New framework of low-carbon city development of China: Underground space based integrated energy systems

Boyu Qin , Hengyi Li , Zhaojian Wang , Yuan Jiang , Dechun Lu , Xiuli Du , Qihu Qian

Underground Space ›› 2024, Vol. 14 ›› Issue (1) : 300 -318.

PDF (2158KB)
Underground Space ›› 2024, Vol. 14 ›› Issue (1) : 300 -318. DOI: 10.1016/j.undsp.2023.06.008

New framework of low-carbon city development of China: Underground space based integrated energy systems

Author information +
History +
PDF (2158KB)

Abstract

Cities play a vital role in social development, which contribute to more than 70% of global carbon emission. Low-carbon city construction and decarbonization of the energy sector are the critical strategies to cope with the increasingly serious climate change problems, and low-carbon technologies have attracted extensive attention. However, the potential of such technologies to reduce carbon emissions is constrained by various factors, such as space, operational environment, and safety concerns. As an essential territorial natural resource, underground space can provide large-scale and stable space support for existing low-carbon technologies. Integrating underground space and low-carbon technologies could be a promising approach towards carbon neutrality, and hence, warrants further exploration. First, a comprehensive review of the existing low-carbon technologies including the technical bottlenecks is presented. Second, the features of underground space and its low carbon potential are summarized. Moreover, a framework for the underground space based integrated energy system is proposed, including system configuration, operational mechanisms, and the resulting benefits. Finally, the research prospect and key challenges required to be settled are highlighted.

Keywords

Underground space / Low-carbon city / Integrated energy system / Carbon neutrality

Cite this article

Download citation ▾
Boyu Qin, Hengyi Li, Zhaojian Wang, Yuan Jiang, Dechun Lu, Xiuli Du, Qihu Qian. New framework of low-carbon city development of China: Underground space based integrated energy systems. Underground Space, 2024, 14(1): 300-318 DOI:10.1016/j.undsp.2023.06.008

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdin Z., Zafaranloo A., Rafiee A., Me´rida W., Lipin´ski W., & Khalilpour K. R. (2020). Hydrogen as an energy vector. Renewable and Sustainable Energy Reviews, 120, 109620.

[2]

Admiraal H., & Cornaro A. (2016). Why underground space should be included in urban planning policy-and how this will enhance an urban underground future. Tunnelling and Underground Space Technology, 55, 214-220.

[3]

Alassi A., Banales S., Ellabban O., Adam G., & MacIver C. (2019). Hvdc transmission: Technology review, market trends and future outlook. Renewable and Sustainable Energy Reviews, 112, 530-554.

[4]

Alva G., Lin Y., & Fang G. (2018). An overview of thermal energy storage systems. Energy, 144, 341-378.

[5]

Arteconi A., Hewitt N. J., & Polonara F. (2012). State of the art of thermal storage for demand-side management. Applied Energy, 93, 371-389.

[6]

Bazdar E., Sameti M., Nasiri F., & Haghighat F. (2022). Compressed air energy storage in integrated energy systems: A review. Renewable and Sustainable Energy Reviews, 167, 112701.

[7]

Bicer Y., & Dincer I. (2015). Energy and exergy analyses of an integrated underground coal gasification with sofc fuel cell system for multigen- eration including hydrogen production. International Journal of Hydrogen Energy, 40, 13323-13337.

[8]

Bernards R., Morren J., & Slootweg H. (2018). Development and implementation of statistical models for estimating diversified adop- tion of energy transition technologies. IEEE Transactions on Sustain- able Energy, 9(4), 1540-1554.

[9]

BP plc (2022). Statistical review of world energy.

[10]

Breyer C., Koskinen O., & Blechinger P. (2015). Profitable climate change mitigation: The case of greenhouse gas emission reduction benefits enabled by solar photovoltaic systems. Renewable and Sustainable Energy Reviews, 49, 610-628.

[11]

Broere W. (2016). Urban underground space: Solving the problems of today’s cities. Tunnelling and Underground Space Technology, 55, 245-248.

[12]

Budt M., Wolf D., Span R., & Yan J. (2016). A review on compressed air energy storage: Basic principles, past milestones and recent developments. Applied Energy, 170, 250-268.

