Analytical model of vertical load acting on jacked pipe considering soil arching effect in cohesionless soil

Yu Zhang , Lianjin Tao , Xu Zhao , Jun Liu , Weizhang Liao , Fei Guo , Xiaohui Yang , Ruiqin Zhong

Underground Space ›› 2024, Vol. 14 ›› Issue (1) : 319 -337.

PDF (3114KB)
Underground Space ›› 2024, Vol. 14 ›› Issue (1) : 319 -337. DOI: 10.1016/j.undsp.2023.06.002

Analytical model of vertical load acting on jacked pipe considering soil arching effect in cohesionless soil

Author information +
History +
PDF (3114KB)

Abstract

For the project of pipe jacking in cohesionless soil, it is key to determine the vertical load on jacked pipe so as to predict the jacking force accurately. In this paper, a new parabolic soil arching model was proposed to calculate the vertical load on jacked pipe. This proposed analytical model was composed of parabolic soil arching zone, parabola-typed collapse zone and friction arch zone. Combined with existing literature, the key parameters (i.e., height of parabolic soil arching, horizontal pressure coefficient and width and height of friction arch) were determined. In addition, considering that the trajectory of major stress is parabola, the formula of horizontal pressure coefficient was deduced in the friction arch. The parabolic soil arching zone is assumed as a three-hinged arch with reasonable arch axis, and the formula of load transfer was derived considering the transition effect of parabolic soil arching. The results of experiment, theoretical models and numerical model were adopted to verify the proposed analytical model. Finally, the influence of the key parameters on the vertical load on jacked pipe were also discussed in detail. This work provides a meaningful reference for evaluating the vertical load on jacked pipe for design of pipe jacking.

Keywords

Jacked pipe / Soil arching effect / Theoretical model / Parabolic soil arching model / Vertical load

Cite this article

Download citation ▾
Yu Zhang, Lianjin Tao, Xu Zhao, Jun Liu, Weizhang Liao, Fei Guo, Xiaohui Yang, Ruiqin Zhong. Analytical model of vertical load acting on jacked pipe considering soil arching effect in cohesionless soil. Underground Space, 2024, 14(1): 319-337 DOI:10.1016/j.undsp.2023.06.002

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahmed M., & Iskander M. (2012). Evaluation of tunnel face stability by transparent soil models. Tunnelling and Underground Space Technology, 27(1), 101-110.

[2]

Anagnostou G., & Kova´ri K. (1996). Face stability conditions with earth-pressure-balanced shields. Tunnelling and Underground Space Technology, 11(2), 165-173.

[3]

American Society of Civil Engineering (ASCE) (2001). Standard Practice for Direct Design of Precast Concrete Pipe for Jacking in Trenchless Construction. Reston, Virginia, US: American Society of Civil Engineering.

[4]

Barla M., Camusso M., & Aiassa S. (2006). Analysis of jacking forces during microtunnelling in limestone. Tunnelling and Underground Space Technology, 21(6), 668-683.

[5]

Bergeson W. (2014). Review of long drive microtunneling technology for use on large scale projects. Tunnelling and Underground Space Technology, 39(1), 66-72.

[6]

Chapman D. N., & Ichioka Y. (1999). Prediction of jacking forces for microtunnelling operations. Tunnelling and Underground Space Technology, 14(Supplement 1), 31-41.

[7]

Chapman D. N., Rogers C. D. F., Burd H. J., Norris P. M., & Milligan G. W. E. (2007). Research needs for new construction using trenchless technologies. Tunnelling and Underground Space Technology, 22(5), 491-502.

[8]

Chambon P., & Corte J. F. (1994). Shallow tunnels in cohesionless soil: Stability of tunnel face. Journal of Geotechnical Engineering, 120(7), 1148-1165.

[9]

Chen K. H., & Peng F. L. (2018). An improved method to calculate the vertical earth pressure for deep shield tunnel in Shanghai soil layers. Tunnelling and Underground Space Technology, 75(5), 43-66.

[10]

Chen R. P., Li J., Kong L. G., & Tang L. J. (2013). Experimental study on face instability of shield tunnel in sand. Tunnelling and Underground Space Technology, 33(1), 12-21.

[11]

Chen R. P., Tang L. J., Yin X. S., Chen Y. M., & Bian X. C. (2015). An improved 3D wedge-prism model for the face stability analysis of the shield tunnel in cohesionless soils. Acta Geotechnica, 10(5), 683-692.

