Cross-scale mechanical softening of Marcellus shale induced by CO2-water-rock interactions using nanoindentation and accurate grain-based modeling

Yiwei Liu , Quansheng Liu , Zhijun Wu , Shimin Liu , Yong Kang , Xuhai Tang

Underground Space ›› 2024, Vol. 19 ›› Issue (6) : 26 -46.

PDF (6080KB)
Underground Space ›› 2024, Vol. 19 ›› Issue (6) :26 -46. DOI: 10.1016/j.undsp.2024.02.001
Research article
research-article

Cross-scale mechanical softening of Marcellus shale induced by CO2-water-rock interactions using nanoindentation and accurate grain-based modeling

Author information +
History +
PDF (6080KB)

Abstract

Mechanical softening behaviors of shale in CO2-water-rock interaction are critical for shale gas exploitation and CO2 sequestration. This work investigated the cross-scale mechanical softening of shale triggered by CO2-water-rock interaction. Initially, the mechanical softening of shale following 30 d of exposure to CO2 and water was assessed at the rock-forming mineral scale using nanoindentation. The mechanical alterations of rock-forming minerals, including quartz, muscovite, chlorite, and kaolinite, were analyzed and compared. Subsequently, an accurate grain-based modeling (AGBM) was proposed to upscale the nanoindentation results. Numerical models were generated based on the real microstructure of shale derived from TESCAN integrated minerals analyzer (TIMA) digital images. Mechanical parameters of shale minerals determined by nanoindentation served as input material properties for AGBMs. Finally, numerical simulations of uniaxial compression tests were conducted to investigate the impact of mineral softening on the macroscopic Young’s modulus and uniaxial compressive strength (UCS) of shale. The results present direct evidence of shale mineral softening during CO2-water-rock interaction and explore its influence on the upscale mechanical properties of shale. This paper offers a microscopic perspective for comprehending CO2-water-shale interactions and contributes to the development of a cross-scale mechanical model for shale.

Keywords

Shale / Cross-scale modeling / Nanoindentation / CO2-water-rock interaction / Mechanical softening

Cite this article

Download citation ▾
Yiwei Liu, Quansheng Liu, Zhijun Wu, Shimin Liu, Yong Kang, Xuhai Tang. Cross-scale mechanical softening of Marcellus shale induced by CO2-water-rock interactions using nanoindentation and accurate grain-based modeling. Underground Space, 2024, 19(6): 26-46 DOI:10.1016/j.undsp.2024.02.001

登录浏览全文

4963

注册一个新账户 忘记密码

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

CRediT authorship contribution statement

Yiwei Liu: Writing - original draft, Methodology, Investigation. Quansheng Liu: Writing - review & editing, Funding acquisition. Zhijun Wu: Methodology. Shimin Liu: Conceptualization. Yong Kang: Investigation. Xuhai Tang: Writing - review & editing, Conceptualization.

Declaration of competing interest

Shimin Liu is an editorial board member for Underground Space and was not involved inthe editorial review or the decision to publish this article. All authors declare that there are no competing interests.

Acknowledgement

This work was supported by the China Postdoctoral Science Foundation (Grant Nos. 2023TQ0247 and 2023M732715), the Postdoctoral Fellowship Program (Grade B) of China Postdoctoral Science Foundation (Grant No. GZB20230544), and the National Natural Science Foundation of China (Grant Nos. U21A20153 and 41841018).

References

[1]

Anderson, R. L., Ratcliffe, I., Greenwell, H. C., Williams, P. A., Cliffe, S., & Coveney, P. V. (2010). Clay swelling—a challenge in the oilfield. Earth-Science Reviews, 98(3-4), 201-216.

[2]

Ao, X., Lu, Y. Y., Tang, J. R., Chen, Y. T., & Li, H. L. (2017). Investigation on the physics structure and chemical properties of the shale treated by supercritical CO2. Journal of CO 2 Utilization, 20, 274-281.

[3]

Barati, R., & Liang, J. T. (2014). A review of fracturing fluid systems used for hydraulic fracturing of oil and gas wells. Journal of Applied Polymer Science, 131(16), 40735.

[4]

Bass, J. D. (1995). Elasticity of Minerals, Glasses, and Melts. Mineral Physics and Crystallography: A Handbook of Physical Constants (pp.45-63). American Geophysical Union (AGU).