[13]

Carden P. O., & Paterson L. (1979). Physical, chemical and energy aspects of underground hydrogen storage. International Journal of Hydrogen Energy, 4, 559-569.

[14]

Chen L., Zheng T., Mei S., Xue X., Liu B., & Lu Q. (2016). Review and prospect of compressed air energy storage system. Journal of Modern Power Systems and Clean Energy, 4(4), 529-541.

[15]

Chen Z.-L., Chen J.-Y., Liu H., & Zhang Z.-F. (2018). Present status and development trends of underground space in chinese cities: Evaluation and analysis. Tunnelling and Underground Space Technology, 71, 253-270.

[16]

Cui J., Broere W., & Lin D. (2021). Underground space utilisation for urban renewal. Tunnelling and Underground Space Technology, 108, 103726.

[17]

Delmastro C., Lavagno E., & Schranz L. (2016). Energy and underground. Tunnelling and Underground Space Technology, 55, 96-102.

[18]

Dincer I., & Acar C. (2015). Review and evaluation of hydrogen production methods for better sustainability. International Journal of Hydrogen Energy, 40, 11094-11111.

[19]

Chinese Society for Rock Mechanics & Engineering (2021). 2021 blue book of urban underground space development in China in Chinese).

[20]

DOE Global Energy Storage Database (2022). Cumulative sum of energy storage installation by year.

[21]

Dong X., Wu Y., Chen X., Li H., Cao B., Zhang X., Yan X., Li Z., Long Y., & Li X. (2021). Effect of thermal, acoustic, and lighting environment in underground space on human comfort and work efficiency: A review. Science of The Total Environment, 786, 147537.

[22]

Faisal M., Hannan M. A., Ker P. J., Hussain A., Mansor M. B., & Blaabjerg F. (2018). Review of energy storage system technologies in microgrid applications: Issues and challenges. IEEE Access, 6, 35143-35164.

[23]

Fan T., Liu Z., Li M., Zhao Y., Zuo Z., & Guo R. (2022). Development of cost-effective repair system for locally damaged long- distance oil pipelines. Construction and Building Materials, 333, 127342.

[24]

Global CCS Institute (2021). [global status of ccs 2021.

[25]

Fu C., Lin J., Song Y., Li J., & Song J. (2019). Optimal operation of an integrated energy system incorporated with hcng distribution net- works. IEEE Transactions on Sustainable Energy, 11(4), 2141-2151.

[26]

Guo D., Chen Y., Yang J., Tan Y. H., Zhang C., & Chen Z. (2021). Planning and application of underground logistics systems in new cities and districts in china. Tunnelling and Underground Space Technology, 113, 103947.

[27]

Hai D., Xu J., Duan Z., & Chen C. (2020). Effects of underground logistics system on urban freight traffic: A case study in shanghai, china. Journal of Cleaner Production, 260, 121019.

[28]

Hall P. J., & Bain E. J. (2008). Energy-storage technologies and electricity generation. Energy Policy, 36, 4352-4355.

[29]

Hong L., Zhou X., Xia H., Liu Y., & Luo A. (2020). Mechanism and prevention of commutation failure in lcc-hvdc caused by sending end ac faults. IEEE Transactions on Power Delivery, 36(1), 473-476.

[30]

Hua T., Ahluwalia R., Peng J.-K., Kromer M., Lasher S., McKenney K., Law K., & Sinha J. (2011). Technical assessment of compressed hydrogen storage tank systems for automotive applications. International Journal of Hydrogen Energy, 36, 3037-3049.

[31]

Huang D., Shu Y., Ruan J., & Hu Y. (2009). Ultra high voltage transmission in china: developments, current status and future prospects. Proceedings of the IEEE, 97(3), 555-583.

[32]

Huang Q., Zou G., Wei X., Sun C., & Gao H. (2019). A non-unit line protection scheme for mmc-based multi-terminal hvdc grid. International Journal of Electrical Power & Energy Systems, 107, 1-9.

[33]

Hydrogen council (2021). Hydrogen for net-zero.

[34]

International Atomic Energy Agency (2015). Technology roadmap- nuclear energy 2015.