[12]

Chen R. P., Lin X. T., & Wu H. N. (2019). An analytical model to predict the limit support pressure on a deep shield tunnel face. Computers and Geotechnics, 115, 103174.

[13]

Chen R. P., Meng F. Y., Li Z. C., Ye Y. H., & Ye J. N. (2016). Investigation of response of metro tunnels due to adjacent large excavation and protective measures in soft soils. Tunnelling and Underground Space Technology, 58, 224-235.

[14]

Choo C. S., & Ong D. E. L. (2015). Evaluation of pipe-jacking forces based on direct shear testing of reconstituted tunneling rock spoils. Journal of Geotechnical and Geoenvironmental Engineering, 141(10), 04015044.

[15]

Choo C. S., & Ong D. E. L. (2017). Impact of highly weathered geology on pipe-jacking forces. Geotechnical Research, 4(2), 94-106.

[16]

Choo C. S., & Ong D. E. L. (2020). Assessment of non-linear rock strength parameters for the estimation of pipe-jacking forces. Part 2. Numerical modeling. Engineering Geology, 265, 105405.

[17]

Cui Q. L., Xu Y. S., Shen S. L., Yin Z. Y., & Horpibulsuk S. (2015). Field performance of concrete pipes during jacking in cemented sandy silt. Tunnelling and Underground Space Technology, 49(1), 336-344.

[18]

Engesser, F. (1882). Ueber den Erdduck gegen innere Stu¨ tzwande (Tunnelwande). Deutsche Bauzeitung, 16, 91-93.

[19]

Franza A., Marshall A. M., & Zhou B. (2019). Greenfield tunnelling in sands: The effects of soil density and relative depth. Ge´otechnique, 69(4), 297-307.

[20]

German ATV rules and standards (1990). ATV A 161 E-90, (1990). Structural calculation of driven pipes. Hennef, Germany:.

[21]

Goel S., & Patra N. R. (2008). Effect of arching on active earth pressure for rigid retaining walls considering translation mode. International Journal of Geomechanics, 8(2), 123-133.

[22]

Handy R. L. (1985). The arch in soil arching. Journal of Geotechnical Engineering, 111(3), 302-318.

[23]

Idinger G., Aklik P., & Wu W. (2011). Centrifuge model test on the face stability of shallow tunnel. Acta Geotechnica, 6(2), 105-117.

[24]

Jacobsz S. W. (2016). Trapdoor experiments studying cavity propagation. In:Proceedings of the first Southern African Geotechnical Conference, pp. 159-165.

[25]

Japan Microtunnelling Association. (2013). Microtunnelling methods serious Ⅱ. design, construction management and rudiments. Tokyo, Japan, pp. 69-72.

[26]

Japan Micro Tunneling Association (2000). Pipe-Jacking Application. Tokyo, Japan:.

[27]

Ji X. B., Ni P. P., Barla M., Zhao W., & Mei G. X. (2018). Earth pressure on shield excavation face for pipe jacking considering arching effect. Tunnelling and Underground Space Technology, 72(2), 17-27.

[28]

Ji X. B., Zhao W., Ni P. P., Barla M., Han J. Y., Jia P. J., Chen Y., & Zhang C. Z. (2019). A method to estimate the jacking force for pipe jacking in sandy soils. Tunnelling and Underground Space Technology, 90, 119-130.

[29]

Khazaei S., Shimada H., Kawai T., Yotsumoto J., & Matsui K. (2006). Monitoring of over cutting area and lubrication distribution in a large slurry pipe jacking operation. Geotechnical & Geological Engineering, 24(3), 735-755.

[30]

Kirsch A., & Kolymbas D. (2005). Theoretical investigation of face stability. Bautechnik, 82(7), 449-456 (in German).

[31]

Kirsch A. (2010). Experimental investigation of the face stability of shallow tunnels in sand. Acta Geotechnica, 5(1), 43-62.

[32]

Lai H. J., Zheng J. J., Zhang R. J., & Cui M. J. (2018). Classification and characteristics of soil arching structures in pile-supported embankments. Computers and Geotechnics, 98, 153-171.

[33]

Lee C. J., Chen P. S., Chiang K. H., Chen H. T., & Lin W. L. (2006). Evolution of arching effect during tunneling in sandy soil. In Underground Space-The 4th Dimension of Metropolises (pp. 1171-1176). Hong Kong, China: Taylor & Francis.

[34]

Lee C. J., Chiang K. H., & Kuo C. M. (2004). Ground movement and tunnel stability when tunneling in sandy ground. Journal of the Chinese Institute of Engineers, 27(7), 1021-1032.

