New method to identify optimal discontinuity set number of rock tunnel excavation face orientation based on Fisher mixed evaluation

Keshen Zhang , Wei Wu , Min Zhang , Yongsheng Liu , Yong Huang , Baolin Chen

Underground Space ›› 2024, Vol. 17 ›› Issue (4) : 300 -319.

PDF (9479KB)
Underground Space ›› 2024, Vol. 17 ›› Issue (4) :300 -319. DOI: 10.1016/j.undsp.2023.11.018
Research article
research-article

New method to identify optimal discontinuity set number of rock tunnel excavation face orientation based on Fisher mixed evaluation

Author information +
History +
PDF (9479KB)

Abstract

Discontinuity is critical for strength, deformability, and permeability of rock mass. Set information is one of the essential discontinuity characteristics and is usually accessed by orientation grouping. Traditional methods of identifying optimal discontinuity set numbers are usually achieved by clustering validity indexes, which mainly relies on the aggregation and dispersion of clusters and leads to the inaccuracy and instability of evaluation. This paper proposes a new method of Fisher mixed evaluation (FME) to identify optimal group numbers of rock mass discontinuity orientation. In FME, orientation distribution is regarded as the superposition of Fisher mixed distributions. Optimal grouping results are identified by considering the fitting accuracy of Fisher mixed distributions, the probability monopoly and central location significance of independent Fisher centers. A Halley-Expectation-Maximization (EM) algorithm is derived to achieve an automatic fitting of Fisher mixed distribution. Three real rock discontinuity models combined with three orientation clustering algorithms are adopted for discontinuity grouping. Four clustering validity indexes are used to automatically identify optimal group numbers for comparison. The results show that FME is more accurate and robust than the other clustering validity indexes in optimal discontinuity group number identification for different rock models and orientation clustering algorithms.

Keywords

Rock mass discontinuity / Orientation grouping / Fisher mixed distribution / 3D point cloud / Stereo photogrammetry

Cite this article

Download citation ▾
Keshen Zhang, Wei Wu, Min Zhang, Yongsheng Liu, Yong Huang, Baolin Chen. New method to identify optimal discontinuity set number of rock tunnel excavation face orientation based on Fisher mixed evaluation. Underground Space, 2024, 17(4): 300-319 DOI:10.1016/j.undsp.2023.11.018

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Keshen Zhang: Conceptualization, Writing - original draft, Visualization, Methodology, Validation. Wei Wu: Writing - review & editing, Supervision. Min Zhang: Funding acquisition, Data curation, Investigation. Yongsheng Liu: Funding acquisition, Resource, Investigation. Yong Huang: Funding acquisition, Resource, Investigation. Baolin Chen: Funding acquisition, Resource, Investigation.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant Nos. 42272338, 41827807 and 41902275); Shanghai Sailing Program (Grant No. 18YF1424400); Joint Fund for Basic Research of High-speed Railway of National Natural Science Foundation of China, China Railway Corporation (U1934212); China State Railway Group Co., Ltd. (P2019G038); Department of Transportation of Zhejiang Province (202213); China Railway First Survey and Design Institute Group Co., Ltd. (19-21-1, 2022KY53ZD(CYH)-10); China Railway Tunnel Group Co., Ltd. (CZ02-02-08); PowChina Hebei Transportation Highway Investment Development Co., Ltd. (TH-201908); Sichuan Railway Investment Group Co., Ltd. (SRIG2019GG0004); The Science and Technology major program of Guizhou Province [2018]3011.

References

[1]

Alberto, V. C., Guillermo, G. C., Pedro, M. J., David, R. J., & Alberto, R. C. (2022). Workflow for capturing information and characterizing difficult-to-access geological outcrops using unmanned aerial vehiclebased digital photogrammetric data. Journal of Industrial Information Integration, 26.

[2]

Assali, P., Grussenmeyer, P., Villemin, T., Pollet, N., & Viguier, F. (2014). Surveying and modeling of rock discontinuities by terrestrial laser scanning and photogrammetry: Semi-automatic approaches for linear outcrop inspection. Journal of Structural Geology, 66, 102-114.

[3]

Barton, N. (1978). Suggested methods for the quantitative description of discontinuities in rock masses: International Society for Rock Mechanics. International Journal of Rock Mechanics and Mining Science Geomechanic Abstract, 15, 319-368.

[4]

Battulwar, R., Zare, N. M., Emami, E., & Sattarvand, J. (2021). A stateof- the-art review of automated extraction of rock mass discontinuity characteristics using three-dimensional surface models. Journal of Rock Mechanics and Geotechnical Engineering, 13(4), 920-936.

