Accelerating Electrocatalytic Nitrate Reduction to Ammonia via Weakening of Intermediate Adsorption on Cu-Based Catalyst
Yizhu Chen , Ang Ma , Lei Chen , Xinyang Liu , Yan Li , Yan Hong , Yushuo Zhang , Yunyi Liu , Lixin Wei , Yudong Li , Siqi Li , Song Liu
Transactions of Tianjin University ›› : 1 -10.
Accelerating Electrocatalytic Nitrate Reduction to Ammonia via Weakening of Intermediate Adsorption on Cu-Based Catalyst
Cu-based materials are commonly used in electrocatalytic nitrate reduction reactions (NO3RR). NO3RR is a “two birds, one stone” approach, simultaneously removing NO3 − pollutants and producing valuable ammonia (NH3). However, the strong coordination between the NO3 − intermediate and the catalytic active sites seriously hinders the conversion efficiency. Here, we determined that, through encapsulation strategies, the carbon layer could weaken the NO3 − intermediate binding to active sites, resulting in higher NH3 yields. We experimentally fabricated electrocatalysts, i.e., Cu nanoparticles encapsulating (or loaded on) N-doped carbon nanofibers (NCNFs) called Cu@NCNFs (Cu-NCNFs), using electrostatic spinning. As a result, Cu@NCNFs can achieve NH3 yields of 17.08 mg/(h·mgcat) at a voltage of − 0.84 V and a Faraday efficiency of 98.15%. Meanwhile, the electrochemical properties of the Cu nanoparticles on the surface of carbon fibers (Cu-NCNFs) are lower than those of the Cu@NCNFs. The in situ Raman spectra of Cu@NCNFs and Cu-NCNFs under various reduction potentials during the NO3RR process show that catalyst encapsulation within carbon layers can effectively reduce the adsorption of N species by the catalyst, thus improving the catalytic performance in the nitrate-to-ammonia catalytic conversion process.
Electrocatalytic nitrate reduction reactions / Ammonia synthesis / Copper-based electrocatalysts / Electrostatically spun carbon fiber / Regulated adsorption
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
/
| 〈 |
|
〉 |