Time-dependent behaviors of energy piles embedded in multilayered saturated transversely isotropic soils

Yongzhi Zhao , Zhenming Shi , Zhiyong Ai

Underground Space ›› 2025, Vol. 23 ›› Issue (4) : 113 -124.

PDF (1235KB)
Underground Space ›› 2025, Vol. 23 ›› Issue (4) :113 -124. DOI: 10.1016/j.undsp.2024.07.009
Research article
research-article

Time-dependent behaviors of energy piles embedded in multilayered saturated transversely isotropic soils

Author information +
History +
PDF (1235KB)

Abstract

This paper presents a solution for the time-dependent behaviors of energy piles embedded in transversely isotropic soils, which considers the mechanical and thermal consolidation. By using the transformed differential quadrature method, kernel functions of coupled thermal-hydro-mechanical solution on the soil-energy pile interface are obtained and the boundary integration is conducted. Then, the energy pile is discretized into finite elements. After introducing the displacement coordination and boundary conditions, matrix equations to reflect the interaction between the surrounding soils and energy piles are formulated and solved. Since the consolidation is considered, the solution for energy pile behaviors with time including displacements and thermal stresses are achieved. Computational results are compared with data of existed literatures and field tests to validate the theory in this study. Finally, numerical examples are conducted to discuss the effects of transverse isotropy of soils, consolidation process and the length-diameter ratio of the energy pile.

Keywords

Energy piles / Transverse isotropy / Time-dependent behaviors / Thermal-hydro-mechanical coupling / Transformed differential quadrature method

Cite this article

Download citation ▾
Yongzhi Zhao, Zhenming Shi, Zhiyong Ai. Time-dependent behaviors of energy piles embedded in multilayered saturated transversely isotropic soils. Underground Space, 2025, 23(4): 113-124 DOI:10.1016/j.undsp.2024.07.009

登录浏览全文

4963

注册一个新账户 忘记密码

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

This research is supported by the Postdoctoral Fellowship Program of CPSF (Grant No. GZB20240534), the National Natural Science Foundation of China (Grant No. 42407224) and the National Key Research and Development Program of China (Grant No. 2023YFC3008300).

References

[1]

Abdelaziz, S., & Ozudogru, T. Y. (2016). Non-uniform thermal strains and stresses in energy piles. Environmental Geotechnics, 3(4), 237-252.

[2]

Ai, Z. Y., Ye, J. M., & Zhao, Y. Z. (2022). The performance analysis of energy piles in cross-anisotropic soils. Energy, 255, 124549.

[3]

Akrouch, G. A., Sánchez, M., & Briaud, J. L. (2014). Thermo-mechanical behavior of energy piles in high plasticity clays. Acta Geotechnica, 9(3), 399-412.

[4]

Batini, N., Rotta Loria, A. F., Conti, P., Testi, D., Grassi, W., & Laloui, L. (2015). Energy and geotechnical behaviour of energy piles for different design solutions. Applied Thermal Engineering, 86, 199-213.

[5]

Biot, M. A. (1956). Thermoelasticity and irreversible thermodynamics. Journal of Applied Physics, 27(3), 240-253.

[6]

Bourne-Webb, P. J., Bodas Freitas, T. M., & Freitas Assunção, R. M. (2016). Soil-pile thermal interactions in energy foundations. Géotechnique, 66(2), 167-171.

[7]

Brandl, H. (1998). Energy piles and diaphragm walls for heat transfer from and into ground. In Deep Foundations on Bored and Auger PilesBAP III (pp.37-60). CRC Press.

[8]

Brandl, H. (2006). Energy foundations and other thermo-active ground structures. Géotechnique, 56(2), 81-122.

[9]

Chen, D., & McCartney, J. S. (2017). Parameters for load transfer analysis of energy piles in uniform nonplastic soils. International Journal of Geomechanics, 17(7), 04016159.

[10]

Chow, Y. K. (1989). Axially loaded piles and pile groups embedded in a cross-anisotropic soil. Géotechnique, 39(2), 203-211.

