Crystal-Collapse-Induced Synthesis of High-Capacitance LaCoO x/Co-Doped Carbon-Based Supercapacitors
Zhihao Deng, Yuanbo Wang, Wu Shao, Jingwen He, Jie Sheng, Ronghao Cen, Yufei Fu, Wenjun Wu
Crystal-Collapse-Induced Synthesis of High-Capacitance LaCoO x/Co-Doped Carbon-Based Supercapacitors
The development of high-performance, reproducible carbon (C)-based supercapacitors remains a significant challenge because of limited specific capacitance. Herein, we present a novel strategy for fabricating LaCoO x and cobalt (Co)-doped nanoporous C (LaCoO x/Co@ZNC) through the carbonization of Co/Zn-zeolitic imidazolate framework (ZIF) crystals derived from a PVP-Co/Zn/La precursor. The unique ZIF structure effectively disrupted the graphitic C framework, preserved the Co active sites, and enhanced the electrical conductivity. The synergistic interaction between pyridinic nitrogen and Co ions further promoted redox reactions. In addition, the formation of a hierarchical pore structure through zinc sublimation facilitated electrolyte diffusion. The resulting LaCoO x/Co@ZNC exhibited exceptional electrochemical performance, delivering a remarkable specific capacitance of 2,789 F/g at 1 A/g and outstanding cycling stability with 92% capacitance retention after 3,750 cycles. Our findings provide the basis for a promising approach to advancing C-based energy storage technologies.
[1.] |
|
[2.] |
|
[3.] |
|
[4.] |
|
[5.] |
|
[6.] |
|
[7.] |
|
[8.] |
|
[9.] |
|
[10.] |
|
[11.] |
|
[12.] |
|
[13.] |
|
[14.] |
|
[15.] |
|
[16.] |
|
[17.] |
|
[18.] |
|
[19.] |
|
[20.] |
|
[21.] |
|
[22.] |
|
[23.] |
|
[24.] |
|
[25.] |
|
[26.] |
|
[27.] |
|
[28.] |
|
[29.] |
|
[30.] |
|
[31.] |
|
[32.] |
|
[33.] |
|
[34.] |
|
[35.] |
|
[36.] |
|
[37.] |
|
[38.] |
|
[39.] |
|
[40.] |
|
[41.] |
|
[42.] |
|
[43.] |
|
[44.] |
|
[45.] |
|
[46.] |
|
[47.] |
|
[48.] |
|
[49.] |
|
[50.] |
|
[51.] |
|
[52.] |
|
[53.] |
|
[54.] |
|
[55.] |
|
[56.] |
|
[57.] |
|
/
〈 |
|
〉 |