Permeability evolution of fluid-injection-reactivated granite fractures of contrasting roughnesses

Fengshou Zhang , Guanpeng He , Mengke An , Rui Huang , Derek Elsworth

Underground Space ›› 2025, Vol. 20 ›› Issue (1) : 33 -45.

PDF (2514KB)
Underground Space ›› 2025, Vol. 20 ›› Issue (1) :33 -45. DOI: 10.1016/j.undsp.2024.02.007
Research article
research-article

Permeability evolution of fluid-injection-reactivated granite fractures of contrasting roughnesses

Author information +
History +
PDF (2514KB)

Abstract

Fracture/fault instability induced by fluid injection in deep geothermal reservoirs could not only vary the reservoir permeability but also trigger hazardous seismicity. To address this, we conducted triaxial shear experiments on granite fractures with different architected roughnesses reactivated under fluid injection, to investigate the controls on permeability evolution linked to reactivation. Our results indicate that the fracture roughness and injection strategies are two main factors affecting permeability evolution. For fractures with different roughnesses, a rougher fracture leads to a lower peak reactivated permeability (kmax), and varying the fluid injection strategy (including the confining pressure and injection rate) has a less impact on kmax, indicating that the evolution of permeability during fluid pressurization is likely to be determined by the fracture roughness along the shear direction. Both the fracture roughness and injection strategies affect the average rates of permeability change and this parameter also reflects the long-term reservoir recovery. Our results have important implications for understanding the permeability evolution and the injection-induced fracture/fault slips in granite reservoirs during the deep geothermal energy extraction.

Keywords

Granite fractures / Fluid injection / Fracture roughness / Permeability evolution / Triaxial shear

Cite this article

Download citation ▾
Fengshou Zhang, Guanpeng He, Mengke An, Rui Huang, Derek Elsworth. Permeability evolution of fluid-injection-reactivated granite fractures of contrasting roughnesses. Underground Space, 2025, 20(1): 33-45 DOI:10.1016/j.undsp.2024.02.007

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Fengshou Zhang: Conceptualization, Funding acquisition, Writing - review & editing. Guanpeng He: Data curation, Formal analysis, Writing - original draft. Mengke An: Data curation, Formal analysis, Funding acquisition, Writing - original draft. Rui Huang: Data curation, Writing - review & editing. Derek Elsworth: Data curation, Funding acquisition, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

This research was funded by the National Natural Science Foundation of China (Grant Nos. 42077247 and 42107163), and the Fundamental Research Funds for the Central Universities. Derek Elsworth acknowledges support from the G. Albert Shoemaker endowment. We appreciate the assistance of Junjie Wei and Congqiang Xu in contributing to the experiments.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

[1]

An, M., Zhang, F., Min, K.-B., Elsworth, D., He, C., & Zhao, L. (2022). Frictional stability of metamorphic epidote in granitoid faults under hydrothermal conditions and implications for injection-induced seismicity. Journal of Geophysical Research: Solid Earth, 127, e2021JB023136.

[2]

Atkinson, G. M., Eaton, D. W., & Igonin, N. (2020). Developments in understanding seismicity triggered by hydraulic fracturing. Nature Reviews Earth and Environment, 1(5), 264-277.

[3]

Bao, X., & Eaton, D. W. (2016). Fault activation by hydraulic fracturing in western Canada. Science, 354(6318), 1406-1409.

[4]

Barton, N., Bandis, S., & Bakhtar, K. (1985). Strength, deformation and conductivity coupling of rock Joints. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 22, 121-140.

[5]

Bauer, S. J., Huang, K., Chen, Q., Ghassemi, A., & Barrow, P. (2016). Experimental and numerical investigation of hydro-thermally induced shear stimulation. Paper presented at the 50th U.S. Rock Mechanics/ Geomechanics Symposium, Houston, TX.

[6]

Blanpied, M. L., Tullis, T. E., & Weeks, J. D. (1998). Effects of slip, slip rate, and shear heating on the friction of granite. Journal of Geophysical Research: Solid Earth, 103(B1), 489-511.

[7]

Brune, J. N. (1968). Seismic moment, seismicity, and rate of slip along major fault zones. Journal of Geophysical Research, 73(2), 777-784.

[8]

Cladouhos, T. T., Petty, S., Swyer, M. W., Uddenberg, M. E., Grasso, K., & Nordin, Y. (2016). Results from Newberry Volcano EGS Demonstration, 2010-2014. Geothermics, 63, 44-61.

