Data-Driven Design of Single-Atom Electrocatalysts with Intrinsic Descriptors for Carbon Dioxide Reduction Reaction

Xiaoyun Lin , Shiyu Zhen , Xiaohui Wang , Lyudmila V. Moskaleva , Peng Zhang , Zhi-Jian Zhao , Jinlong Gong

Transactions of Tianjin University ›› 2024, Vol. 30 ›› Issue (5) : 459 -469.

PDF
Transactions of Tianjin University ›› 2024, Vol. 30 ›› Issue (5) : 459 -469. DOI: 10.1007/s12209-024-00413-1
Research Article

Data-Driven Design of Single-Atom Electrocatalysts with Intrinsic Descriptors for Carbon Dioxide Reduction Reaction

Author information +
History +
PDF

Abstract

The strategic manipulation of the interaction between a central metal atom and its coordinating environment in single-atom catalysts (SACs) is crucial for catalyzing the CO2 reduction reaction (CO2RR). However, it remains a major challenge. While density-functional theory calculations serve as a powerful tool for catalyst screening, their time-consuming nature poses limitations. This paper presents a machine learning (ML) model based on easily accessible intrinsic descriptors to enable rapid, cost-effective, and high-throughput screening of efficient SACs in complex systems. Our ML model comprehensively captures the influences of interactions between 3 and 5d metal centers and 8 C, N-based coordination environments on CO2RR activity and selectivity. We reveal the electronic origin of the different activity trends observed in early and late transition metals during coordination with N atoms. The extreme gradient boosting regression model shows optimal performance in predicting binding energy and limiting potential for both HCOOH and CO production. We confirm that the product of the electronegativity and the valence electron number of metals, the radius of metals, and the average electronegativity of neighboring coordination atoms are the critical intrinsic factors determining CO2RR activity. Our developed ML models successfully predict several high-performance SACs beyond the existing database, demonstrating their potential applicability to other systems. This work provides insights into the low-cost and rational design of high-performance SACs.

Keywords

Density functional theory / Machine learning / CO2 reduction reaction / Electrocatalysts / High-throughput screening

Cite this article

Download citation ▾
Xiaoyun Lin, Shiyu Zhen, Xiaohui Wang, Lyudmila V. Moskaleva, Peng Zhang, Zhi-Jian Zhao, Jinlong Gong. Data-Driven Design of Single-Atom Electrocatalysts with Intrinsic Descriptors for Carbon Dioxide Reduction Reaction. Transactions of Tianjin University, 2024, 30(5): 459-469 DOI:10.1007/s12209-024-00413-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gao D, Li W, Wang H et al (2022) Heterogeneous catalysis for CO 2 conversion into chemicals and fuels. Trans Tianjin Univ 28(4):245-264

[2]

Ji Y, Du J, Chen A (2022) Review on heteroatom doping carbonaceous materials toward electrocatalytic carbon dioxide reduction. Trans Tianjin Univ 28(4):292-306

[3]

Xu Y, Liu Z, Cong W et al (2023) Application and progress of confinement synthesis strategy in electrochemical energy storage. Trans Tianjin Univ 29(2):151-187

[4]

Zhang L, Zhao ZJ, Gong J (2017) Nanostructured materials for heterogeneous electrocatalytic CO 2 reduction and their related reaction mechanisms. Angew Chem Int Ed Engl 56(38):11326-11353

[5]

De Luna P, Hahn C, Higgins D et al (2019) What would it take for renewably powered electrosynthesis to displace petrochemical processes. Science 364(6438):eaav3506

[6]

Saraev AA, Kurenkova AY, Mishchenko DD et al (2024) Cu/TiO2 photocatalysts for CO2 reduction: structure and evolution of the cocatalyst active form. Trans Tianjin Univ 30(2):140-151

[7]

Lees EW, Mowbray BAW, Parlane FGL et al (2022) Gas diffusion electrodes and membranes for CO2 reduction electrolysers. Nat Rev Mater 7:55-64

[8]

Zhen S, Zhang G, Cheng D et al (2022) Nature of the active sites of copper zinc catalysts for carbon dioxide electroreduction. Angew Chem Int Ed Engl 61(22):e202201913

[9]

Kuhl KP, Hatsukade T, Cave ER et al (2014) Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J Am Chem Soc 136(40):14107-14113

[10]

Qiao B, Wang A, Yang X et al (2011) Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem 3(8):634-641

[11]

Wang A, Li J, Zhang T (2018) Heterogeneous single-atom catalysis. Nat Rev Chem 2:65-81

[12]

Yang XF, Wang A, Qiao B et al (2013) Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc Chem Res 46(8):1740-1748

[13]

Qiu W, Han Q, Yu X et al (2023) Iron atom-cluster strategy synthesis of hierarchically porous Fe-N-C catalysts for proton exchange membrane fuel cells. Trans Tianjin Univ 29(6):453-461

[14]

Wang J, Li Z, Wu Y et al (2018) Fabrication of single-atom catalysts with precise structure and high metal loading. Adv Mater 30(48):e1801649

[15]

Wagner A, Sahm CD, Reisner E (2020) Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO 2 reduction. Nat Catal 3:775-786

[16]

Deng Y, Zhao J, Wang S et al (2023) Operando spectroscopic analysis of axial oxygen-coordinated single-Sn-atom sites for electrochemical CO 2 reduction. J Am Chem Soc 145(13):7242-7251