[5]

Black, J. R., & Haese, R. R. (2014). Chlorite dissolution rates under CO2 saturated conditions from 50 to 120 ℃ and 120 to 200 bar CO2. Geochimica et Cosmochimica Acta, 125, 225-240.

[6]

Chandler, M. R., Meredith, P. G., Brantut, N., & Crawford, B. R. (2016). Fracture toughness anisotropy in shale. Journal of Geophysical Research: Solid Earth, 121(3), 1706-1729.

[7]

Chen, H., Hu, Y., Kang, Y., Wang, X. C., Liu, F., & Liu, Y. W. (2021). Advantages of supercritical CO2 compound fracturing in shale on fracture geometry, complexity and width. Journal of Natural Gas Science and Engineering, 93, 104033.

[8]

Chen, H., Liu, X. L., Zhang, C., Tan, X. H., Yang, R., Yang, S. L., & Yang, J. (2022). Effects of miscible degree and pore scale on seepage characteristics of unconventional reservoirs fluids due to supercritical CO2 injection. Energy, 239, 122287.

[9]

Cheng, Q., Tang, J. R., Jia, Y. Z., Lu, Y. Y., Zhang, C., Liu, Y. L., Zhao, G. L., & Liu, Y. L. (2024). Shale softening induced by CO2 injection in the absence and presence of water: An experimental investigation based on nanoindentation. Energy, 288, 129653.

[10]

Christensen, N. I. (1996). Poisson’s ratio and crustal seismology. Journal of Geophysical Research: Solid Earth, 101(B2), 3139-3156.

[11]

Dong, T., He, S., Chen, M. F., Hou, Y. G., Guo, X. W., Wei, C., Han, Y. J., & Yang, R. (2019). Quartz types and origins in the paleozoic Wufeng-Longmaxi Formations, Eastern Sichuan Basin, China: Implications for porosity preservation in shale reservoirs. Marine and Petroleum Geology, 106, 62-73.

[12]

Du, J. T., Whittle, A. J., Hu, L. M., Divoux, T., & Meegoda, J. N. (2023). Coupling grid nanoindentation and surface chemical analysis to infer the mechanical properties of shale mineral phases. Engineering Geology, 325, 107304.

[13]

Edvardsen, L., Bhuiyan, M. H., Cerasi, P. R., & Bjørge, R. (2021). Fast evaluation of caprock strength sensitivity to different CO2 solutions using small sample techniques. Rock Mechanics and Rock Engineering, 54(12), 6123-6133.

[14]

Esterhuizen, G. S., Gearhart, D. F., Klemetti, T., Dougherty, H., & van Dyke, M. (2019). Analysis of gateroad stability at two longwall mines based on field monitoring results and numerical model analysis. International Journal of Mining Science and Technology, 29(1), 35-43.

[15]

Esterhuizen, G. S., Gearhart, D. F., & Tulu, I. B. (2018). Analysis of monitored ground support and rock mass response in a longwall tailgate entry. International Journal of Mining Science and Technology, 28(1), 43-51.

[16]

Feng, G., Kang, Y., Sun, Z. D., Wang, X. C., & Hu, Y. Q. (2019). Effects of supercritical CO2 adsorption on the mechanical characteristics and failure mechanisms of shale. Energy, 173, 870-882.

[17]

Ganneau, F. P., Constantinides, G., & Ulm, F. J. (2006). Dual-indentation technique for the assessment of strength properties of cohesivefrictional materials. International Journal of Solids and Structures, 43 (6), 1727-1745.

[18]

Gaus, I. (2010). Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks. International Journal of Greenhouse Gas Control, 4(1), 73-89.

[19]

Goodman, A., Kutchko, B., Sanguinito, S., Natesakhawat, S., Cvetic, P., Haljasmaa, I., Spaulding, R., Crandall, D., Moore, J., & Burrows, L. C. (2021). Reactivity of CO2 with Utica, Marcellus, Barnett, and Eagle Ford Shales and Impact on Permeability. Energy & Fuels, 35(19), 15894-15917.

[20]

Graham, S. P., Rouainia, M., Aplin, A. C., Cubillas, P., Fender, T. D., & Armitage, P. J. (2021). Geomechanical characterisation of organic-rich calcareous shale using AFM and nanoindentation. Rock Mechanics and Rock Engineering, 54(1), 303-320.