[11]

Ehsan, H. N. G., Malaska, M., & Kujala, K. (2014). Evaluation of thermo-mechanical behaviour of composite energy piles during heating/cooling operations. Engineering Structures, 75, 363-373.

[12]

Faizal, M., Bouazza, A., & Singh, R. M. (2016). An experimental investigation of the influence of intermittent and continuous operating modes on the thermal behaviour of a full scale geothermal energy pile. Geomechanics for Energy and the Environment, 8, 8-29.

[13]

Faizal, M., Bouazza, A., McCartney, J. S., & Haberfield, C. (2019). Axial and radial thermal responses of energy pile under six storey residential building. Canadian Geotechnical Journal, 56(7), 1019-1033.

[14]

Fei, K., Ding, S. J., & Qin, H. Y. (2023). Analysis of energy pile groups subjected to non-uniform thermal loadings. Underground Space, 9, 91-104.

[15]

Georgiadis, K., Skordas, D., Kamas, I., & Comodromos, E. (2020). Heating and cooling induced stresses and displacements in heat exchanger piles in sand. Renewable Energy, 147, 2599-2617.

[16]

Goode, J. C., & McCartney, J. S. (2015). Centrifuge modeling of endrestraint effects in energy foundations. Journal of Geotechnical and Geoenvironmental Engineering, 141(8), 04015034.

[17]

Kalantidou, A., Tang, A. M., Pereira, J. M., & Hassen, G. (2012). Preliminary study on the mechanical behaviour of heat exchanger pile in physical model. Géotechnique, 62(11), 1047-1051.

[18]

Knellwolf, C., Péron, H., & Laloui, L. (2011). Geotechnical analysis of heat exchanger piles. Journal of Geotechnical and Geoenvironmental Engineering, 137(10), 890-902.

[19]

Kong, G. Q., Cao, T., Hao, Y. H., Zhou, Y., & Ren, L. W. (2021a). Thermomechanical properties of an energy micro pile-raft foundation in silty clay. Underground Space, 6(1), 76-84.

[20]

Kong, G. Q., Fang, J. C., Huang, X., Liu, H. L., & Abuel-Naga, H. (2021b). Thermal induced horizontal earth pressure changes of pipe energy piles under multiple heating cycles. Geomechanics for Energy and the Environment, 26, 100228.

[21]

Kong, G. Q., Fang, J. C., Lv, Z. X., & Yang, Q. (2023). Effects of pile and soil properties on thermally induced mechanical responses of energy piles. Computers and Geotechnics, 154, 105176.

[22]

Laloui, L., Nuth, M., & Vulliet, L. (2006). Experimental and numerical investigations of the behavior of a heat exchanger pile. International Journal for Numerical and Analytical Methods in Geomechanics, 30(8), 763-781.

[23]

Liu, H. L., Wang, C. L., Kong, G. Q., & Bouazza, A. (2019). Ultimate bearing capacity of energy piles in dry and saturated sand. Acta Geotechnica, 14(3), 869-879.

[24]

Luo, J., Zhao, H., Gui, S., Xiang, W., & Rohn, J. (2017). Study of thermal migration and induced mechanical effects in double U-tube energy piles. Computers and Geotechnics, 91, 1-11.

[25]

Mimouni, T., & Laloui, L. (2014). Towards a secure basis for the design of geothermal piles. Acta Geotechnica, 9(3), 355-366.

[26]

Murphy, K. D., & McCartney, J. S. (2015). Seasonal response of energy foundations during building operation. Geotechnical and Geological Engineering, 33(2), 343-356.

[27]

Ng, C. W. W., Gunawan, A., Shi, C., Ma, Q. J., & Liu, H. L. (2016a). Centrifuge modelling of displacement and replacement energy piles constructed in saturated sand: A comparative study. Géotechnique Letters, 6(1), 34-38.

[28]

Ng, C. W. W., Ma, Q. J., & Gunawan, A. (2016b). Horizontal stress change of energy piles subjected to thermal cycles in sand. Computers and Geotechnics, 78, 54-61.