[17]

Ren C, Lu S, Wu Y et al (2022) A universal descriptor for complicated interfacial effects on electrochemical reduction reactions. J Am Chem Soc 144(28):12874-12883

[18]

Jiang L, Du H, Li L et al (2023) Sequential growth of Cs3Bi2I9/BiVO4 direct Z-scheme heterojunction for visible-light-driven photocatalytic CO2 reduction. Trans Tianjin Univ 29(6):462-472

[19]

Zhao ZJ, Liu S, Zha S et al (2019) Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nat Rev Mater 4:792-804

[20]

Liu X, He Z, Ajmal M et al (2023) Recent advances in the comprehension and regulation of lattice oxygen oxidation mechanism in oxygen evolution reaction. Trans Tianjin Univ 29(4):247-253

[21]

Peterson AA, Nørskov JK (2012) Activity descriptors for CO 2 electroreduction to methane on transition-metal catalysts. J Phys Chem Lett 3(2):251-258

[22]

Liang X, Fu N, Yao S et al (2022) The progress and outlook of metal single-atom-site catalysis. J Am Chem Soc 144(40):18155-18174

[23]

Gao W, Chen Y, Li B et al (2020) Determining the adsorption energies of small molecules with the intrinsic properties of adsorbates and substrates. Nat Commun 11(1):1196

[24]

Kitchin JR, Nørskov JK, Barteau MA et al (2004) Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys Rev Lett 93(15):156801

[25]

Ling C, Cui Y, Lu S et al (2022) How computations accelerate electrocatalyst discovery. Chem 8(6):1575-1610

[26]

Yang Z, Gao W, Jiang Q (2020) A machine learning scheme for the catalytic activity of alloys with intrinsic descriptors. J Mater Chem A 8(34):17507-17515

[27]

Yuan H, Li Z (2021) Intrinsic descriptors for coordination environment and synergistic effects of metal and environment in single-atom-catalyzed carbon dioxide electroreduction. J Phys Chem C 125(33):18180-18186

[28]

Feng H, Ding H, He P et al (2022) Data-driven design of dual-metal-site catalysts for the electrochemical carbon dioxide reduction reaction. J Mater Chem A 10(36):18803-18811

[29]

Tran K, Ulissi ZW (2018) Active learning across intermetallics to guide discovery of electrocatalysts for CO 2 reduction and H2 evolution. Nat Catal 1:696-703

[30]

Chen Y, Huang Y, Cheng T et al (2019) Identifying active sites for CO 2 reduction on dealloyed gold surfaces by combining machine learning with multiscale simulations. J Am Chem Soc 141(29):11651-11657

[31]

Esterhuizen JA, Goldsmith BR, Linic S (2022) Interpretable machine learning for knowledge generation in heterogeneous catalysis. Nat Catal 5:175-184

[32]

Zhang X, Tian Y, Chen L et al (2022) Machine learning: a new paradigm in computational electrocatalysis. J Phys Chem Lett 13(34):7920-7930

[33]

Chen L, Zhang X, Chen A et al (2022) Targeted design of advanced electrocatalysts by machine learning. Chin J Catal 43(1):11-32

[34]

Chen A, Zhang X, Chen L et al (2020) A machine learning model on simple features for CO 2 reduction electrocatalysts. J Phys Chem C 124(41):22471-22478

[35]

Xu H, Cheng D, Cao D et al (2024) Revisiting the universal principle for the rational design of single-atom electrocatalysts. Nat Catal 7:207-218

[36]

Lin X, Wang Y, Chang X et al (2023) High-throughput screening of electrocatalysts for nitrogen reduction reactions accelerated by interpretable intrinsic descriptor. Angew Chem Int Ed Engl 62(19):e202300122

[37]

Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15-50

[38]

Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758-1775

[39]

Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865-3868

[40]

Grimme S, Antony J, Ehrlich S et al (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104

[41]

Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91(5):893-928

[42]

Dronskowski R, Bloechl PE (1993) Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J Phys Chem 97(33):8617-8624

[43]

Maintz S, Deringer VL, Tchougréeff AL et al (2016) LOBSTER: a tool to extract chemical bonding from plane-wave based DFT. J Comput Chem 37(11):1030-1035

[44]

Nørskov JK, Rossmeisl J, Logadottir A et al (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108(46):17886-17892

[45]

Pedregosa F, Varoquaux G, Gramfort A et al (2012) Scikit-learn: machine learning in python. arXiv. 12: 1201.0490.

[46]

Pandis N (2016) Linear regression. Am J Orthod Dentofac Orthop 149(3):431-434

[47]

Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Statist 29(5):1189-1232

[48]

Article MathSciNet Google Scholar

[49]

Breiman L (2001) Random forests. Mach Learn 45:5-32

[50]

Zhao Z, Lu G (2018) Computational screening of near-surface alloys for CO 2 electroreduction. ACS Catal 8(5):3885-3894

[51]

Gong L, Zhang D, Lin CY et al (2019) Catalytic mechanisms and design principles for single-atom catalysts in highly efficient CO 2 conversion. Adv Energy Mater 9(44):1902625

[52]

Xin H, Vojvodic A, Voss J et al (2014) Effects of d-band shape on the surface reactivity of transition-metal alloys. Phys Rev B 89(11):115114

AI Summary AI Mindmap
PDF

332

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/