[21]

Gupta, N., & Verma, A. (2023). Supercritical carbon dioxide utilization for hydraulic fracturing of shale reservoir, and geo-storage: A review. Energy & Fuels, 37(19), 14604-14621.

[22]

Harvey, P. J., Rouillon, M., Dong, C., Ettler, V., Handley, H. K., Taylor, M. P., Tyson, E., Tennant, P., Telfer, V., & Trinh, R. (2017). Geochemical sources, forms and phases of soil contamination in an industrial city. Science of the Total Environment, 584-585, 505-514.

[23]

He, J. M., & Afolagboye, L. O. (2018). Influence of layer orientation and interlayer bonding force on the mechanical behavior of shale under Brazilian test conditions. Acta Mechanica Sinica, 34(2), 349-358.

[24]

Heng, S., Li, X. Z., Liu, X., & Chen, Y. (2020). Experimental study on the mechanical properties of bedding planes in shale. Journal of Natural Gas Science and Engineering, 76(3), 103161.

[25]

Hrstka, T., Gottlieb, P., Ská la, R., Breiter, K., & Motl, D. (2018). Automated mineralogy and petrology-applications of TESCAN Integrated Mineral Analyzer (TIMA). Journal of Geosciences, 63(1), 47-63.

[26]

Jackson, R. E., Gorody, A. W., Mayer, B., Roy, J. W., Ryan, M. C., & Van Stempvoort, D. R. (2013). Groundwater protection and unconventional gas extraction: The critical need for field-based hydrogeological research. Groundwater, 51(4), 488-510.

[27]

Kalam, S., Afagwu, C., Al Jaberi, J., Siddig, O. M., Tariq, Z., Mahmoud, M., & Abdulraheem, A. (2021). A review on non-aqueous fracturing techniques in unconventional reservoirs. Journal of Natural Gas Science and Engineering, 95, 104223.

[28]

Kutchko, B., Sanguinito, S., Natesakhawat, S., Cvetic, P., Culp, J. T., & Goodman, A. (2020). Quantifying pore scale and matrix interactions of SCCO2 with the Marcellus shale. Fuel, 266(5), 116928.

[29]

Li, C. X., Ostadhassan, M., Guo, S. L., Gentzis, T., & Kong, L. (2018). Application of PeakForce tapping mode of atomic force microscope to characterize nanomechanical properties of organic matter of the Bakken Shale. Fuel, 233, 894-910.

[30]

Li, C. X., Wang, D. M., & Kong, L. Y. (2021). Mechanical response of the Middle Bakken rocks under triaxial compressive test and nanoindentation. International Journal of Rock Mechanics and Mining Sciences, 139, 104660.

[31]

Li, N., Jin, Z. J., Wang, H. B., Zou, Y. S., Zhang, S. C., Li, F. X., Zhou, T., & Jiang, M. Q. (2023). Investigation into shale softening induced by water/CO2-rock interaction. International Journal of Rock Mechanics and Mining Sciences, 161, 105299.

[32]

Liu, J., Yao, Y. B., Liu, D. M., & Elsworth, D. (2017). Experimental evaluation of CO2 enhanced recovery of adsorbed-gas from shale. International Journal of Coal Geology, 179, 211-218.

[33]

Liu, K. Q., Jin, Z. J., Zeng, L. B., Ozotta, O., Gentzis, T., & Ostadhassan, M. (2023). Alteration in the mechanical properties of the Bakken during exposure to supercritical CO2. Energy, 262, 125545.

[34]

Liu, K. Q., & Ostadhassan, M. (2017). Quantification of the microstructures of Bakken shale reservoirs using multi-fractal and lacunarity analysis. Journal of Natural Gas Science and Engineering, 39, 62-71.

[35]

Liu, K. Q., Ostadhassan, M., & Bubach, B. (2016). Applications of nanoindentation methods to estimate nanoscale mechanical properties of shale reservoir rocks. Journal of Natural Gas Science and Engineering, 35, 1310-1319.

[36]

Liu, K. Q., Ostadhassan, M., Bubach, B., Ling, K. G., Tokhmechi, B., & Robert, D. (2018). Statistical grid nanoindentation analysis to estimate macro-mechanical properties of the Bakken Shale. Journal of Natural Gas Science and Engineering, 53, 181-190.