[29]

Ng, C. W. W., Shi, C., Gunawan, A., Laloui, L., & Liu, H. L. (2015). Centrifuge modelling of heating effects on energy pile performance in saturated sand. Canadian Geotechnical Journal, 52(8), 1045-1057.

[30]

Nguyen, V. T., Tang, A. M., & Pereira, J. M. (2017). Long-term thermomechanical behavior of energy pile in dry sand. Acta Geotechnica, 12(4), 729-737.

[31]

Olia, A. S. R., & Perić D. (2021). Thermomechanical soil-structure interaction in single energy piles exhibiting reversible interface behavior. International Journal of Geomechanics, 21(5), 04021065.

[32]

Pasten, C., & Santamarina, J. C. (2014). Thermally induced long-term displacement of thermoactive piles. Journal of Geotechnical and Geoenvironmental Engineering, 140(5), 06014003.

[33]

Perić D., Cossel, A. E., & Sarna, S. A. (2020). Analytical solutions for thermomechanical soil structure interaction in end-bearing energy piles. Journal of Geotechnical and Geoenvironmental Engineering, 146(7), 04020047.

[34]

Rui, Y., & Yin, M. (2018). Investigations of pile-soil interaction under thermomechanical loading. Canadian Geotechnical Journal, 55(7), 1016-1028.

[35]

Saggu, R., & Chakraborty, T. (2017). Thermomechanical analysis and parametric study of geothermal energy piles in sand. International Journal of Geomechanics, 17(9), 04017076.

[36]

Singh, R. M., Bouazza, A., & Wang, B. (2015). Near-field ground thermal response to heating of a geothermal energy pile: Observations from a field test. Soils and Foundations, 55(6), 1412-1426.

[37]

Stewart, M. A., & McCartney, J. S. (2013). Centrifuge modeling of soilstructure interaction in energy foundations. Journal of Geotechnical and Geoenvironmental Engineering, 140(4), 04013044.

[38]

Sung, C. H., Park, S., Lee, S., Oh, K., & Choi, H. (2018). Thermomechanical behavior of cast-in-place energy piles. Energy, 161, 920-938.

[39]

Suryatriyastuti, M. E., Mroueh, H., & Burlon, S. (2014). A load transfer approach for studying the cyclic behavior of thermo-active piles. Computers and Geotechnics, 55, 378-391.

[40]

Sutman, M., Olgun, C. G., & Laloui, L. (2019). Cyclic load-transfer approach for the analysis of energy piles. Journal of Geotechnical and Geoenvironmental Engineering, 145(1), 04018101.

[41]

Wang, B., Bouazza, A., Singh, R. M., Haberfield, C., Barry-Macaulay, D., & Baycan, S. (2015). Posttemperature effects on shaft capacity of a fullscale geothermal energy pile. Journal of Geotechnical and Geoenvironmental Engineering, 141(4), 04014125.

[42]

Yavari, N., Tang, A. M., Pereira, J. M., & Hassen, G. (2014). Experimental study on the mechanical behaviour of a heat exchanger pile using physical modelling. Acta Geotechnica, 9(3), 385-398.

[43]

Yavari, N., Tang, A. M., Pereira, J. M., & Hassen, G. (2016). Mechanical behaviour of a small-scale energy pile in saturated clay. Géotechnique, 66(11), 878-887.

[44]

Zhao, Y. Z., & Ai, Z. Y. (2023a). A novel coupled thermo-mechanical solution for layered isotropic media under various time-dependent loadings. International Journal for Numerical and Analytical Methods in Geomechanics, 47(5), 817-840.

[45]

Zhao, Y. Z., & Ai, Z. Y. (2023b). Transformed differential quadrature solution to the coupled thermal-mechanical problem in transversely isotropic media. Computers and Geotechnics, 156, 105160.

[46]

Zhao, Y. Z., & Ai, Z. Y. (2023c). The transformed differential quadrature method for solving time-dependent partial differential equations: Framework and examples. Computers and Mathematics with Applications, 140, 183-194.

PDF (1235KB)

50

Accesses

0

Citation

Detail

Sections
Recommended

/