[9]

Ding, C., Zhang, Y., Teng, Q., Hu, D., Zhou, H., Shao, J., & Zhang, C. (2020). A method to experimentally investigate injection-induced activation of fractures. Journal of Rock Mechanics and Geotechnical Engineering, 12(6), 1326-1332.

[10]

Ellsworth, W. L. (2013). Injection-induced earthquakes. Science, 341 (6142), 1225942.

[11]

Elsworth, D., & Goodman, R. E. (1986). Characterization of rock fissure hydraulic conductivity using idealized wall roughness profiles. International Journal of Rock Mechanics and Mining Sciences, 23(3), 233-243.

[12]

Esaki, T., Du, S., Mitani, Y., Ikusada, K., & Jing, L. (1999). Development of a shear-flow test apparatus and determination of coupled properties for a single rock joint. International Journal of Rock Mechanics and Mining Sciences, 36(5), 641-650.

[13]

Fang, Y., Elsworth, D., Wang, C., Ishibashi, T., & Fitts, J. P. (2017). Frictional stability-permeability relationships for fractures in shales. Journal of Geophysical Research: Solid Earth, 122, 1760-1776.

[14]

Fang, Y., Elsworth, D., Ishibashi, T., & Zhang, F. (2018). Permeability evolution and frictional stability of fabricated fractures with specified roughness. Journal of Geophysical Research: Solid Earth, 123, 9355-9375.

[15]

Faoro, I., Niemeijer, A., Marone, C., & Elsworth, D. (2009). Influence of shear and deviatoric stress on the evolution of permeability in fractured rock. Journal of Geophysical Research, 114, B01201.

[16]

Fischer, T., & Guest, A. (2011). Shear and tensile earthquakes caused by fluid injection. Geophysical Research Letters, 38(5), L05307.

[17]

Fung, A. K., Chen, K.-S., & Chen, K. S. (2010). Microwave scattering and emission models for users. Artech house.

[18]

Gadelmawla, E. S., Koura, M. M., Maksoud, T. M. A., Elewa, I. M., & Soliman, H. H. (2002). Roughness parameters. Journal of Materials Processing Technology, 123(1), 133-145.

[19]

Grigoli, F., Cesca, S., Priolo, E., Rinaldi, A. P., Clinton, J. F., Stabile, T. A., Dost, B., Fernandez, M. G., Wiemer, S., & Dahm, T. (2017). Current challenges in monitoring, discrimination, and management of induced seismicity related to underground industrial activities: A European perspective. Review of Geophysics, 55, 310-340.

[20]

Grigoli, F., Cesca, S.,Rinaldi, A. P., et al. (2018). The November 2017Mw 5.5 Pohang earthquake: A possible case of induced seismicity in South Korea. Science, 360(6392), 1003-1006.

[21]

Heidinger, P. (2010). Integral modeling and financial impact of the geothermal situation and power plant at Soultz-sous-Forêts. Comptes Rendus Geoscience, 342(7), 626-635.

[22]

Hovorka, S. D., Benson, S. M., Doughty, C., Freifeld, B. M., & Knauss, K. G. (2006). Measuring permanence of CO2 storage in saline formations: The Frio experiment. Environmental Geosciences, 13(2), 105-121.

[23]

Ishibashi, T., Asanuma, H., Fang, Y., Wang, C., & Elsworth, D. (2016). Exploring the link between permeability and strength evolution during fracture shearing. Paper presented at the 50th U.S. Rock Mechanics/ Geomechanics Symposium, Houston, TX.

[24]

Ishibashi, T., Fang, Y., Elsworth, D., Watanabe, N., & Asanuma, H. (2020). Hydromechanical properties of 3D printed fractures with controlled surface roughness: Insights into shear-permeability coupling processes. International Journal of Rock Mechanics and Mining Sciences, 128, 104271.

[25]

ISRM. (2007). The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974-2006. Suggested methods prepared by the Commission on testing methods, International Society for Rock Mechanics, Ulusay, R. & Hudson, J.A. (editors), Compilation Arranged by the ISRM Turkish National Group, Ankara, Turkey.

[26]

Ji, Y., Yoon, J. S., Zang, A., & Wu, W. (2021). Mitigation of injectioninduced seismicity on undrained faults in granite using cyclic fluid injection: A laboratory study. International Journal of Rock Mechanics and Mining Science, 54, 5389-5405.

[27]

Jiang, Y., Li, B., Wang, C., Song, Z., & Yan, B. (2022). Advances in development of shear-flow testing apparatuses and methods for rock fractures: A review. Rock Mechanics Bulletin, 1(1), 100005.

[28]

Kim, K. H., Ree, J. H., Kim, Y. H., Kim, S., Kang, S. Y., & Seo, W. (2018). Assessing whether the 2017 Mw 5.4 Pohang earthquake in South Korea was an induced event. Science, 360(6392), 1007-1009.