[37]

Liu, Y. W., Liu, A., Liu, S. M., & Kang, Y. (2022a). Nano-scale mechanical properties of constituent minerals in shales investigated by combined nanoindentation statistical analyses and SEM-EDS-XRD techniques. International Journal of Rock Mechanics and Mining Sciences, 159, 105187.

[38]

Liu, Y. W., Liu, S. M., & Kang, Y. (2021a). Nano-scale mechanical characterization of shale using nanoindentation: an experiment work. In Proceedings of the 55th US Rock Mechanics/Geomechanics Symposium, Houston, United States.

[39]

Liu, Y. W., Liu, S. M., & Kang, Y. (2021b). Probing Nanomechanical Properties of a Shale with Nanoindentation: Heterogeneity and the Effect of Water-Shale Interactions. Energy & Fuels, 35(15), 11930-11946.

[40]

Liu, Y. W., Liu, S. M., Liu, A., & Kang, Y. (2022b). Determination of mechanical property evolutions of shales by nanoindentation and highpressure CO2 and water treatments: A nano-to-micron scale experimental study. Rock Mechanics and Rock Engineering, 55(12), 7629-7655.

[41]

Lu, Y. Y., Ao, X., Tang, J. R., Jia, Y. Z., Zhang, X. W., & Chen, Y. T. (2016). Swelling of shale in supercritical carbon dioxide. Journal of Natural Gas Science and Engineering, 30, 268-275.

[42]

Lu, Y. Y., Chen, X. Y., Tang, J. R., Li, H. L., Zhou, L., Han, S. B., Ge, Z. L., Xia, B. W., Shen, H. J., & Zhang, J. (2019). Relationship between pore structure and mechanical properties of shale on supercritical carbon dioxide saturation. Energy, 172, 270-285.

[43]

Lu, Y. H., Li, Y. C., Wu, Y. K., Luo, S. M., Jin, Y., & Zhang, G. P. (2020). Characterization of shale softening by large volume-based nanoindentation. Rock Mechanics and Rock Engineering, 53(3), 1393-1409.

[44]

Lyu, Q., Long, X. P., Ranjith, P. G., Tan, J. Q., Kang, Y., & Wang, Z. H. (2018). Experimental investigation on the mechanical properties of a low-clay shale with different adsorption times in sub-/super-critical CO2. Energy, 147, 1288-1298.

[45]

Lyu, Q., Ranjith, P. G., Long, X. P., & Ji, B. (2016). Experimental investigation of mechanical properties of black shales after CO2-waterrock interaction. Materials, 9(8), 663.

[46]

Lyu, Q., Tan, J. Q., Li, L., Ju, Y. W., Busch, A., Wood, D. A., Ranjith, P. G., Middleton, R., Shu, B., Hu, C. E., Wang, Z. H., & Hu, R. N. (2021). The role of supercritical carbon dioxide for recovery of shale gas and sequestration in gas shale reservoirs. Energy & Environmental Science, 14(8), 4203-4227.

[47]

Ma, Z. Y., Pathegama Gamage, R., & Zhang, C. P. (2020). Application of nanoindentation technology in rocks: A review. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 6(4), 60.

[48]

Middleton, R. S., Carey, J. W., Currier, R. P., Hyman, J. D., Kang, Q. J., Karra, S., Jiménez-Martıónez, J., Porter, M. L., & Viswanathan, H. S. (2015). Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2. Applied Energy, 147, 500-509.

[49]

Middleton, R., Viswanathan, H., Currier, R., & Gupta, R. (2014). CO2 as a fracturing fluid: Potential for commercial-scale shale gas production and CO2 sequestration. Energy Procedia, 63, 7780-7784.

[50]

Oelkers, E. H., Schott, J., Gauthier, J. M., & Herrero-Roncal, T. (2008). An experimental study of the dissolution mechanism and rates of muscovite. Geochimica et Cosmochimica Acta, 72(20), 4948-4961.

[51]

Pan, Y., Hui, D., Luo, P. Y., Zhang, Y., Zhang, L., & Sun, L. (2018). Influences of subcritical and supercritical CO2 treatment on the pore structure characteristics of marine and terrestrial shales. Journal of CO2 Utilization, 28, 152-167.

[52]

Pant, R., Hu, L. M., & Zhang, G. P. (2013). Anisotropy of mica probed by nanoindentation. In Multiphysical Testing of Soils and Shales (pp.239-245).

