Solute transport in stochastic discrete fracture-matrix systems: Impact of network structure

Yingtao Hu , Liangchao Zou , Wenjie Xu , Liangtong Zhan , Peng Xia , Duanyang Zhuang

Underground Space ›› 2025, Vol. 20 ›› Issue (1) : 69 -82.

PDF (4913KB)
Underground Space ›› 2025, Vol. 20 ›› Issue (1) :69 -82. DOI: 10.1016/j.undsp.2024.05.002
Research article
research-article

Solute transport in stochastic discrete fracture-matrix systems: Impact of network structure

Author information +
History +
PDF (4913KB)

Abstract

Obtaining a comprehensive understanding of solute transport in fractured rocks is crucial for various geoengineering applications, including waste disposal and construction of geo-energy infrastructure. It was realized that solute transport in fractured rocks is controlled by stochastic discrete fracture-matrix systems. However, the impacts and specific uncertainty caused by fracture network structures on solute transport in discrete fracture-matrix systems have yet not been fully understood. In this article, we aim to investigate the influence of fracture network structure on solute transport in stochastic discrete fracture-matrix systems. The fluid flow and solute transport are simulated using a three-dimensional discrete fracture matrix model with considering various values of fracture density and size (i.e., radius). The obtained results reveal that as the fracture density or minimum fracture radius increases, the corresponding fluid flow and solute transport channels increase, and the solute concentration distribution range expands in the matrix. This phenomenon, attributed to the enhanced connectivity of the fracture network, leads to a rise in the effluent solute concentration mean value from 0.422 to 0.704, or from 0.496 to 0.689. Furthermore, when solute transport reached a steady state, the coefficient of variation of effluent concentration decreases with the increasing fracture density or minimum fracture radius in different scenarios, indicating an improvement in the homogeneity of solute transport results. The presented analysis results of solute transport in stochastic discrete fracture-matrix systems can be helpful for uncertainty management in the geological disposal of high-level radioactive waste.

Keywords

Solute transport / Fracture-matrix systems / Discrete fracture network / Fracture network structure / Monte Carlo simulation

Cite this article

Download citation ▾
Yingtao Hu, Liangchao Zou, Wenjie Xu, Liangtong Zhan, Peng Xia, Duanyang Zhuang. Solute transport in stochastic discrete fracture-matrix systems: Impact of network structure. Underground Space, 2025, 20(1): 69-82 DOI:10.1016/j.undsp.2024.05.002

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Yingtao Hu: Writing - original draft, Visualization, Validation, Methodology, Investigation, Funding acquisition, Conceptualization. Liangchao Zou: Writing - review & editing, Supervision, Conceptualization. Wenjie Xu: Writing - review & editing, Supervision, Resources, Project administration, Formal analysis. Liangtong Zhan: Writing - review & editing, Supervision, Resources, Project administration, Funding acquisition. Peng Xia: Writing - review & editing, Formal analysis. Duanyang Zhuang: Writing - review & editing, Investigation.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

The authors acknowledge the financial support from research grants provided by the National Natural Science Foundation of China (Grant Nos. 42302303 and 42277128), and the Zhejiang Provincial Natural Science Foundation of China (Grant No. ZCLQ24D0201).

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

[1]

Ahmed, R., Edwards, M. G., Lamine, S., Huisman, B. A. H., & Pal, M. (2015). Three-dimensional control-volume distributed multi-point flux approximation coupled with a lower-dimensional surface fracture model. Journal of Computational Physics, 303, 470-497.

[2]

Berkowitz, B. (2002). Characterizing flow and transport in fractured geological media: A review. Advances in Water Resources, 25(8-12), 861-884.

[3]

Berrone, S., Borio, A., Fidelibus, C., Pieraccini, S., Scialò S., & Vicini, F. (2018). Advanced computation of steady-state fluid flow in discrete fracture-matrix models: FEM-BEM and VEM-VEM fracture-block coupling. GEM - International Journal on Geomathematics, 9(2), 377-399.

[4]

Bianchi, M., & Pedretti, D. (2018). An Entrogram-based approach to describe spatial heterogeneity with applications to solute transport in porous media. Water Resources Research, 54(7), 4432-4448.