[29]

Kumari, W. G. P., & Ranjith, P. G. (2019). Sustainable development of enhanced geothermal systems based on geotechnical research-A review. Earth-Science Reviews, 199, 102955.

[30]

Kwon, S., Xie, L., Park, S., Kim, K.-I., Min, K.-B., Kim, K. Y., Zhuang, L., Choi, J., Kim, H., & Lee, T. J. (2018). Characterization of 4.2-kmdeep fractured granodiorite cores from Pohang geothermal reservoir, Korea. Rock Mechanics and Rock Engineering, 52, 771-782.

[31]

Li, Z., Elsworth, D., Wang, C., & Im, K. (2019). A new apparatus for the concurrent measurement of friction and permeability evolution in fault gouge. International Journal of Rock Mechanics and Mining Sciences, 121, 104046.

[32]

Li, Z., Elsworth, D., Wang, C., & Collab, E. G. S. (2021). Constraining maximum event magnitude during injection-triggered seismicity. Nature Communication, 12(1), 1528.

[33]

Li, Z., Ma, X., Kong, X., Saar, M. O., & Vogler, D. (2023). Permeability evolution during pressure-controlled shear slip in saw-cut and natural granite fractures. Rock Mechanics Bulletin, 2(2), 100027.

[34]

Lu, S.-M. (2018). A global review of enhanced geothermal system (EGS). Renewable and Sustainable Energy Reviews, 81, 2902-2921.

[35]

Majer, E. L., Baria, R., Stark, M., Oates, S., Bommer, J., Smith, B., & Asanuma, H. (2007). Induced seismicity associated with Enhanced Geothermal Systems. Geothermics, 36(3), 185-222.

[36]

Marcou, J. A. (1985). Optimizing development strategy for liquid dominated geothermal reservoirs. Stanford University, Doctoral dissertation.

[37]

Meng, F., Wong, L. N. Y., & Guo, T. (2022). Frictional behavior and micro-damage characteristics of rough granite fractures. Tectonophysics, 842, 229589.

[38]

Molina, I., Velásquez, J. S., Rubinstein, J. L., Garcia-Aristizabal, A., & Dionicio, V. (2020). Seismicity induced by massive wastewater injection near Puerto Gaitán, Colombia. Geophysical Journal International, 223(2), 777-791.

[39]

Nemoto, K., Moriya, H., Niitsuma, H., & Tsuchiya, N. (2008). Mechanical and hydraulic coupling of injection-induced slip along pre-existing fractures. Geothermics, 37(2), 157-172.

[40]

Niemeijer, A. R., & Spiers, C. J. (2006). Velocity dependence of strength and healing behaviour in simulated phyllosilicate-bearing fault gouge. Tectonophysics, 427(1-4), 231-253.

[41]

Olasolo, P., Juárez, M. C., Morales, M. P., DóAmico, S., & Liarte, I. A. (2016). Enhanced geothermal systems (EGS): A review. Renewable and Sustainable Energy Reviews, 56, 133-144.

[42]

Olsson, R., & Barton, N. (2001). An improved model for hydromechanical coupling during shearing of rock joints. International Journal of Rock Mechanics and Mining Sciences, 38(3), 317-329.

[43]

Parisio, F., Vilarrasa, V., Wang, W., Kolditz, O., & Nagel, T. (2019). The risks of long-term re-injection in supercritical geothermal systems. Nature Communications, 10(1), 4391.

[44]

Passelègue, F. X., Spagnuolo, E., Violay, M., Nielsen, S., Di Toro, G., & Schubnel, A. (2016). Frictional evolution, acoustic emissions activity, and off-fault damage in simulated faults sheared at seismic slip rates. Journal of Geophysical Research: Solid Earth, 121(10), 7490-7513.

[45]

Pine, R. J., & Batchelor, A. S. (1984). Downward migration of shearing in jointed rock during hydraulic injections. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, 21(5), 249-263.

[46]

Rinaldi, A. P., Rutqvist, J., Sonnenthal, E. L., & Cladouhos, T. T. (2015). Coupled THM modeling of hydroshearing stimulation in tight fractured volcanic rock. Transport in Porous Media, 108(1), 131-150.

[47]

Safari, R., & Ghassemi, A. (2015). 3D thermo-poroelastic analysis of fracture network deformation and induced micro-seismicity in enhanced geothermal systems. Geothermics, 58, 1-14.