[5]

Burden, R. L., Faires, J. D., & Burden, A. M. (2015). Numerical Analysis. Cengage Learning.

[6]

Calinó ski, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics, 3(1), 1-27.Taylor & Francis.

[7]

Chen, J. Q., Zhu, H. H., & Li, X. J. (2016). Automatic extraction of discontinuity orientation from rock mass surface 3D point cloud. Computers and Geosciences, 95, 18-31.

[8]

Chen, J. Y., Huang, H. W., Zhou, M. L., & Chaiyasarn, K. (2021). Towards semi-automatic discontinuity characterization in rock tunnel faces using 3D point clouds. Engineering Geology, 291, 106232.

[9]

Cui, X. J., & Yan, E. C. (2020). A clustering algorithm based on differential evolution for the identification of rock discontinuity sets. International Journal of Rock Mechanics and Mining Sciences, 126, 104181.

[10]

Daghigh, H., Tannant, D. D., Daghigh, V., Lichti, D. D., & Lindenbergh, R. (2022). A critical review of discontinuity plane extraction from 3D point cloud data of rock mass surfaces. Computers and Geosciences, 169, 105241.Oxford: Pergamon-Elsevier Science Ltd.

[11]

David, L. D., & Bouldin, D. W. (1979). A Cluster Separation Measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1(2), 224-227.

[12]

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1), 1-38.

[13]

Dershowitz, W., Busse, R., Geier, J., & Uchida, M. (1996). A stochastic approach for fracture set definition. Presented at the 2nd North American Rock Mechanics Symposium, Montreal, Quebec, Canada, June 1996.

[14]

Dunning, S. A., Massey, C. I., & Rosser, N. J. (2009). Structural and geomorphological features of landslides in the Bhutan Himalaya derived from terrestrial laser scanning. Geomorphology, Dating, Triggering, Modelling, and Hazard Assessment of Large Landslides, 103(1), 17-29.

[15]

Esmaeilzadeh, A., & Shahriar, K. (2019). Optimized fuzzy cmeans - fuzzy covariance - fuzzy maximum likelihood estimation clustering method based on deferential evolutionary optimization algorithm for identification of rock mass discontinuities sets. Periodica Polytechnica Civil Engineering, 63(2), 674-686.

[16]

Fisher, N. I., Lewis, T., & Embleton, B. J. J. (1993). Statistical analysis of spherical data. Cambridge University Press.

[17]

Fisher, R. (1953). Dispersion on a Sphere. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 217(1130), 295-305.

[18]

Friedel, M., Souza Filho, O., Iwashita, F., Silva, A., & Yoshinaga, S. (2012). Data-driven modeling for groundwater exploration in fractured crystalline terrain, northeast Brazil. Hydrogeology Journal, 20.

[19]

Gao, F., Chen, D. P., Zhou, K. P., Niu, W. J., & Liu, H. W. (2019). A fast clustering method for identifying rock discontinuity sets. Ksce Journal of Civil Engineering, 23(2), 556-566.

[20]

Ge, Y. F., Cao, B., & Tang, H. M. (2022). Rock discontinuities identification from 3D point clouds using artificial neural network. Rock Mechanics and Rock Engineering, 55(3), 1705-1720.

[21]

Hammah, R., & Curran, J. (1998). Fuzzy cluster algorithm for the automatic identification of joint sets. International Journal of Rock Mechanics and Mining Sciences, 35(7), 889-905.

[22]

Hammah, R., & Curran, J. (2000). Validity measures for the fuzzy cluster analysis of orientations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(12), 1467-1472.

[23]

Hou, Q. K., Wang, S. H., Yong, R., Xiu, Z. G., Han, W. S., & Zhang, Z. (2023). A method for clustering rock discontinuities with multiple properties based on an improved netting algorithm. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 9(1), 23.

[24]

Jimenez, R. (2008). Fuzzy spectral clustering for identification of rock discontinuity sets. Rock Mechanics and Rock Engineering, 41(6), 929-939.

[25]

Jimenez, R. R., & Sitar, N. (2006). A spectral method for clustering of rock discontinuity sets. International Journal of Rock Mechanics and Mining Sciences, 43(7), 1052-1061.

[26]

John, C. D. (2002). Statistics and data analysis in geology (2nd edition). Singapore: John Wiley and Sons.

[27]

Jung, Y. B., & Sunwoo, C. (2005). Automatic discontinuity set identification using genetic algorithm based clustering technique. ISRM International Symposium - EUROCK 2005, OnePetro. Opgehaal Maart 19, 2023, van https://onepetro.org/ISRMEUROCK/proceedings-abstract/EUROCK05/All-EUROCK05/38235.