[5]

Brown, S. R. (1987). Fluid flow through rock joints; the effect of surface roughness. Journal of Geophysical Research: Solid Earth, 92(B2), 1337-1347.

[6]

Cvetkovic, V., & Frampton, A. (2012). Solute transport and retention in three-dimensional fracture networks. Water Resources Research, 48(2), W02529.

[7]

de Dreuzy, J. R., Davy, P., & Bour, O. (2002). Hydraulic properties of two-dimensional random fracture networks following power law distributions of length and aperture. Water Resources Research, 38 (12), 12-1-12-9.

[8]

De Simone, S., Pinier, B., Bour, O., & Davy, P. (2021). A particle-tracking formulation of advective-diffusive heat transport in deformable fracture networks. Journal of Hydrology, 603, 127157.

[9]

Dershowitz, W. S., & Herda, H. H. (1992). Interpretation of fracture spacing and intensity. In Proceedings of the 33rd US Symposium on Rock Mechanics (USRMS) (pp. ARMA-92-0757).

[10]

Fan, H. Y., Li, L. P., Zong, P. J., Liu, H. L., Yang, L. J., Wang, J., Yan, P., & Sun, S. Q. (2023). Advanced stability analysis method for the tunnel face in jointed rock mass based on DFN-DEM. Underground Space, 13, 136-149.

[11]

Farouk, B. A., Michel, A., Richard, S., & René T. (2015). Numerical simulations of water flow and contaminants transport near mining wastes disposed in a fractured rock mass. International Journal of Mining Science and Technology, 25(1), 37-45.

[12]

Frampton, A., Hyman, J. D., & Zou, L. C. (2019). Advective transport in discrete fracture networks with connected and disconnected textures representing internal aperture variability. Water Resources Research, 55(7), 5487-5501.

[13]

Goc, R. L., Pinier, B., Darcel, C., Lavoine, E., Doolaeghe, D., de Simone, S., de Dreuzy, J. R., & Davy, P. (2019). DFN.lab: software platform for Discrete Fracture Network models. In Proceedings of the American Geophysical Union Fall Meeting 2019. (pp. H41H-1778).

[14]

He, C., Yao, C., Jin, Y. Z., Jiang, Q. H., & Zhou, C. B.(2023). Effective permeability of fractured porous media with fracture density near the percolation threshold. Applied Mathematical Modelling, 117, 592-608.

[15]

Hu, Y. T., Xu, W. J., Zhan, L. T., Zou, L. C., & Chen, Y. M. (2022). Modeling of solute transport in a fracture-matrix system with a threedimensional discrete fracture network. Journal of Hydrology, 605, 127333.

[16]

Huang, N., Jiang, Y. J., Liu, R. C., Li, B., & Sugimoto, S. (2019). A novel three-dimensional discrete fracture network model for investigating the role of aperture heterogeneity on fluid flow through fractured rock masses. International Journal of Rock Mechanics and Mining Sciences, 116, 25-37.

[17]

Huang, N., Liu, R. C., Jiang, Y. J., & Cheng, Y. F. (2021). Development and application of three-dimensional discrete fracture network modeling approach for fluid flow in fractured rock masses. Journal of Natural Gas Science and Engineering, 91, 103957.

[18]

Hyman, J. D. (2020). Flow channeling in fracture networks: characterizing the effect of density on preferential flow path formation. Water Resources Research, 56(9), e2020WR027986.

[19]

Hyman, J. D., Aldrich, G., Viswanathan, H., Makedonska, N., & Karra, S. (2016). Fracture size and transmissivity correlations: Implications for transport simulations in sparse three-dimensional discrete fracture networks following a truncated power law distribution of fracture size. Water Resources Research, 52(8), 6472-6489.

[20]

Hyman, J. D., Hagberg, A., Srinivasan, G., Mohd-Yusof, J., & Viswanathan, H. (2017). Predictions of first passage times in sparse discrete fracture networks using graph-based reductions. Physical Review E, 96, 013304.

[21]

Hyman, J. D., Karra, S., Makedonska, N., Gable, C. W., Painter, S. L., & Viswanathan, H. S. (2015). dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport. Computers & Geosciences, 84, 10-19.