[35]

Li P. F., Zou H. K., Wang F., & Xiong H. C. (2020). An analytical mechanism of limit support pressure on cutting face for deep tunnels in the sand. Computers and Geotechnics, 119, 103372.

[36]

Lin X. T., Chen R. P., Wu H. N., & Cheng H. Z. (2019a). Deformation behaviors of existing tunnels caused by shield tunneling undercrossing with oblique angle. Tunnelling and Underground Space Technology, 89 (7), 78-90.

[37]

Lin X. T., Chen R. P., Wu H. N., & Cheng H. Z. (2019b). Three- dimensional stress-transfer mechanism and soil arching evolution induced by shield tunneling in sandy ground. Tunnelling and Under- ground Space Technology, 93, 103104.

[38]

Lin X. T., Chen R. P., Wu H. N., Meng F. Y., Liu Q. W., & Su D. (2022b). A composite function model for predicting the ground reaction curve on a trapdoor. Computers and Geotechnics, 141, 104496.

[39]

Lin X. T., Chen R. P., Wu H. N., Meng F. Y., Su D., & Han K. H. (2022a). Calculation of earth pressure distribution on the deep circular tunnel considering stress-transfer mechanisms in different zones. Tunnelling and Underground Space Technology, 119, 104211.

[40]

Lu¨ X. L., Zhou, Y. C., Huang, M. S., & Zeng, S.(2018). Experimental study of the face stability of shield tunnel in sands under seepage condition. Tunnelling and Underground Space Technology, 74, 195-205.

[41]

Marston A. (1930). The theory of external loads on closed conduits in the light of latest experiments. Ames Iowa: Iowa Engineering Experiment Station.

[42]

McGuigan B. L., & Valsangkar A. J. (2011). Field monitoring and analysis of twin 3660 mm inside diameter induced trench culverts installed under 21.7 m of fill. Canadian Geotechnical Journal, 48(5), 781-794.

[43]

Meguid M. A., Saada O., Nunes M. A., & Matter J. (2008). Physical modeling of tunnels in soft ground: A review. Tunnelling and Underground Space Technology, 23(2), 185-198.

[44]

Meskele T., & Stuedlein A. W. (2013). Analysis of a 610-mm-diameter pipe installed using pipe ramming. Journal of Performance of Constructed Facilities, 28(4), 757-766.

[45]

Milligan G. W. E. (1996). Site-based research in pipe jacking—objectives, procedures and a case history. Tunnelling and Underground Space Technology, 11(1), 3-24.

[46]

Milligan G. E., & Norris P. (1999). Pipe-soil interaction during pipe jacking. Proceedings of the Institution of Civil Engineers Geotechnical Engineering, 137(1), 27-44.

[47]

Oblozinsky P., & Kuwano J. (2004). Centrifuge experiments on stability of tunnel face. Slovak Journal of Civil Engineering, 3, 23-29.

[48]

Ong D. E. L., & Choo C. S. (2016). Back-analysis and finite element modeling of jacking forces in weathered rocks. Tunnelling and Underground Space Technology, 51, 1-10.

[49]

Ong D. E. L., & Choo C. S. (2018). Assessment of non-linear rock strength parameters for the estimation of pipe-jacking forces. Part 1. Direct shear testing and backanalysis. Engineering Geology, 244, 159-172.

[50]

O’Rourke, T. D., El-Gharbawy, S. L., & Stewart, H. E.(1991). Soil Loads at Pipeline Crossings. Proc. Pipeline Crossings, Denver, Colorado, 235-238.

[51]

Paik K. H., & Salgado R. (2003). Estimation of active earth pressure against rigid retaining walls considering arching effects. Ge´otechnique, 53(7), 643-654.

[52]

Peerun M. I., Ong D. E. L., & Choo C. S. (2019). Interpretation of geomaterial behavior during shearing aided by PIV technology. Journal of Materials in Civil Engineering, 31(9), 04019195.

[53]

Peerun M. I., Ong D. E. L., Choo C. S., & Cheng W. C. (2020). Effect of interparticle behavior on the development of soil arching in soil- structure interaction. Tunnelling and Underground Space Technology, 106, 103610.

[54]

Peerun M. I., Ong D. E. L., & Desha C. (2022). A strategic review on enhanced DEM simulation and advanced 3-D particle printing techniques to improve pipe-jacking force prediction. Tunnelling and Underground Space Technology, 123, 104415.

[55]

Pipe Jacking Association (PJA) (1995). Guide to Best Practice for the Installation of Pipe Jacks and Microtunnels. London, UK: Pipe Jacking Association.