[48]

Samuelson, J., Elsworth, D., & Marone, C. (2009). Shear-induced dilatancy of fluid-saturated faults: Experiment and theory. Journal of Geophysical Research-Solid Earth, 114, B12404.

[49]

Samuelson, J., & Spiers, C. J. (2012). Fault friction and slip stability not affected by CO2 storage: Evidence from short-term laboratory experiments on North Sea reservoir sandstones and caprocks. International Journal of Greenhouse Gas Control, 11, S78-S90.

[50]

Schultz, R., Skoumal, R. J., Brudzinski, M. R., Eaton, D., Baptie, B., & Ellsworth, W. (2020). Hydraulic fracturing-induced seismicity. Reviews of Geophysics, 58(3), e2019RG000695.

[51]

Stein, R. S. (1999). The role of stress transfer in earthquake occurrence. Nature, 402(6762), 605-609.

[52]

Vadacca, L., Rossi, D., Scotti, A., & Buttinelli, M. (2021). Slip tendency analysis, fault reactivation potential and induced seismicity in the Val d’Agri Oilfield (Italy). Journal of Geophysical Research: Solid Earth, 126(1), 2019JB019185.

[53]

Verdon, J. P., Kendall, J. M., Stork, A. L., Chadwick, R. A., White, D. J., & Bissell, R. C. (2013). Comparison of geomechanical deformation induced by megatonne-scale CO2 storage at Sleipner, Weyburn, and in Salah. Proceedings of the National Academy of Sciences of the United States of America, 110(30), 2762-2771.

[54]

Wang, C., Elsworth, D., Fang, Y., & Zhang, F. (2020a). Influence of fracture roughness on shear strength, slip stability and permeability: A mechanistic analysis by three-dimensional digital rock modeling. Journal of Rock Mechanics and Geotechnical Engineering, 12(4), 720-731.

[55]

Wang, L., Kwiatek, G., Rybacki, E., Bonnelye, A., Bohnhoff, M., & Dresen, G. (2020b). Laboratory study on fluid-induced fault slip behavior: The role of fluid pressurization rate. Geophysical Research Letters, 47, e2019GL086627.

[56]

Whitehouse, D. J., & Archard, J. F. (1970). The properties of random surfaces of significance in their contact. Proceedings of the Royal Society A: Mathematical.

[57]

Witherspoon, P. A., Wang, J. S. Y., Iwai, K., & Gale, J. E. (1980). Validity of cubic law for fluid flow in a deformable rock fracture. Water Resources Research, 16(6), 1016-1024.

[58]

Wu, H., Liu, Y., Yang, M., Zhang, J., & Zhang, B. (2023a). Effect of temperature-dependent rock thermal conductivity and specific heat capacity on heat recovery in an enhanced geothermal system. Rock Mechanics Bulletin, 2(2), 100045.

[59]

Wu, X., Li, Y., & Tang, C. (2023b). Comparative study on heat extraction performance of three enhanced geothermal systems. Rock Mechanics Bulletin, 2(2), 100041.

[60]

Ye, Z., & Ghassemi, A. (2018). Injection-induced shear slip and permeability enhancement in granite fractures. Journal of Geophysical Research: Solid Earth, 123, 9009-9032.

[61]

Yeo, I. W., Brown, M., Ge, S., & Lee, K. K. (2020). Causal mechanism of injection-induced earthquakes through the Mw 5.5 Pohang earthquake case study. Nature Communications, 11(1), 2614.

[62]

Zang, A., Oye, V., Jousset, P., Deichmann, N., Gritto, R., McGarr, A., Majer, E., & Bruhn, D. (2014). Analysis of induced seismicity in geothermal reservoirs - An overview. Geothermics, 52, 6-21.

[63]

Zhao, Z., Jing, L., & Neretnieks, I. (2012). Particle mechanics model for the effects of shear on solute retardation coefficient in rock fractures. International Journal of Rock Mechanics and Mining Sciences, 52, 92-102.

[64]

Zhong, Z., Elsworth, D., & Hu, Y. J. (2016). Evolution of Strength and Permeability in Stressed Fractures with Fluid-Rock Interactions. Pure and Applied Geophysics, 173(2), 525-536.

[65]

Zimmerman, R. W., & Bodvarsson, G. S. (1996). Hydraulic conductivity of rock fractures. Transport in Porous Media, 23(1), 1-30.

[66]

Zoback, M. D., & Gorelick, S. M. (2012). Earthquake triggering and large-scale geologic storage of carbon dioxide. Proceedings of the National Academy of Sciences of the United States of America, 109(26), 10, 164-10, 168.

PDF (2514KB)

34

Accesses

0

Citation

Detail

Sections
Recommended

/