[35]

International Atomic Energy Agency (2017). Nuclear power and the paris agreement.

[36]

International Energy Agency (2021a). An energy sector roadmap to carbon neutrality in china.

[37]

International Energy Agency (2021b). Global hydrogen review 2021.

[38]

International Energy Agency (2022a). Global energy review CO2 emissions in 2021.

[39]

International Energy Agency (2022b). Renewables.

[40]

International Renewable Energy Agency (2022a). Global hydrogen trade to meet the 1.5c climate goal.

[41]

International Renewable Energy Agency (2022b). Renewable capacity statistics 2022.

[42]

IREN (2022). The hydroelectric power plant of pont ventoux-susa.

[43]

Jiang X. (2011). A review of physical modelling and numerical simulation of long-term geological storage of co2. Applied Energy, 88, 3557-3566.

[44]

Kanniche M., Gros-Bonnivard R., Jaud P., Valle-Marcos J., Amann J.-M., & Bouallou C. (2010). Pre-combustion, post-combustion and oxy-combustion in thermal power plant for co2 capture. Applied Thermal Engineering, 30, 53-62.

[45]

Koohi-Fayegh S., & Rosen M. A. (2020). A review of energy storage types, applications and recent developments. Journal of Energy Storage, 27, 101047.

[46]

Lemieux A., Sharp K., & Shkarupin A. (2019). Preliminary assessment of underground hydrogen storage sites in ontario, canada. International Journal of Hydrogen Energy, 44, 15193-15204.

[47]

Li H., Qin B., Jiang Y., Zhao Y., & Shi W. (2022a). Data-driven optimal scheduling for underground space based integrated hydrogen energy system. IET Renewable Power Generation, 16(12), 2521-2531.

[48]

Li J., Li S., & Wu F. (2020). Research on carbon emission reduction benefit of wind power project based on life cycle assessment theory. Renewable Energy, 155, 456-468.

[49]

Li J., Lin J., Song Y., Xing X., & Fu C. (2018). Operation optimization of power to hydrogen and heat (p2hh) in adn coordinated with the district heating network. IEEE Transactions on Sustainable Energy, 10 (4), 1672-1683.

[50]

Li X., Du X., Jiang T., Zhang R., & Chen H. (2022b). Coordinating multi-energy to improve urban integrated energy system resilience against extreme weather events. Applied Energy, 309, 118455.

[51]

Li X., & Wang S. (2019). Energy management and operational control methods for grid battery energy storage systems. CSEE Journal of Power and Energy Systems, 7(5), 1026-1040.

[52]

Liu W., Jiang D., Chen J., Daemen J., Tang K., & Wu F. (2018). Comprehensive feasibility study of two-well-horizontal caverns for natural gas storage in thinly-bedded salt rocks in china. Energy, 143, 1006-1019.

[53]

Liu W., Zhang Z., Chen J., Jiang D., Wu F., Fan J., & Li Y. (2020). Feasibility evaluation of large-scale underground hydrogen storage in bedded salt rocks of china: A case study in jiangsu province. Energy, 198, 117348.

[54]

Lord A. S., Kobos P. H., & Borns D. J. (2014). Geologic storage of hydrogen: Scaling up to meet city transportation demands. International Journal of Hydrogen Energy, 39, 15570-15582.

[55]

Meng Y., Yan S., Wu K., Ning L., Li X., Wang X., & Wang X. (2021). Comparative economic analysis of low frequency ac transmission system for the integration of large offshore wind farms. Renewable Energy, 179, 1955-1968.

[56]

Mousavi-G S. M., Faraji F., Majazi A., Al-Haddad K., et al. ( 2017). A comprehensive review of flywheel energy storage system technology. Renewable and Sustainable Energy Reviews, 67, 477-490.

[57]

Moya D., Alda´s C., & Kaparaju P. (2018). Geothermal energy: Power plant technology and direct heat applications. Renewable and Sustainable Energy Reviews, 94, 889-901.

[58]

Natural Gas Supply Association (2007). Storage of natural gas.

[59]

Mukherjee P., & Rao V. V. (2019). Design and development of high temperature superconducting magnetic energy storage for power applications-a review. Physica C: Superconductivity and its Applications, 563, 67-73.