[56]

Sofianos A. I., Loukas P., & Chantzakos C. (2004). Pipe jacking a sewer under Athens. Tunnelling and Underground Space Technology, 19(2), 193-203.

[57]

Song J. H., Chen K. F., Li P., Zhang Y. H., & Sun C. M. (2018). Soil arching in unsaturated soil with different water table. Granular Matter, 20(4), 78.

[58]

Sterpi D., & Cividini A. (2004). A physical and numerical investigation on the stability of shallow tunnels in strain softening media. Rock Mechanics & Rock Engineering, 37(4), 277-298.

[59]

Sun X., Miao L., Lin H., & Tong T. (2018). Soil arch effect analysis of shield tunnel in dry sandy ground. International Journal of Geomechanics, 18(6), 04018057.

[60]

Takano D., Otani J., & Nagatani H. (2006). Application of x-ray CT on boundary value problems in geotechnical engineering: Research on tunnel a) face failure. In Proc., GeoCongress 2006:Geotechnical Engineering in the Information Technology Age, ASCE, Reston, 1-6

[61]

Tao L. J., Zhang Y., Zhao X., Bian J., Chen X. H., An S., & Han X. C. (2021). Group effect of pipe jacking in silty sand. Journal of Geotechnical and Geoenvironmental Engineering, 147(11), 05021012.

[62]

Terzaghi K. (1943). Theoretical soil mechanics. London: Chapman And Hall, Limited.

[63]

The Ministry of Construction of China & General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China (2022). GB 50332—02. Structural design code for pipeline of water supply and waste water engineering (in Chinese).

[64]

Wan T., Li P. F., Zheng H., & Zhang M. J. (2019). An analytical model of loosening earth pressure in front of tunnel face for deep-buried shield tunnels in sand. Computers and Geotechnics, 115, 103170.

[65]

Wang H., Qin W. M., & Jiao Y. Y. (2013). Stability assessment for highway with large-span box culvert jacking underneath: A case study. Canadian Geotechnical Journal, 50(6), 585-594.

[66]

Wang J., Wang K., Zhang T., & Wang T. (2018). Key aspects of a DN4000 steel pipe jacking project in China: A case study of a water pipeline in the Shanghai Huangpu River. Tunnelling and Underground Space Technology, 72, 323-332.

[67]

Wu J., Liao S. M., & Liu M. B. (2019). An analytical solution for the arching effect induced by ground loss of tunneling in sand. Tunnelling and Underground Space Technology, 83, 175-186.

[68]

Xu C. J., Chen Q. Z., Luo W. J., & Liang L. J. (2019). Analytical solution for estimating the stress state in backfill considering patterns of stress distribution. International Journal of Geomechanics, 19(1), 04018189.

[69]

Zhang C. P., Han K. H., & Zhang D. L. (2015). Face stability analysis of shallow circular tunnels in cohesive-frictional soils. Tunnelling and Underground Space Technology, 50, 345-357.

[70]

Zhang D. W., Liu B., & Qin Y. J. (2016a). Construction of a large-section long pedestrian underpass using pipe jacking in muddy silty clay: A case study. Tunnelling and Underground Space Technology, 60, 151-164.

[71]

Zhang H. F., Zhang P., Zhou W., Dong S., & Ma B. S. (2016b). A new model to predict soil pressure acting on deep burial jacked pipes. Tunnelling and Underground Space Technology, 60, 183-196.

[72]

Zhang P., Ma B. S., Zeng C., Xie H. M., Li X., & Wang D. W. (2016c). Key techniques for the largest curved pipe jacking roof to date: A case study of Gongbei tunnel. Tunnelling and Underground Space Technology, 59, 134-145.

[73]

Zhang Y., Tao L. J., Zhao X., Kong H., Guo F., & Bian J. (2022). An analytical model for face stability of shield tunnel in dry cohesionless soils with different buried depth. Computers and Geotechnics, 142, 104565.

[74]

Zhen L., Chen J. J., Qiao P. Z., & Wang J. H. (2014). Analysis and remedial treatment of a steel pipe-jacking accident in complex underground environment. Engineering Structures, 59, 210-219.

[75]

Zhu B., Gao D., Li J. C., & Chen Y. M. (2012). Model tests on interaction between soil and geosynthetics subjected to localized subsidence in landfills. Journal of Zhejiang University Science A, 13 (6), 433-444.

AI Summary AI Mindmap
PDF (3114KB)

655

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/