Reliable prediction for TBM energy consumption during tunnel excavation: A novel technique balancing explainability and performance
Wenli Liu , Yafei Qi , Fenghua Liu
Underground Space ›› 2025, Vol. 22 ›› Issue (3) : 77 -95.
Reliable prediction for TBM energy consumption during tunnel excavation: A novel technique balancing explainability and performance
Recently, AI-based models have been applied to accurately estimate tunnel boring machine (TBM) energy consumption. Although data-driven models exhibit strong predictive capabilities, their outputs derived from “black box” processes are challenging to interpret and generalize. Consequently, this study develops an XGB_MOFS model that cooperates extreme gradient boosting (XGBoost) and multi-objective feature selection (MOFS) to improve the accuracy and explainability of energy consumption prediction. The XGB_MOFS model includes: (1) a causal inference framework to identify the causal relationships among influential factors, and (2) a MOFS approach to balance predictive performance and explainability. Two case studies are carried out to verify the proposed method. Results show that XGB_MOFS achieves a high degree of accuracy and robustness in energy consumption prediction. The XGB_MOFS model, balancing accuracy with explainability, serves as an effective and feasible tool for regulating TBM energy consumption.
Machine learning / Multi-objective feature selection / Explainability / Energy consumption / Shield tunneling
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
/
| 〈 |
|
〉 |