[60]

Pan G., Gu W., Lu Y., Qiu H., Lu S., & Yao S. (2020). Optimal planning for electricity-hydrogen integrated energy system considering power to hydrogen and heat and seasonal storage. IEEE Transactions on Sustainable Energy, 11(4), 2662-2676.

[61]

Peng F.-L., Qiao Y.-K., Sabri S., Atazadeh B., & Rajabifard A. (2021). A collaborative approach for urban underground space development toward sustainable development goals: Critical dimensions and future directions. Frontiers of Structural and Civil Engineering, 15, 20-45.

[62]

Persson U., & Werner S. (2011). Heat distribution and the future competitiveness of district heating. Applied Energy, 88, 568-576.

[63]

Preuster P., Alekseev A., & Wasserscheid P. (2017). Hydrogen storage technologies for future energy systems. Annual Review of Chemical and Biomolecular Engineering, 8, 445-471.

[64]

Qian Q. (2016). Present state, problems and development trends of urban underground space in china. Tunnelling and Underground Space Technology, 55, 280-289.

[65]

Qiao Y.-K., Peng F.-L., Sabri S., & Rajabifard A. (2019a). Low carbon effects of urban underground space. Sustainable Cities and Society, 45, 451-459.

[66]

Qiao Y.-K., Peng F.-L., Sabri S., & Rajabifard A. (2019). Socio- environmental costs of underground space use for urban sustainability. Sustainable Cities and Society, 51, 101757.

[67]

Qiao Y.-K., Peng F.-L., Wu X.-L., & Luan Y.-P. (2022). Visualization and spatial analysis of socio-environmental externalities of urban underground space use: Part 2 negative externalities. Tunnelling and Underground Space Technology, 121, 104326.

[68]

Qin B., Liu W., Li H., Ding T., Ma K., & Liu T. (2022). Impact of system inherent characteristics on initial-stage short-circuit current of mmc-based mtdc transmission systems. IEEE Transactions on Power Systems, 37(5), 3913-3922.

[69]

Qin B., Sun H., Ma J., Li W., Ding T., Wang Z., & Zomaya A. Y. (2019a). Robust H_ control of doubly fed wind generator via state- dependent riccati equation technique. IEEE Transactions on Power Systems, 34(3), 2390-2400. https://doi.org/10.1109/TPWRS.2018.2881687.

[70]

Qin Y., Wu L., Zheng J., Li M., Jing Z., Wu Q., Zhou X., & Wei F. (2019b). Optimal operation of integrated energy systems subject to coupled demand constraints of electricity and natural gas. CSEE Journal of Power and Energy Systems, 6(2), 444-457.

[71]

Quarton C. J., & Samsatli S. (2018). Power-to-gas for injection into the gas grid: What can we learn from real-life projects, economic assessments and systems modelling? Renewable and Sustainable Energy Reviews, 98, 302-316.

[72]

Rahman M. M., Oni A. O., Gemechu E., & Kumar A. (2020). Assessment of energy storage technologies: A review. Energy Conversion and Management, 223, 113295.

[73]

Rastegarzadeh S., Mahzoon M., & Mohammadi H. (2020). A novel modular designing for multi-ring flywheel rotor to optimize energy consumption in light metro trains. Energy, 206, 118092.

[74]

Ray A. K., Rakshit D., & Ravikumar K. (2021). High-temperature latent thermal storage system for solar power: materials, concepts, and challenges. Cleaner Engineering and Technology, 4, 100155.

[75]

Raza W., Ali F., Raza N., Luo Y., Kim K.-H., Yang J., Kumar S., Mehmood A., & Kwon E. E. (2018). Recent advancements in supercapacitor technology. Nano Energy, 52, 441-473.

[76]

Rehman S., Al-Hadhrami L. M., & Alam M. M. (2015). Pumped hydro energy storage system: A technological review. Renewable and Sustainable Energy Reviews, 44, 586-598.

[77]

Rubin E. S., Mantripragada H., Marks A., Versteeg P., & Kitchin J. (2012). The outlook for improved carbon capture technology. Progress in Energy and Combustion Science, 38, 630-671.