[22]

Hyman, J. D., Sweeney, M. R., Gable, C. W., Svyatsky, D., Lipnikov, K., & David Moulton, J. (2022). Flow and transport in three-dimensional discrete fracture matrix models using mimetic finite difference on a conforming multi-dimensional mesh. Journal of Computational Physics, 466, 111396.

[23]

Jenkins, C., Chadwick, A., & Hovorka, S. D. (2015). The state of the art in monitoring and verification—Ten years on. International Journal of Greenhouse Gas Control, 40, 312-349.

[24]

Joyce, S., Hartley, L., Applegate, D., Hoek, J., & Jackson, P. (2014). Multi-scale groundwater flow modeling during temperate climate conditions for the safety assessment of the proposed high-level nuclear waste repository site at Forsmark, Sweden. Hydrogeology Journal, 22 (6), 1233-1249.

[25]

Kang, P. K., Hyman, J. D., Han, W. S., & Dentz, M. (2020). Anomalous transport in three-dimensional discrete fracture networks: interplay between aperture heterogeneity and injection modes. Water Resources Research, 56(11), e2020WR027378.

[26]

Keilegavlen, E., Berge, R., Fumagalli, A., Starnoni, M., Stefansson, I., Varela, J., & Berre, I. (2021). PorePy: An open-source software for simulation of multiphysics processes in fractured porous media. Computational Geosciences, 25(1), 243-265.

[27]

Kolditz, O., Bauer, S., Bilke, L., Böttcher, N., Delfs, J. O., Fischer, T., Görke, U. J., Kalbacher, T., Kosakowski, G., McDermott, C. I., Park, C. H., Radu, F., Rink, K., Shao, H., Shao, H. B., Sun, F., Sun, Y. Y., Singh, A. K., Taron, J., Walther, M., Wang, W., Watanabe, N., Wu, Y., Xie, M., Xu, W., & Zehner, B. (2012). OpenGeoSys: An opensource initiative for numerical simulation of thermo-hydro-mechanical/ chemical (THM/C) processes in porous media. Environmental Earth Sciences, 67(2), 589-599.

[28]

Larsson, M., Odén, M., Niemi, A., Neretnieks, I., & Tsang, C. F. (2013). A new approach to account for fracture aperture variability when modeling solute transport in fracture networks. Water Resources Research, 49(4), 2241-2252.

[29]

Lei, Q. H., Latham, J. P., & Tsang, C. F. (2017). The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks. Computers and Geotechnics, 85, 151-176.

[30]

Li, X. X., Li, D. Q., Xu, Y., & Feng, X. B. (2020). A DFN based 3D numerical approach for modeling coupled groundwater flow and solute transport in fractured rock mass. International Journal of Heat and Mass Transfer, 149, 119179.

[31]

Liu, H., Zhao, X. L., Tang, X. F., Peng, B. W., Zou, J. D., & Zhang, X. J. (2020). A Discrete fracture-matrix model for pressure transient analysis in multistage fractured horizontal wells with discretely distributed natural fractures. Journal of Petroleum Science and Engineering, 192, 107275.

[32]

Liu, R. C., Li, B., & Jiang, Y. J. (2016). Critical hydraulic gradient for nonlinear flow through rock fracture networks: The roles of aperture, surface roughness, and number of intersections. Advances in Water Resources, 88, 53-65.

[33]

Liu, R. C., Zhu, T. T., Jiang, Y. J., Li, B., Yu, L. Y., Du, Y., & Wang, Y. C. (2019). A predictive model correlating permeability to twodimensional fracture network parameters. Bulletin of Engineering Geology and the Environment, 78(3), 1589-1605.

[34]

Long, J. C. S., Gilmour, P., & Witherspoon, P. A. (1985). A model for steady fluid flow in random three-dimensional networks of disc-dhaped fractures. Water Resources Research, 21(8), 1105-1115.

[35]

Ma, G. W., Li, T., Wang, Y., & Chen, Y. (2019). Numerical simulations of nuclide migration in highly fractured rock masses by the unified pipenetwork method. Computers and Geotechnics, 111, 261-276.

