Chinese).

[55]

Wang, Y., & Tian, H. (2024). Digital geotechnics: from data-driven site characterisation towards digital transformation and intelligence in geotechnical engineering. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 18(1), 8-32.

[56]

Wang, Y. K., Tang, H. M., Huang, J. S., Wen, T., Ma, J. W., & Zhang, J. R. (2022). A comparative study of different machine learning methods for reservoir landslide displacement prediction. Engineering Geology, 298, 106544.

[57]

Wang, Y. Z., Sun, J., Bai, J. S., Anitescu, C., Eshaghi, M. S., Zhuang, X. Y., Rabczuk, T., & Liu, Y. H. (2025). Kolmogorov-Arnold-informed neural network: a physics-informed deep learning framework for solving forward and inverse problems based on Kolmogorov-Arnold networks. Computer Methods in Applied Mechanics and Engineering, 433, 117518.

[58]

Xia, Y. Y., Zhang, C., Wang, C. X., Liu, H. J., Sang, X. X., Liu, R., Zhao, P., An, G. F., Fang, H. Y., Shi, M. S., Li, B., Yuan, Y. M., & Liu, B. K. (2023). Prediction of bending strength of glass fiber reinforced methacrylate-based pipeline UV-CIPP rehabilitation materials based on machine learning. Tunnelling and Underground Space Technology, 140, 105319.

[59]

Xiao, Q. Z., Liu, N. W., Li, M. G., Chen, J. J., & Hou, Y. M. (2023). Performance of a deep excavation supported by diaphragm walls combining with servo steel struts: a case study in Hangzhou, China, soft clay deposits. International Journal of Geomechanics, 23(12), 05023010.

[60]

Xu, J. B., Zhang, L. L., Li, J. H., Cao, Z. J., Yang, H. Q., & Chen, X. Y. (2021). Probabilistic estimation of variogram parameters of geotechnical properties with a trend based on Bayesian inference using Markov chain Monte Carlo simulation. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 15(2), 83-97.

[61]

Yaseen, Z. M., Jaafar, O., Deo, R. C., Kisi, O., Adamowski, J., Quilty, J., & El-Shafie, A. (2016). Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq. Journal of Hydrology, 542, 603-614.

[62]

Ying, H. W., Cheng, K., Zhang, L. S., Ou, C. Y., & Yang, Y. W. (2020). Evaluation of excavation-induced movements through case histories in Hangzhou. Engineering Computations, 37(6), 1993-2016.

[63]

Zhang, K., Zhang, M., Sun, B., Li, F., & Jian, Y. (2023). A calculation method for deformation of diaphragm wall of narrow deep foundation pit in soft soil considering spatio-temporal effect. Rock and Soil Mechanics, 44(8), 2389-2399.

[64]

Zhang, L., Shi, B., Zhu, H. H., Yu, X. B., Han, H. M., & Fan, X. D. (2021). PSO-SVM-based deep displacement prediction of Majiagou landslide considering the deformation hysteresis effect. Landslides, 18 (1), 179-193.

[65]

Zhang, W. G., Goh, A., & Xuan, F. (2015). A simple prediction model for wall deflection caused by braced excavation in clays. Computers and Geotechnics, 63, 67-72.

[66]

Zhang, W. G., Li, Y. Q., Goh, A., & Zhang, R. H. (2020a). Numerical study of the performance of jet grout piles for braced excavations in soft clay. Computers and Geotechnics, 124, 103631.

[67]

Zhang, W. G., Zhang, R. H., Wu, C. Z., Goh, A., Lacasse, S., Liu, Z. Q., & Liu, H. L. (2020b). State-of-the-art review of soft computing applications in underground excavations. Geoscience Frontiers, 11(4), 1095-1106.

[68]

Zhou, X. J., Pan, Y., Qin, J., Chen, J., & Gardoni, P. (2024). Spatiotemporal prediction of deep excavation-induced ground settlement: a hybrid graphical network approach considering causality. Tunnelling and Underground Space Technology, 146, 105605.

[69]

Zhou, X. Z., Hu, W., Zhang, Z. Y., Ye, J. N., Zhao, C., & Bian, X. C. (2024). Adaptive mutation sparrow search algorithm-Elman-AdaBoost model for predicting the deformation of subway tunnels. Underground Space, 17, 320-360.

[70]

Zhu, X., Xi, H., He, Z., & Yang, L. (2021). An intelligent wireless displacement sensor for landslide monitoring and early warning. ISRM international symposium-Asian rock mechanics symposium. ISRM, ISRM-ARMS11-2021-655.

PDF (3895KB)

53

Accesses

0

Citation

Detail

Sections
Recommended

/