[28]

Kemeny, J., & Post, R. (2003). Estimating three-dimensional rock discontinuity orientation from digital images of fracture traces. Computers and Geosciences, 29(1), 65-77.

[29]

Khaloo, A., & Lattanzi, D. (2017). Robust normal estimation and region growing segmentation of infrastructure 3D point cloud models. Advanced Engineering Informatics, 34, 1-16.

[30]

Klose, C., Seo, S., & Obermayer, K. (2005). A new clustering approach for partitioning directional data. International Journal of Rock Mechanics and Mining Sciences, 42(2), 315-321.

[31]

Knapen, B. V., & Slob, S. (2006). Identification and characterisation of rock mass discontinuity sets using 3D laser scanning, (438)

[32]

Kong, D. H., Wu, F. Q., & Saroglou, C. (2020). Automatic identification and characterization of discontinuities in rock masses from 3D point clouds. Engineering Geology, 265, 105442.

[33]

Krishna, K., & Murty, M. N. (1999). Genetic K-means algorithm. IEEE Transactions on Systems Man and Cybernetics Part b-Cybernetics, 29(3), 433-439.

[34]

Kulatilake, P., Fiedler, R., & Panda, B. (1997). Box fractal dimension as a measure of statistical homogeneity of jointed rock masses. Engineering Geology, 48(3-4), 217-229.

[35]

Kulatilake, P. H. S. W. (1985). Fitting fisher distributions to discontinuity orientation data. Journal of Geological Education, 33(5), 266-269.

[36]

Routledge. Lato, M., Kemeny, J., Harrap, R. M., & Bevan, G. (2013). Rock bench: Establishing a common repository and standards for assessing rockmass characteristics using LiDAR and photogrammetry. Computers and Geosciences, 50, 106-114.

[37]

Lato, M. J., Diederichs, M., Hutchinson, D., & Harrap, R. (2012). Evaluating roadside rockmasses for rockfall hazards using LiDAR data: Optimizing data collection and processing protocols. Natural Hazards, 60(3), 831-864.

[38]

Lei, Q. H., Latham, J. P., & Tsang, C. F. (2017). The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks. Computers and Geotechnics, 85, 151-176.

[39]

Li, X. J., Chen, J. Q., & Zhu, H. H. (2016). A new method for automated discontinuity trace mapping on rock mass 3D surface model. Computers and Geosciences, 89, 118-131.

[40]

Li, X. J., Chen, Z. Y., Chen, J. Q., & Zhu, H. H. (2019). Automatic characterization of rock mass discontinuities using 3D point clouds. Engineering Geology, 259, 105131.

[41]

Liu, T. X., Jiang, A. N., Deng, J. H., Zheng, J., & Zhang, Z. H. (2022). A new multiple-factor clustering method considering both box fractal dimension and orientation of joints. Journal of Rock Mechanics and Geotechnical Engineering, 14(2), 366-376.

[42]

Liu, Y. Q., Chen, J. P., Tan, C., Zhan, J. W., Song, S. Y., Xu, W. L., Yan, J. H., Zhang, Y. S., Zhao, M. Y., & Wang, Q. (2022). Intelligent scanning for optimal rock discontinuity sets considering multiple parameters based on manifold learning combined with UAV photogrammetry. Engineering Geology, 309.

[43]

Mahtab, M. A., & Yegulalp, T. M. (1983). Rejection criterion for definition of clusters in orientation data. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 20(3), A98.

[44]

Marcotte, D., & Henry, E. (2002). Automatic joint set clustering using a mixture of bivariate normal distributions. International Journal of Rock Mechanics and Mining Sciences, 39(3), 323-334.

[45]

McKean, S., Priest, J. A., & Eaton, D. W. (2018). identifying discrete fracture networks by clustering with microseismic data.

[46]

Pearson, K. L. (1901). On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science., 2(11), 559-572.

[47]

Priest, S. D. (1993). Discontinuity analysis for rock engineering. Springer Science & Business Media.

[48]

Riquelme, A. J., Abellán, A., Tomaás, R., & Jaboyedoff, M. (2014). A new approach for semi-automatic rock mass joints recognition from 3D point clouds. Computers and Geosciences, 68, 38-52.

[49]

Rodriguez, A., & Laio, A. (2014). Clustering by fast search and find of density peaks. Science, 344(6191), 1492-1496.

[50]

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53-65.