[53]

Springer. Pharr, G. M., & Oliver, W. C. (1992). Measurement of Thin Film Mechanical Properties Using Nanoindentation. MRS Bulletin, 17(7), 28-33.

[54]

Roychaudhuri, B., Tsotsis, T. T., & Jessen, K. (2019). Shale-fluid interactions during forced lmbibition and flow-back. Journal of Petroleum Science and Engineering, 172, 443-453.

[55]

Rubin, E. S., Davison, J. E., & Herzog, H. J. (2015). The cost of CO2 capture and storage. International Journal of Greenhouse Gas Control, 40, 378-400.

[56]

Sang, G. J., & Liu, S. M. (2021). Carbonate Caprock-Brine-Carbon Dioxide interaction: Alteration of hydromechanical properties and implications on carbon dioxide leakage. SPE Journal, 26(5), 2780-2792.

[57]

Sang, G. J., Liu, S. M., & Elsworth, D. (2019). Water vapor sorption properties of Illinois shales under dynamic water vapor conditions: Experimentation and modeling. Water Resources Research, 55(8), 7212-7228.

[58]

Sang, G. J., Liu, S. M., Elsworth, D., Zhang, R., & Bleuel, M. (2020). Pore-scale water vapor condensation behaviors in shales: An experimental study. Transport in Porous Media, 135(3), 713-734.

[59]

Sanguinito, S., Goodman, A., Tkach, M., Kutchko, B., Culp, J., Natesakhawat, S., Fazio, J., Fukai, I., & Crandall, D. (2018). Quantifying dry supercritical CO2-induced changes of the Utica Shale. Fuel, 226, 54-64.

[60]

Sayers, C. M., & den Boer, L. D. (2018). The Elastic Properties of Clay in Shales. Journal of Geophysical Research: Solid Earth, 123(7), 5965-5974.

[61]

Schieber, J. (2010). Common themes in the formation and preservation of intrinsic porosity in shales and mudstones - Illustrated with examples across the phanerozoic. In Proceedings of the SPE Unconventional Gas Conference (pp.428-437).

[62]

Tan, J. Q., Xie, B. B., Lyu, Q., Chen, S. F., & Ranjith, P. G. (2022). Mechanical properties of shale after CO2 and CO2-based fluids imbibition: Experimental and modeling study. Rock Mechanics and Rock Engineering, 55(3), 1197-1212.

[63]

Tang, X. H., Zhang, Y. H., Xu, J. J., Rutqvist, J., Hu, M. S., Wang, Z. Z., & Liu, Q. S. (2022). Determining Young’s modulus of granite using accurate grain-based modeling with microscale rock mechanical experiments. International Journal of Rock Mechanics and Mining Sciences, 157, 105167.

[64]

Tian, S. C., Zhang, P. P., Sheng, M., Wang, T. Y., Tang, J., & Xiao, L. Z. (2020). Modification of Microscopic Properties of Shale by Carbonic Acid Treatment: Implications for CO2-Based Fracturing in Shale Formations. Energy & Fuels, 34(3), 3458-3466.

[65]

Tulu, I. B., Esterhuizen, G. S., Gearhart, D., Klemetti, T. M., Mohamed, K. M., & Su, D. W. H. (2018). Analysis of global and local stress changes in a longwall gateroad. International Journal of Mining Science and Technology, 28(1), 127-135.

[66]

Wang, J. F., Liu, Y. K., Yang, C., Zheng, Y. C., Jiang, W. M., Menegon, L., Renard, F., Peng, P. A., & Xiong, Y. Q. (2023). Upscaling the creep behavior of clay-rich and quartz-rich shales from nanoindentation measurements : Application to the Wufeng-Longmaxi shale, China. International Journal of Rock Mechanics and Mining Sciences, 171, 105580.

[67]

Wang, Q., & Li, R. R. (2017). Research status of shale gas: A review. Renewable and Sustainable Energy Reviews, 74, 715-720.

[68]

Wu, W. W., & Sharma, M. M. (2017). Acid fracturing in shales: Effect of dilute acid on properties and pore structure of shale. SPE Production & Operations, 32(1), 51-63.

[69]

Wu, W., Zoback, M. D., & Kohli, A. H. (2017). The impacts of effective stress and CO2 sorption on the matrix permeability of shale reservoir rocks. Fuel, 203(15), 179-186.