[36]

Maillot, J., Davy, P., Le Goc, R., Darcel, C., & de Dreuzy, J. R. (2016). Connectivity, permeability, and channeling in randomly distributed and kinematically defined discrete fracture network models. Water Resources Research, 52(11), 8526-8545.

[37]

Makedonska, N., Hyman, J. D., Karra, S., Painter, S. L., Gable, C. W., & Viswanathan, H. S. (2016). Evaluating the effect of internal aperture variability on transport in kilometer scale discrete fracture networks. Advances in Water Resources, 94, 486-497.

[38]

Maryška, J., Severyón, O., & Vohralík, M. (2005). Numerical simulation of fracture flow with a mixed-hybrid FEM stochastic discrete fracture network model. Computational Geosciences, 8(3), 217-234.

[39]

Middleton, R. S., Carey, J. W., Currier, R. P., Hyman, J. D., Kang, Q. J., Karra, S., Jiménez-Martínez, J., Porter, M. L., & Viswanathan, H. S. (2015). Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2. Applied Energy, 147, 500-509.

[40]

Morelli, G. L. (2024). Estimating the Volumetric Fracture Intensity P32 Through a New Analytical Approach. Rock Mechanics and Rock Engineering, 2024.

[41]

Neretnieks, I. (1980). Diffusion in the rock matrix: An important factor in radionuclide retardation? Journal of Geophysical Research: Solid Earth, 85(B8), 4379-4397.

[42]

Neuman, S. P. (2005). Trends, prospects and challenges in quantifying flow and transport through fractured rocks. Hydrogeology Journal, 13 (1), 124-147.

[43]

Odsæter, L. H., Kvamsdal, T., & Larson, M. G. (2019). A simple embedded discrete fracture-matrix model for a coupled flow and transport problem in porous media. Computer Methods in Applied Mechanics and Engineering, 343, 572-601.

[44]

O’Malley, D., Karra, S., Hyman, J. D., Viswanathan, H. S., & Srinivasan, G. (2018). Efficient Monte Carlo With Graph-Based Subsurface Flow and Transport Models. Water Resources Research, 54(5), 3758-3766.

[45]

Sherman, T., Hyman, J., Dentz, M., & Bolster, D. (2020). Characterizing the influence of fracture density on network scale transport. Journal of Geophysical Research: Solid Earth, 125(1), e2019JB018547.

[46]

Sudicky, E. A., & Frind, E. O. (1982). Contaminant transport in fractured porous media: Analytical solutions for a system of parallel fractures. Water Resources Research, 18(6), 1634-1642.

[47]

Sweeney, M. R., Gable, C. W., Karra, S., Stauffer, P. H., Pawar, R. J., & Hyman, J. D. (2020). Upscaled discrete fracture matrix model (UDFM): An octree-refined continuum representation of fractured porous media. Computational Geosciences, 24(1), 293-310.

[48]

Tang, D. H., Frind, E. O., & Sudicky, E. A. (1981). Contaminant transport in fractured porous media: Analytical solution for a single fracture. Water Resources Research, 17(3), 555-564.

[49]

Tsang, C. F., Neretnieks, I., & Tsang, Y. (2015). Hydrologic issues associated with nuclear waste repositories. Water Resources Research, 51(9), 6923-6972.

[50]

VanderKwaak, J. E., & Sudicky, E. A. (1996). Dissolution of nonaqueous- phase liquids and aqueous-phase contaminant transport in discretely-fractured porous media. Journal of Contaminant Hydrology, 23(1-2), 45-68.

[51]

Wang, Y., Li, T., Chen, Y., & Ma, G. W. (2019a). Numerical analysis of heat mining and geological carbon sequestration in supercritical CO2 circulating enhanced geothermal systems inlayed with complex discrete fracture networks. Energy, 173, 92-108.

[52]

Wang, Y., Li, T., Chen, Y., & Ma, G. (2019b). A three-dimensional thermo-hydro-mechanical coupled model for enhanced geothermal systems (EGS) embedded with discrete fracture networks. Computer Methods in Applied Mechanics and Engineering, 356, 465-489.

