Tailoring Iron-Ion Release of Cellulose-Based Aerogel-Coated Iron Foam for Long-Term High-Power Microbial Fuel Cells
Zhengyang Ni , Huitao Yu , Haoran Wang , Mengmeng Qin , Feng Li , Hao Song , Xiangyu Chen , Yiyu Feng , Wei Feng
Transactions of Tianjin University ›› 2024, Vol. 30 ›› Issue (5) : 436 -447.
Tailoring Iron-Ion Release of Cellulose-Based Aerogel-Coated Iron Foam for Long-Term High-Power Microbial Fuel Cells
The presence of iron (Fe) has been found to favor power generation in microbial fuel cells (MFCs). To achieve long-term power production in MFCs, it is crucial to effectively tailor the release of Fe ions over extended operating periods. In this study, we developed a composite anode (A/IF) by coating iron foam with cellulose-based aerogel. The concentration of Fe ions in the anode solution of A/IF anode reaches 0.280 μg/mL (Fe2+ vs. Fe3+ = 61%:39%) after 720 h of aseptic primary cell operation. This value was significantly higher than that (0.198 μg/mL, Fe2+ vs. Fe3+ = 92%:8%) on uncoated iron foam (IF), indicating a continuous release of Fe ions over long-term operation. Notably, the resulting MFCs hybrid cell exhibited a 23% reduction in Fe ion concentration (compared to a 47% reduction for the IF anode) during the sixth testing cycle (600–720 h). It achieved a high-power density of 301 ± 55 mW/m2 at 720 h, which was 2.62 times higher than that of the IF anode during the same period. Furthermore, a sedimentary microbial fuel cell (SMFCs) was constructed in a marine environment, and the A/IF anode demonstrated a power density of 103 ± 3 mW/m2 at 3240 h, representing a 75% improvement over the IF anode. These findings elucidate the significant enhancement in long-term power production performance of MFCs achieved through effective tailoring of Fe ions release during operation.
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
/
| 〈 |
|
〉 |