[78]

Sadorsky P. (2021). Wind energy for sustainable development: Driving factors and future outlook. Journal of Cleaner Production, 289, 125779.

[79]

Shen, L., Wu, Y., Shuai, C., Lu, W., Chau, K., & Chen, X.(2018). Analysis on the evolution of low carbon city from process characteristic perspective. Journal of Cleaner Production, 187, 348-360.

[80]

Shu Y., & Chen W. (2018). Research and application of uhv power transmission in china. High Voltage, 3(1), 1-13.

[81]

Singh V. K., & Singal S. K. (2017). Operation of hydro power plants-a review. Renewable and Sustainable Energy Reviews, 69, 610-619.

[82]

State Grid Corporation of China (2020a). Corporate social responsibility report of state grid corporation of china. www.sgcc.com.cn/html/files/2021-05/11/20210511135010034286330.pdf.

[83]

State Grid Corporation of China (2020b). Corporate social responsibility report of state grid corporation of china.

[84]

Tan S., Yang J., Yan J., Lee C., Hashim H., & Chen B. (2017). A holistic low carbon city indicator framework for sustainable develop- ment. Applied Energy, 185, 1919-1930.

[85]

Tarkowski R. (2019). Underground hydrogen storage: Characteristics and prospects. Renewable and Sustainable Energy Reviews, 105, 86-94.

[86]

Thiyagarajan S. R., Emadi H., Hussain A., Patange P., & Watson M. (2022). A comprehensive review of the mechanisms and efficiency of underground hydrogen storage. Journal of Energy Storage, 51, 104490.

[87]

Tian J., Yu L., Xue R., Zhuang S., & Shan Y. (2022). Global low-carbon energy transition in the post-covid-19 era. Applied Energy, 307, 118205.

[88]

Tong Z., Cheng Z., & Tong S. (2021). A review on the development of compressed air energy storage in china: Technical and economic challenges to commercialization. Renewable and Sustainable Energy Reviews, 135, 110178.

[89]

fourth quarter online press conference transcript, N. (2022). National energy administration.

[90]

UN Environment Programme (2020). Emissions gap report 2021.

[91]

Trifkovic M., Sheikhzadeh M., Nigim K., & Daoutidis P. (2013). Modeling and control of a renewable hybrid energy system with hydrogen storage. IEEE Transactions on Control Systems Technology, 22(1), 169-179.

[92]

Vulusala G. V. S., & Madichetty S. (2018). Application of supercon- ducting magnetic energy storage in electrical power and energy systems: a review. International Journal of Energy Research, 42(2), 358-368.

[93]

Wang F., Li G., Ma W., Wu Q., Serban M., Vera S., Alexandr F., Jiang N., & Wang B. (2019). Pipeline-permafrost interaction monitoring system along the china-russia crude oil pipeline. Engineering Geology, 254, 113-125.

[94]

Wang W., Li Y., Shi M., & Song Y. (2021a). Optimization and control of battery-flywheel compound energy storage system during an electric vehicle braking. Energy, 226, 120404.

[95]

Wang X., Cao C., & Zhou Z. (2006). Experiment on fractional frequency transmission system. IEEE Transactions on Power Systems, 21(1), 372-377.

[96]

Wang X., Tan Y., Zhang T., Xiao R., Yu K., & Zhang J. (2021b). Numerical study on the diffusion process of pinhole leakage of natural gas from underground pipelines to the soil. Journal of Natural Gas Science and Engineering, 87, 103792.

[97]

Watanabe M., Thomas M. L., Zhang S., Ueno K., Yasuda T., & Dokko K. (2017). Application of ionic liquids to energy storage and conversion materials and devices. Chemical Reviews, 117(10), 7190-7239.

[98]

Wong J. K. W., Li H., Wang H., Huang T., Luo E., & Li V. (2013). Toward low-carbon construction processes: the visualisation of predicted emission via virtual prototyping technology. Automation in Construction, 33, 72-78.

[99]

Wu C., Gu W., Jiang P., Li Z., Cai H., & Li B. (2017). Combined economic dispatch considering the time-delay of district heating network and multi-regional indoor temperature control. IEEE Transactions on Sustainable Energy, 9(1), 118-127.