[51]

Ruiz, P. S., Marquardt, C., Beriain, E., & Lambert, F. (2021). Permafrost evolution in a mountain catchment near Santiago de Chile. Journal of South American Earth Sciences, 109, 103293.

[52]

Scavo, T. R., & Thoo, J. B. (1995). On the geometry of Halley’s method. The American Mathematical Monthly, 102(5), 417-426.

[53]

Taylor, & Francis. Schubert, E., Sander, J., Ester, M., Kriegel, H., & Xu, X. (2017). DBSCAN revisited, revisited: why and how you should (Still) use DBSCAN. ACM Transactions on Database Systems, 42(3).

[54]

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461-464.

[55]

Institute of Mathematical Statistics. Shanley, R. J., & Mahtab, M. A. (1976). Delineation and analysis of clusters in orientation data. Journal of the International Association for Mathematical Geology, 8(1), 9-23.

[56]

Singh, S. K., Banerjee, B. P., Lato, M. J., Sammut, C., & Raval, S. (2022). Automated rock mass discontinuity set characterisation using amplitude and phase decomposition of point cloud data. International Journal of Rock Mechanics and Mining Sciences, 152, 105072.

[57]

Sirat, M., & Talbot, C. J. (2001). Application of artificial neural networks to fracture analysis at the Aspo HRL, Sweden: Fracture sets classification. International Journal of Rock Mechanics and Mining Sciences, 38(5), 621-639.

[58]

Slob, S. (2010). Automated rock mass characterisation using 3-D terrestrial laser scanning. ITC dissertation (1st ed.). [Enschede, Netherlands] : Delft: ITC ; TU Delft.

[59]

Song, S. Y., Wang, Q., Chen, J. P., Li, Y. Y., Zhang, W., & Ruan, Y. K. (2017). Fuzzy C-means clustering analysis based on quantum particle swarm optimization algorithm for the grouping of rock discontinuity sets. Ksce Journal of Civil Engineering, 21(4), 1115-1122.

[60]

The MathWorks, Inc (2022). MATLAB version: 9.12.0 (R2022a). https://www.mathworks.com.

[61]

Vöge, M., Lato, M. J., & Diederichs, M. S. (2013). Automated rockmass discontinuity mapping from 3-dimensional surface data. Engineering Geology, 164, 155-162.

[62]

Wang, Y. T., Feng, H. Y., Delorme, F. E., & Engin, S. (2013). An adaptive normal estimation method for scanned point clouds with sharp features. Computer-Aided Design, 45(11), 1333-1348.

[63]

Wu, W., Zhang, K. S., & Zhu, H. H. (2020). A fast automatic extraction method for rock mass discontinuity orientation using fast k-means++ and fast silhouette based on 3D point cloud. IOP Conference Series: Earth and Environmental Science, 570(5), 052075.

[64]

Wu, X., Wang, F. Y., Wang, M. X., Zhang, X. Q., Wang, Q., & Zhang, S. (2021). A new method for automatic extraction and analysis of discontinuities based on TIN on rock mass surfaces. Remote Sensing, 13(15), 2894.

[65]

Xie, X. L., & Beni, G. (1991). A validity measure for fuzzy clustering. IEEE TransactionsonPatternAnalysisandMachineIntelligence, 13(8),841-847.

[66]

Xu, L., & Jordan, M. I. (1996). On convergence properties of the EM algorithm for gaussian mixtures. Neural Computation, 8(1), 129-151.

[67]

Xu, W. T., Zhang, Y. S., Li, X. Z., Wang, X. Y., Ma, F., Zhao, J. B., & Zhang, Y. (2020). Extraction and statistics of discontinuity orientation and trace length from typical fractured rock mass: A case study of the Xinchang underground research laboratory site, China. Engineering Geology, 269, 105553.

[68]

Yamaji, A., & Sato, K. (2011). Clustering of fracture orientations using a mixed Bingham distribution and its application to paleostress analysis from dike or vein orientations. Journal of Structural Geology, 33(7), 1148-1157.

[69]

Yan, J. H., Chen, J. P., Zhan, J. W., Song, S. Y., Zhang, Y. S., Zhao, M. Y., Liu, Y. Q., & Xu, W. L. (2022). Automatic identification of rock discontinuity sets using modified agglomerative nesting algorithm. Bulletin of Engineering Geology and the Environment, 81(6).

[70]

Zhang, L. Y., & Einstein, H. H. (1998). Estimating the mean trace length of rock discontinuities. Rock Mechanics and Rock Engineering, 31(4), 217-235.

PDF (9479KB)

44

Accesses

0

Citation

Detail

Sections
Recommended

/