[70]

Xu, H., Zhou, W., Hu, Q. H., Yi, T., Ke, J., Zhao, A. K., Lei, Z. H., & Yu, Y. (2021). Quartz types, silica sources and their implications for porosity evolution and rock mechanics in the Paleozoic Longmaxi Formation shale, Sichuan Basin. Marine and Petroleum Geology, 128, 105036.

[71]

Xu, J. J., Tang, X. H., Wang, Z. Z., Feng, Y. F., & Bian, K. (2020). Investigating the softening of weak interlayers during landslides using nanoindentation experiments and simulations. Engineering Geology, 277, 105801.

[72]

Yang, B. X., Wang, H. Z., Li, G. S., Wang, B., Chang, L., Tian, G. H., Zhao, C. M., & Zheng, Y. (2022). Fundamental study and utilization on supercritical CO2 fracturing developing unconventional resources: Current status, challenge and future perspectives. Petroleum Science, 19, 2757-2780.

[73]

Yang, C., Xiong, Y. Q., Wang, J. F., Li, Y., & Jiang, W. M. (2020). Mechanical characterization of shale matrix minerals using phasepositioned nanoindentation and nano-dynamic mechanical analysis. International Journal of Coal Geology, 229, 103571.

[74]

Yin, H., Zhou, J. P., Jiang, Y. D., Xian, X. F., & Liu, Q. L. (2016). Physical and structural changes in shale associated with supercritical CO 2 exposure. Fuel, 184, 289-303.

[75]

Yin, H., Zhou, J. P., Xian, X. F., Jiang, Y. D., Lu, Z. H., Tan, J. Q., & Liu, G. J. (2017). Experimental study of the effects of sub- and supercritical CO2 saturation on the mechanical characteristics of organicrich shales. Energy, 132, 84-95.

[76]

Zhang, F., Guo, H. Q., Hu, D. W., & Shao, J. F. (2018). Characterization of the mechanical properties of a claystone by nano-indentation and homogenization. Acta Geotechnica, 13(6), 1395-1404.

[77]

Zhang, G. L., Ranjith, P. G., Perera, M. S. A., Lu, Y. Y., & Choi, X. (2019). Quantitative analysis of micro-structural changes in a bituminous coal after quantitative analysis of micro-structural changes in a bituminous coal after exposure to supercritical CO2 and water. Natural Resources Research, 28(4), 1639-1660.

[78]

Zhang, R., Liu, S. M., He, L. L., Blach, T. P., & Wang, Y. (2020). Characterizing anisotropic pore structure and its impact on gas storage and transport in coalbed methane and shale gas reservoirs. Energy & Fuels, 34(3), 3161-3172.

[79]

Zhang, R. H., Wu, J. F., Zhao, Y. L., He, X., & Wang, R. H. (2021). Numerical simulation of the feasibility of supercritical CO2 storage and enhanced shale gas recovery considering complex fracture networks. Journal of Petroleum Science and Engineering, 204, 108671.

[80]

Zhou, J. P., Tian, S. F., Zhou, L., Xian, X. F., Zhang, C. P., Yang, K., Dong, Z. Q., & Lu, Z. H. (2021a). Effect of sub-/super-critical CO2 and brine exposure on the mechanical and acoustic emission characteristics of shale. Journal of Natural Gas Science and Engineering, 90, 103921.

[81]

Zhou, J. P., Yang, K., Tian, S. F., Zhou, L., Xian, X. F., Jiang, Y. D., Liu, M. H., & Cai, J. C. (2020). CO2-water-shale interaction induced shale microstructural alteration. Fuel, 263, 116642.

[82]

Zhou, J. P., Yang, K., Zhou, L., Jiang, Y. D., Xian, X. F., Zhang, C. P., Tian, S. F., Fan, M. L., & Lu, Z. H. (2021b). Microstructure and mechanical properties alterations in shale treated via CO2/CO2-water exposure. Journal of Petroleum Science and Engineering, 196, 108088.

[83]

Zou, Y. S., Li, S. H., Ma, X. F., Zhang, S. C., Li, N., & Chen, M. (2018). Effects of CO2-brine-rock interaction on porosity/permeability and mechanical properties during supercritical-CO2 fracturing in shale reservoirs. Journal of Natural Gas Science and Engineering, 49, 157-168.

PDF (6080KB)

44

Accesses

0

Citation

Detail

Sections
Recommended

/