[100]

Wu W., Cheng Y., Lin X., & Yao X. (2019). How does the implementation of the policy of electricity substitution influence green economic growth in china? Energy Policy, 131, 251-261.

[101]

Xia L., & Zhang Y. (2019). An overview of world geothermal power generation and a case study on china—the resource and market perspective. Renewable and Sustainable Energy Reviews, 112, 411-423.

[102]

Xie H., Zhang Y., Chen Y., Peng Q., Liao Z., & Zhu J. (2021). A case study of development and utilization of urban underground space in shenzhen and the guangdong-hong kong-macao greater bay area. Tunnelling and Underground Space Technology, 107, 103651.

[103]

Xie H., Zhao J., Zhou H., Ren S., & Zhang R. (2020). Secondary utilizations and perspectives of mined underground space. Tunnelling and Underground Space Technology, 96, 103129.

[104]

Xu B., Li P., & Chan C. (2015a). Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments. Applied Energy, 160, 286-307.

[105]

Xu X., Lyu Q., Qadrdan M., & Wu J. (2020). Quantification of flexibility of a district heating system for the power grid. IEEE Transactions on Sustainable Energy, 11(4), 2617-2630.

[106]

Xu Z., Dong H., & Huang H. (2015b). Debates on ultra-high-voltage synchronous power grid: the future super grid in china? IET Generation, Transmission & Distribution, 9( 8), 740-747.

[107]

Yang Y., Han Y., Jiang W., Zhang Y., Xu Y., & Ahmed A. M. (2021). Application of the supercapacitor for energy storage in china: Role and strategy. Applied Sciences, 12(1), 354.

[108]

Yu H., Duan J., Du W., Xue S., & Sun J. (2017). China’s energy storage industry: develop status, existing problems and countermeasures. Renewable and Sustainable Energy Reviews, 71, 767-784.

[109]

Zacharias J., & He J. (2018). Hong kong’s urban planning experiment in enhancing pedestrian movement from underground space to the surface. Tunnelling and Underground Space Technology, 82, 1-8.

[110]

Zhang C., Wang F., & Bai Q. (2021a). Underground space utilization of coalmines in china: a review of underground water reservoir construction. Tunnelling and Underground Space Technology, 107, 103657.

[111]

Zhang C., Zhao Z., Guo D., Gong D., & Chen Y. (2023). Optimization of spatial layouts for deep underground infrastructure in central business districts based on a multi-agent system model. Tunnelling and Underground Space Technology, 135, 105046.

[112]

Zhang H., Baeyens J., Caceres G., Degreve J., & Lv Y. (2016). Thermal energy storage: Recent developments and practical aspects. Progress in Energy and Combustion Science, 53, 1-40.

[113]

Zhang J., Tan Y., Zhang T., Yu K., Wang X., & Zhao Q. (2020a). Natural gas market and underground gas storage development in china. Journal of Energy Storage, 29, 101338.

[114]

Zhang J., Tan Y., Zhang T., Yu K., Wang X., & Zhao Q. (2020b). Natural gas market and underground gas storage development in china. Journal of Energy Storage, 29, 101338.

[115]

Zhang K., Lau H. C., Liu S., & Li H. (2022). Carbon capture and storage in the coastal region of china between shanghai and hainan. Energy, 247, 123470.

[116]

Zhang L., Li Y., Zhang H., Xu X., Yang Z., & Xu W. (2021b). A review of the potential of district heating system in northern china. Applied Thermal Engineering, 188, 116605.

[117]

Zhang S., & Chen W. (2022). China’s energy transition pathway in a carbon neutral vision. Engineering, 14, 64-76.

[118]

Zhou X., Xu Y., Zhang X., Xu D., Linghu Y., Guo H., Wang Z., & Chen H. (2021). Large scale underground seasonal thermal energy storage in china. Journal of Energy Storage, 33, 102026.

[119]

Zivar D., Kumar S., & Foroozesh J. (2021). Underground hydrogen storage: A comprehensive review. International Journal of Hydrogen Energy, 46, 23436-23462.

AI Summary AI Mindmap
PDF (2158KB)

735

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/