[53]

Wu, H., Fu, P. C., Morris, J. P., Mattson, E. D., Neupane, G., Smith, M. M., Hawkins, A. J., Zhang, Y. R., & Kneafsey, T. (2021). Characterization of flow and transport in a fracture network at the EGS Collab field experiment through stochastic modeling of tracer recovery. Journal of Hydrology, 593, 125888.

[54]

Xiong, F., Jiang, Q. H., Xu, C. S., Zhang, X. B., & Zhang, Q. H. (2019). Influences of connectivity and conductivity on nonlinear flow behaviours through three-dimension discrete fracture networks. Computers and Geotechnics, 107, 128-141.

[55]

Xu, C. S., & Dowd, P. (2010). A new computer code for discrete fracture network modelling. Computers & Geosciences, 36(3), 292-301.

[56]

Yao, C., He, C., Yang, J. H., Jiang, Q., Huang, J. P., & Zhou, C. B. (2019). A Novel Numerical Model for Fluid Flow in 3D Fractured Porous Media Based on an Equivalent Matrix-Fracture Network. Geofluids, 2019, 9736729.

[57]

Ye, Z. Y., Fan, X. C., Zhang, J., Sheng, J. L., Chen, Y. T., Fan, Q. L., & Qin, H. K. (2021). Evaluation of Connectivity Characteristics on the Permeability of Two-Dimensional Fracture Networks Using Geological Entropy. Water Resources Research, 57(10), e2020WR029289.

[58]

Zhan, L. T., Hu, Y. T., Zou, L. C., Xu, W. J., Ye, Z. Y., Chen, R. Q., Zhuang, D. Y., Li, J. L., & Chen, Y. M. (2022). Effects of multiscale heterogeneity on transport in three-dimensional fractured porous rock with a rough-walled fracture network. Computers and Geotechnics, 148, 104836.

[59]

Zhang, L. M., Cong, Y., Meng, F. Z., Wang, Z. Q., Zhang, P., & Gao, S. (2021). Energy evolution analysis and failure criteria for rock under different stress paths. Acta Geotechnica, 16(2), 569-580.

[60]

Zhang, L. M., Zhang, D., Wang, Z. Q., Cong, Y., & Wang, X. S. (2023). Constructing a three-dimensional creep model for rocks and soils based on memory-dependent derivatives: A theoretical and experimental study. Computers and Geotechnics, 159, 105366.

[61]

Zhao, Y. Y., Jiang, H. Q., Rahman, S., Yuan, Y. D., Zhao, L., Li, J. W., Ge, J. C., & Li, J. J. (2019). Three-dimensional representation of discrete fracture matrix model for fractured reservoirs. Journal of Petroleum Science and Engineering, 180, 886-900.

[62]

Zhao, Z. H., Peng, H., Wu, W., & Chen, Y. F. (2018). Characteristics of shear-induced asperity degradation of rock fractures and implications for solute retardation. International Journal of Rock Mechanics and Mining Sciences, 105, 53-61.

[63]

Zhao, Z. H., Rutqvist, J., Leung, C., Hokr, M., Liu, Q. S., Neretnieks, I., Hoch, A., Havlıóček, J., Wang, Y., Wang, Z., Wu, Y. X., & Zimmerman, R. (2013). Impact of stress on solute transport in a fracture network: A comparison study. Journal of Rock Mechanics and Geotechnical Engineering, 5(2), 110-123.

[64]

Zhong, Z., Xu, C. Q., Zhang, F. S., Wang, X. Y., & Hu, Y. J. (2023). Size effect on hydraulic properties of rough-walled fractures upscaled from meter-scale granite fractures. Geomechanics and Geophysics for Geo- Energy and Geo-Resources, 9, 75.

[65]

Zou, L. C., & Cvetkovic, V. (2020). Inference of transmissivity in crystalline rock using flow logs under steady-state pumping: Impact of multiscale heterogeneity. Water Resources Research, 56(8), e2020WR027254.

[66]

Zou, L. C., & Cvetkovic, V. (2023). Disposal of high-level radioactive waste in crystalline rock: On coupled processes and site development. Rock Mechanics Bulletin, 2(3), 100061.

PDF (4913KB)

43

Accesses

0

Citation

Detail

Sections
Recommended

/